Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T08:46:59.301Z Has data issue: false hasContentIssue false

Un lemme de Schwarz pour les boules-unités ouvertes

Published online by Cambridge University Press:  20 November 2018

Jean-Pierre Vigué*
Affiliation:
URA CNRS D1322 Groupes de Lie et Géométrie Mathématiques, Université de Poitiers 40, avenue du Recteur Pineau 86022 Poitiers, CEDEX France, e-mail: vigue@mathrs.univ-poitiers.fr
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

Références

1. Belkhchicha, L., Caractérisation des isomorphismes analytiques de certains domains bornés, C. R.Acad. Sc. Paris Série I Math. 313 (1991), 281284.Google Scholar
2. Belkhchicha, L., Caractérisation des isomorphismes analytiques sur la boule-unité de Cn pour une norme, Math. Z. 215 (1994), 129141.Google Scholar
3. Dineen, S., The Schwarz Lemma, Oxford Math. Monographs, Clarendon Press, Oxford, 1989.Google Scholar
4. Franzoni, T. and Vesentini, E., Holomorphic maps and invariant distances,Math. Studies 40, North-Holland, Amsterdam, 1980.Google Scholar
5. Harris, L., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In: Advances in Holomorphy, Mathematical Studies 34, North-Holland, Amsterdam, 1979, 345406.Google Scholar
6. Hervé, M., Quelques propriétés des applications analytiques d’une boule à m dimensions dans elle-même, J. Math. Pures et Appl. (9) 42 (1963), 117147.Google Scholar
7. Jarnicki, M. and Pflug, P., Invariant distances and metrices in complex analysis, De Gruyter Expositions in Mathematics 9, De Gruyter, Berlin, 1993.Google Scholar
8. Korányi, A., A Schwarz lemma for founded symmetric domains, Proc Amer.Math. Soc. 17 (1966), 210213.Google Scholar
9. Kobayashi, S., Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357416.Google Scholar
10. Lempert, L., Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257261.Google Scholar
11. Loos, O., Bounded symmetric domains and Jordan pairs, Math. Lectures, University of California at Irvine, 1977.Google Scholar
12. Renaud, A., Quelques propriétés des applications analytiques d’une boule de dimension infinie dans une autre, Bull Sc. Math (2) 97 (1973), 129159.Google Scholar
13. Royden, H. and Wong, P., Carathéodory and Kobayashi metrics on convex domains, (1983), preprint.Google Scholar
14. Rudin, W., Function theory on the unit ball of Cn , Springer-Verlag, New-York, 1980.Google Scholar
15. Vesentini, E., Complex geodesics, Compositio Math. 44 (1981), 375394.Google Scholar
16. Vesentini, E., Complex geodesics and holomorphic mappings, Symposia Math. 26 (1982), 211230.Google Scholar
17. Vesentini, E. , Invariant distances and invariant differential metrics in locally convex spaces. In: Spectral theory, Banach Center Publications, Warsaw 8 (1982), 493512.Google Scholar
18. Vigué, J.-P., Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domains bornés strictement convexes, Indiana Univ. J. 40 (1991), 293304.Google Scholar
19. Vigué, J.-P., Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Colloque d’analyse complexe et géométrie, Astérisque 217 (1993), 241249.Google Scholar
20. Yan, Z., A norm-preserving H1 extension problem, Proc. Amer. Math. Soc. 121 (1994), 10491056.Google Scholar