Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T19:14:58.032Z Has data issue: false hasContentIssue false

Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskişehir region of western Turkey

Published online by Cambridge University Press:  02 January 2018

S. Kadіr*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey
H. Erkoyun
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey

Abstract

Because of widespread tremolite and chrysotile minerals in Palaeozoic-Mesozoic metamorphic and Triassic ophiolitic units, respectively, in the Eskişehir region, Turkey, there is significant potential for development of cases of mesothelioma. Such occurrences in the Eskişehir region show a positive correlation with the concentration and dimension of tremolite crystals compared with those of chrysotile crystals. A detailed assessment of the mineralogy, geochemistry and genesis of these materials has not been carried out to date; the present study was undertaken to fill that gap. The sharp diagnostic basal reflections at 8.14 Å, 3.09 Å and at 7.30 Å, 3.63 Å, well defined fibrous crystallinity, and ideal differential thermal analysis-thermal gravimetric and Raman curves suggest the development of well crystallized fibrous/acicular tremolite and chrysotile with the average structural formulae of: (Na0.07K0.03)(Ca1.68Mg0.18Mn0.01)(Fe0.42Mg4.55Ti0.01)(Si7.60Al0.24Fe0.16)O22(OH)2, and (Mg5.55Fe0.41 Mn0.006)(Si3.79Al0.13)O10(OH)8, respectively.

Enrichment of light rare earth elements relative to medium rare earth elements and heavy rare earth elements in tremolite compared to that of chrysotile which exhibits no anomaly and negative anomalies for Ba, Sr, Ce, Nb, Yand Zr in the tremolite samples and chrysotile, are responses to the fractionation of feldspar, glaucophane, pyroxene and olivine under the high temperatures of hydrothermal-alteration processes during serpentinization and the high-pressure conditions of metamorphism. Based on H and O isotope data, the tremolite and chrysotile are thought to have developed from tectonically controlled magmatic and meteoric hydrothermal systems and the formation temperatures of the tremolite are higher than those of chrysotile.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A.H., Gharib, M.E. & Arai, S. (2012) Characterization of the thermally metamorphosed mantle-crust transition zone of the Neoproterozoic ophiolite at Gebel Mudarjaj, South Eastern Desert. Egypt. Lithos, 142-143, 6783.Google Scholar
Anhaeusser, C.R. (1976) The nature of chrysotile asbestos occurrences in southern Africa: A review. EconomicGeology, 71, 96116.Google Scholar
Atabey, E. (2009) Türkiye de asbest, eriyonit, kuvars ve diger mineral tozları ve etkileri. Maden Tetkik ve \i\mui Müdürlüğü. 188 ppGoogle Scholar
Aziz, N.R.H., Aswad K.J.A. & Koyig H.A. (2011) Contrasting settings of serpentinite bodies in the Northwestern Zagros Suture, Kurdistan Region, Iraq. Geological Magazine, 148, 819837.Google Scholar
Bang, Y.İ. (1987) Asbestos and erionite related chestdiseases. Semih Offset Matbaası, Ankara, 167 pp.Google Scholar
Bang, Y.İ. (1994) Bu doktoru rehin alalım: Anadolu ‘da bir kanser arastirmasi. Ajans Türk Mat. San. A.§., Kent Matbaası, Ankara, 112 pp.Google Scholar
Basibiiyuk, Z., Yalçın, H. & Bozkaya Ö. (2009) Sivasbölgesi ofiyolitleri ile iliskili asbest yataklanmnmineralojisi. 14. Ulusal Kil Sempozyumu, KTÜ, Trabzon, pp. 1126.Google Scholar
Bayram, M., Döngel, I., Bakan, N.D., Yalçın, H., Cevit, R., Dumortier, P. & Nemery, B. (2013) High risk of malignant mesothelioma and pleural plaques in subjects born close to ophiolites. Chest, 143, 164171.Google Scholar
Biondi, J.C. (2014) Neoproterozoic Cana Brava chrysotile deposit (Goiás, Brazil): Geology and geochemistry of chrysotile vein formation. Lithos, 184—187, 132—154.Google Scholar
Bloise, A., Fornero, E., Belluso, E., Barrese, E. & Rinaudo, C. (2008) Synthesis and characterization of tremolite asbestos fibres. European Journal of Mineralogy, 20, 10271033.Google Scholar
Bouchet, A. (2008) Characterization of serpentine present in the Oligocene conglomerates and Miocene syn-orogenic chains sub-alpine southern (Western Alps): Identification of sources. Memory, L. Earth Sciences and planets, ENS Lyon.Google Scholar
Chernosky, J.V. Jr., Berman, R.G. & Jenkins, D.M. (1998) The stability of tremolite: New experimental data and a thermodynamic assessment. American Mineralogist, 83, 726739.CrossRefGoogle Scholar
Craig, H. (1961) Isotopic variations in meteoric waters. Science, 133, 17021703.CrossRefGoogle ScholarPubMed
Döngel, İ., BayramM., BakanN.D. YalçınH. & Gültürk, S. (2013) Is living close to ophiolites related to asbestos related diseases? Cross-sectional study. Respiratory Medicine, 107, 870874.CrossRefGoogle ScholarPubMed
DPT (2001) Sekizinci beg yilhk kalkınma planı, Endüstriyel hammaddeler çalısma grubu raporu. Ankara, 28 pp.Google Scholar
Ece Ö, I. (1998) Diagenetic transformation of magnesite pebbles and cobbles to sepiolite (Meerschaum) in Eskisehir lacustrine basin, Tiirkiye. Clays and Clay Minerals, 46, 436445.Google Scholar
Ece Ö, I., Matsubaya, O. & Çoban, F. (2005) Genesis of hydrothermal stockwork-type magnesite deposits associated with ophiolite complexes in the Kütahya-Eskisehir region, Turkey. Neues Jahrbuch für Mineragie-Abhandlungen, 181, 191205.CrossRefGoogle Scholar
Eliferovich, Z.M. (1970) Asbest yataklarının tesekkülü, asbest aramalarında degerlendirme esasları ve Türkiye'deki asbest yatakları. Türkiye Jeoloji Bülteni, 13, 146158.Google Scholar
Ersoy, Y.E., Çemen, L. Helvaci, C. & Billor, Z. (2014) Tectono-stratigraphy of the Neogene basins in Western Turkey: Implications for tectonic evolution of the Aegean Extended Region. Tectonophysics, 635, 3358.CrossRefGoogle Scholar
Evans, B.W., Ghiorso, M.S. & Kuehner, S.M. (2000) Thermodynamic properties of tremolite: A correction and some comments. American Mineralogist, 85, 466-472.CrossRefGoogle Scholar
G., Faure (1986) Principles of Isotope Geology, 2nd edition. John Wiley and Sons, New York, 589 pp.Google Scholar
Gilg, H.A., Weber, B., Kasbohm, J. & Frei, R. (2003) Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany. Clay Minerals, 38, 95112.Google Scholar
Gözler, M.Z., Cevher, F., Ergül, E. & Asutay, H.J. (1996) Orta Sakarya ve güneyininjeolojisi. Mineral Research and Exploration (MTA) Raport No. 9973 (Unpublished).Google Scholar
Graham, C.M., Harmon, R.S. & Sheppard S.M.F. (1984) Experimental hydrogen isotope studies: hydrogen exchange between amphibole and water. American Mineralogist, 69, 128138.Google Scholar
Groppo, C., Rinaudo, C., Cairo, S., Gastaldi, D. & Compagnoni, R. (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. European Journal of Mineralogy, 18, 319329.CrossRefGoogle Scholar
Huang, Z.H., Li, W.J., Pan, Z.H., Liu, Y.G. & Fang, M.H. (2013) High-temperature transformation of asbestos tailings by carbothermal reduction. Clays and Clay Minerals, 61, 7582.Google Scholar
Kadir, S., Bag, H. & Karakag, Z. (2002) Origin of sepiolite and loughlinite in a Neogene volcano-sedimentary lacustrine environment, Mihalıççık-Eskisehir, Turkey. The Canadian Mineralogist, 40, 10911102.Google Scholar
Kadir, S., Önen-Hall, A.P., Aydın, S.N., Yakıcıer, C., Akarsu, N. & Tuncer, M. (2008) Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey. Environmental Geology, 54, 391—409.Google Scholar
Kadir, S., Aydogan, M.S., Elitok Ö. & Helvacı C. (2015) Composition and genesis of the nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdagi region (Usak, western Anatolia), Turkey. Clays and Clay Minerals, 63, 163184.Google Scholar
Kahya, A. & Kuscu, M. (2014) Source of the mineralizing fluids in ultramafic related magnesite in the Eskisehir area, nothwest Turkey, along the İzmir—Ankara Suture: a stable isotope study. Turkish Journal of Earth Sciences, 23, 115.Google Scholar
Kessel, R., Schmidt, M.W., Ulmer, P. & Pettke T (2005) The trace element signature of subduction zone fluids, melts and supercritical liquids at 120—180 km depth. Nature, 437, 724727.CrossRefGoogle ScholarPubMed
Khashgerel, B.-E., Rye, R.O., Kavalieris, I. & Hayashi K.-I. (2009) The sericitic to advanced argillic transition: Stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi District, Mongolia. Economic Geology, 104, 10871110.Google Scholar
Khedr, M.Z. & Arai, S. (2009) Geochemistry of metaso-matized peridotites above suducting slab: a case study of hydrous metaperidotites from Happo-O'ne comple, central Japan. Journal of Mineralogical and Petrological Sciences, 104, 313318.Google Scholar
Konak, N. (2002) 1/500,000 scale geological map of Turkey - İzmir General Directorate of Mineral Research and Exploration (MTA) of Turkey.Google Scholar
Külah, T., Kadir, S., Gürel, A., Eren, M. & Önalgil, N. (2014) Mineralogy, geochemistry, and genesis of mudstones in the Upper Miocene Mustafapasa member of the Ürgüp formation in the Cappadocia region, central Anatolia, Turkey. Clays and Clay Minerals, 62, 267285.Google Scholar
Kulaksız, S. (1981) Sivrihisar kuzeybatı yöresininjeolojisi. Yerbilimleri, 8, 103124.Google Scholar
Lavitan, D.M., Hammarstrom, J.M., Gunter, M.E., Seal, I. R.R., Chou, I.M. & Piatak, N.M. (2009) Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont. American Mineralogist, 94, 10631066.CrossRefGoogle Scholar
Lippmann, M. (1990) Effects of fibre characteristics on lung deposition, retention, and disease. Environmental Health Perspectives, 88, 311317.CrossRefGoogle ScholarPubMed
MacKenzie, R.C. (1957) The Differential Thermal Investigation of Clays. Mineralogical Society, London, 456 pp.Google Scholar
Makreski, P., Jovanovski, G. & Gajovic, A. (2006) Minerals from Macedonia XVII. Vibrational spectra of some common appearing amphiboles. Vibrational Spectroscopy, 40, 98109.Google Scholar
Metintas, M., ÖzdemirN., Hillerdal, G., Ucgun, I., Metintas, S., Baykul, C., Elbek, O., Mutlu, S. & Kolsuz, M. (1999) Environmental asbestos expo sure and malignant pleural mesothelioma. Respiratory Medicine, 93, 349—355.Google Scholar
Metintas, S., Metintas, M., Ucgun, I. & Omer, U. (2002a) Malignant mesothelioma due to environmental expos¬ure to asbestos. Chest, 122, 22242229.CrossRefGoogle ScholarPubMed
Metintas, M., Metintas, S., Ucgun, I. & Baykul, C. (2002b) Eskisehir ili kirsal alanında çevresel asbest teması ile ilgili solunum sistemi sorunları. TÜBİTAK Proje No. YDABÇAG-585.Google Scholar
Metintag, M., Metintag, S., Ak, G., Erginel, S., Alatas, F., Kurt, E., Ucgun, I. & Yildirim, H. (2008) Epidemiology of pleural mesothelioma in a population with non-occupational asbestos exposure. Respirology, 13, 117121.Google Scholar
Niu, Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 24232458.Google Scholar
Nkoumbou, C., Njopwouo, D., Villieras, F., Nijoya, A., Ngoune, C., Ngo Ndjock, L., Tchoua, F.M. & Yvon, J. (2006) Talc indices from Boumnyebel (Central — Cameroon), physico-chemical characteristics and geochemistry. Journal of African Earth Sciences, 45, 61—73.CrossRefGoogle Scholar
Özkaya, İ. (1976) Mihalıççık (Eskisehir) bölgesindeki asbest yataklarının olusumu. Turkiye Jeoloji Kurumu Bülteni, 19, 5358.Google Scholar
Özpınar, Y & Egri, M. (2009) Çal, Süller ve Bekilli (Denizli, Türkiye) çevresindeki asbest (tremolit) olugumlarrnm jeolojik, mineralojik ve petrografik olarak incelenmesi ve bu olugumlarm kanser riski açısından degerlendirilmesi, 62. Türkiye Jeoloji Kurultayı, MTA, Ankara, 512 pp.Google Scholar
Page, N.J. (1968) Chemical differences among the serpen¬tine polymorphs. American Mineralogist, 53, 201215.Google Scholar
Rinaudo, C. & Gastaldi, D. (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. The Canadian Mineralogist, 41,883890.Google Scholar
Rinaudo, C., Belluso, E. & Gastaldi, D. (2004) Assessment of the use of Raman spectroscopy for the determin¬ation of amphibole asbestos. Mineralogical Magazine, 68, 455-465.Google Scholar
Ross, M., Langer, A.M., Nord, G.L., Nolan, R.P., Lee, R.J., Van Orden, D. & Addison, J. (2008) The mineral nature of asbestos. Regulatory Toxicology and Pharmacology, 52, 26—30.Google Scholar
Saccocia, P.J., Seewald, J.S. & Shanks IIIW.C. (2009) Oxygen and hydrogen isotope fractionation in serpen¬tine-water and talc-water systems from 250 to 450°C, 50 MPa. Geochimica et Cosmochimica Acta, 73, 67896804.Google Scholar
Savin, S.M. & Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34, 2542.Google Scholar
Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P. & Auzende, A.L. (2012) Pressure-temperature estimates of the lizardite/antig-orite transition in high pressure serpentinites. Lithos, 178, 197207.Google Scholar
§engor, A.M.C., GörürN. & §arogluF. (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Pp. 227-264 in: Strike-Slip Deformation, Basin Formation and Sedimentation (K.T Biddle and, N. Christie-Blick, editors). Society of Economic Paleontology and Mineralogy (SEPM) Special Publication, 37, Tulsa, Oklahoma, USA.Google Scholar
Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Pp. 141—162 in: Stable Isotopes in High Temperature Geological Processes (J.W. Valley, H.P. Taylor & J.R. O'Neil, editors). Reviews in Mineralogy, 16, Mineralogical Society of America, Washington, DC.Google Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of clay Minerals. Clay Minerals, 31, 124.CrossRefGoogle Scholar
Sheppard, S.M.F., Nielsen, R.L. & Taylor, H.P. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphry copper deposits. Economic Geology, 64, 755777.Google Scholar
Sprynskyy, M., Niedojadio, J. & Buszewski, B. (2011) Structural features of natural and acids modified chrysotile nanotubes. Journal of Physics and Chemistry of Solids, 72, 10151026.Google Scholar
Sun, S.S. & McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, 42, 313345.Google Scholar
Tokay, F. & Altunel, E. (2005) Neotectonic activity of Eskisehir fault zone in vicinity of Inonu-Dodurga area. Bulletin of Mineral Research and Exploration, 130, 115.Google Scholar
Tolluoglu, A.Ü., Tiirkoglu Ö., Ünal, E. & Oyan V (2006) Van Gölü havzasında gözlenen asbest formlu lifsi minerallerin dagilimlan ve insan saghgi ıüzerine olası etkileri, TÜBİTAK Proje No. 105Y007, 67 pp.Google Scholar
Turhan, N. (2002) 1/500,000 scale geological map of Turkey — Ankara, General Directorate of Mineral Research and Exploration (MTA) of Turkey.Google Scholar
Turkish Mesothelioma Working Group (2015) Turkey asbestos control strategic plan final report. Turkish Thoracic Journal, 16, S1—S26.Google Scholar
Uno, M., Iwamori, H., Nakamura, H. Yokoyama, T., Ishikawa, T & Tanimizu T (2014) Elemental transport upon hydrothermal of basic schists during regional metamorphism: Geochemical evidence from the Sanbagawa metamorphic belt, Japan. Geochemical Journal, 48, 2943.Google Scholar
Van Gosen, B.S. (2007) The geology of asbestos in the United States and its practical applications. Environmental & Engineering Geoscience, XIII, 5568.Google Scholar
Virta, R.L. (2005) Mineral Commodity Profiles -Asbestos. Circular 1255-KK, US Geological Survey, Reston, Virginia, USA, 56 pp.Google Scholar
Viti, C., Giacobbe, C. & Gualtieri, A.F. (2011) Quantitative determination of chrystotile in massive serpentinites using D.A. Implications for asbestos determinations. American Mineralogist, 96, 10031011.Google Scholar
Yang, H., Kun Liu, Y.X., Yang, Y & Feng, Q. (2007) Physicochemical dispersion of chrysotile. Colloids and Surfaces A. Physicochemical Engineering Aspects, 301, 341345.Google Scholar
Yeniyol, M. (2012) Geology and mineralogy of a sepiolite-palygorskite occurrence from S. Eskisehir (Turkey). Clay Minerals, 47, 93104.Google Scholar
Yeniyol, M. (2014) Characterization of two forms of sepiolite and related Mg-rich clay minerals from Yenidogan (Sivrihisar, Turkey). Clay Minerals, 49, 91108.Google Scholar
Yılmaz, Y (1981) Sakarya kıtası güney kenarının tektonik evrimi. İÜYB Dergisi, l, 1—2, İstanbul.Google Scholar
Yılmaz, Y., Gene§, .C, Giirer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak § & Elmas, A. (2000) When did the western Anatolian grabens begin to develop? Pp. 353-384 in: Tectonics and Magmatism in Turkey and the Surrounding Area (E. Bozkurt, J.A. Winchester, and J.D.A. Piper, editors). Special Publications, 173, Geological Society of London.Google Scholar
Yüce, G., Italiano, F., Taskiran, L., Yasin, D. & Gulbay, A.H. (2015) Hydrogeochemical characteristics of low-enthalpy geothermal waters from Eskisehir Province (Turkey). Proceedings World Geothermal Congress Melbourne, Australia, pp. 1—13.Google Scholar
Zheng, Y.-F (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters, 120, 247263.Google Scholar