Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T20:57:28.609Z Has data issue: false hasContentIssue false

Assouad Spectrum Thresholds for Some Random Constructions

Published online by Cambridge University Press:  12 December 2019

Sascha Troscheit*
Affiliation:
Faculty of Mathematics, University of Vienna, Oskar Morgenstern Platz 1, 1090Wien, Austria Email: sascha.troscheit@univie.ac.at URL: https://www.mat.univie.ac.at/∼troscheit/

Abstract

The Assouad dimension of a metric space determines its extremal scaling properties. The derived notion of the Assouad spectrum fixes relative scales by a scaling function to obtain interpolation behaviour between the quasi-Assouad and the box-counting dimensions. While the quasi-Assouad and Assouad dimensions often coincide, they generally differ in random constructions. In this paper we consider a generalised Assouad spectrum that interpolates between the quasi-Assouad and the Assouad dimension. For common models of random fractal sets, we obtain a dichotomy of its behaviour by finding a threshold function where the quasi-Assouad behaviour transitions to the Assouad dimension. This threshold can be considered a phase transition, and we compute the threshold for the Gromov boundary of Galton–Watson trees and one-variable random self-similar and self-affine constructions. We describe how the stochastically self-similar model can be derived from the Galton–Watson tree result.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author was initially supported by NSERC Grants 2014-03154 and 2016-03719, and the University of Waterloo.

References

Allen, D. and Troscheit, S., The mass transference principle: ten years on. In: Horizons of fractal geometry and complex dimensions. Contemp. Math., 731, American Mathematical Society, Providence, RI, 2019. https://doi.org/10.1090/conm/731/14670Google Scholar
Assouad, P., Espaces métriques, plongements, facteurs. PhD thesis, Université Paris XI, Orsay, 1977.Google Scholar
Assouad, P., Étude d’une dimension métrique liée à la possibilité de plongements dans Rn. C. R. Acad. Sci. Paris Sér. A-B 288(1979), no. 15, A731A734.Google Scholar
Athreya, K. B., Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4(1994), no. 3, 779790.CrossRefGoogle Scholar
Bedford, T., Crinkly curves, Markov partitions and box dimensions in self-similar sets. PhD thesis, University of Warwick, 1984.Google Scholar
Chen, H., Assouad dimensions and spectra of Moran cut-out sets. Chaos Solitons Fractals 119(2019), 310317. https://doi.org/10.1016/j.chaos.2019.01.009CrossRefGoogle Scholar
Chernov, N. and Kleinbock, D., Dynamical Borel–Cantelli lemmas for Gibbs measures. Israel J. Math. 122(2001), 127. https://doi.org/10.1007/BF02809888CrossRefGoogle Scholar
Falconer, K. J., Random fractals. Math. Proc. Cambridge Philos. Soc. 100(1986), 559582. https://doi.org/10.1017/S0305004100066299CrossRefGoogle Scholar
Falconer, K. and Jin, X., Dimension conservation for self-similar sets and fractal percolation. Int. Math. Res. Not. IMRN 24(2015), 1326013289. https://doi.org/10.1093/imrn/rnv103CrossRefGoogle Scholar
Fraser, J. M., Assouad type dimensions and homogeneity of fractals. Trans. Amer. Math. Soc. 366(2014), 66876733. https://doi.org/10.1090/S0002-9947-2014-06202-8CrossRefGoogle Scholar
Fraser, J. M., Interpolating between dimensions. To appear in: Proceedings of Fractal Geometry and Stochastics VI, Progress in Probability, Birkhäuser, 2019. arxiv:1905.11274Google Scholar
Fraser, J. M., Hare, K. E., Hare, K. G., Troscheit, S., and Yu, H., The Assouad spectrum and the quasi-Assouad dimension: a tale of two spectra. Ann. Acad. Sci. Fenn. Math. 44(2019), 379387.CrossRefGoogle Scholar
Fraser, J. M., Miao, J.-J., and Troscheit, S., The Assouad dimension of randomly generated fractals. Ergodic Theory Dynam. Systems 38(2018), 9821011. https://doi.org/10.1017/etds.2016.64CrossRefGoogle Scholar
Fraser, J. M. and Troscheit, S., The Assouad spectrum of random self-affine carpets. 2018. arxiv:1805.04643Google Scholar
Fraser, J. M. and Yu, H., New dimension spectra: finer information on scaling and homogeneity. Adv. Math. 329(2018), 273328. https://doi.org/10.1016/j.aim.2017.12.019CrossRefGoogle Scholar
García, I., Hare, K., and Mendivil, and F., Assouad dimensions of complementary sets. Math. Proc. Cambridge Philos. Soc. 148(2018), 517540. https://doi.org/10.1017/s0308210517000488Google Scholar
García, I., Hare, K., and Mendivil, and F., Almost sure Assouad-like Dimensions of Complementary sets. 2019. arxiv:1903.07800Google Scholar
García, I., Hare, K., and Mendivil, F., Intermediate Assouad-like dimensions. 2019. arxiv:1903.07155Google Scholar
Graf, S., Statistically self-similar fractals. Probab. Theory Related Fields 74(1987), 357392. https://doi.org/10.1007/BF00699096CrossRefGoogle Scholar
Käenmäki, A. and Rossi, E., Weak separation condition, Assouad dimension, and Furstenberg homogeneity. Ann. Acad. Sci. Fenn. 41(2016), 465490. https://doi.org/10.5186/aasfm.2016.4133CrossRefGoogle Scholar
Liu, Q., Exact packing measure on a Galton–Watson tree. Stochastic Process Appl. 85(2000), 1928. https://doi.org/10.1016/S0304-4149(99)00062-9CrossRefGoogle Scholar
Lyons, R., Pemantle, R., and Peres, Y., Ergodic theory on Galton–Watson trees, Speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam. Systems 15(1995), 593619. https://doi.org/10.1017/S0143385700008543CrossRefGoogle Scholar
, F. and Xi, L.-F., Quasi-Assouad dimension of fractals. J. Fractal Geom. 3(2016), 187215. https://doi.org/10.4171/JFG/34CrossRefGoogle Scholar
McMullen, C. T., The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96(1984), 19. https://doi.org/10.1017/S0027763000021085CrossRefGoogle Scholar
Robinson, J. C., Dimensions, embeddings, and attractors. Cambridge Tracts in Mathematics, 186, Cambridge University Press, Cambridge, 2011.Google Scholar
Sprindžuk, V. G., Metric theory of Diophantine approximations. John Wiley & Sons, Washington, 1979.Google Scholar
Troscheit, S., On the dimensions of attractors of random self-similar graph directed iterated function systems. J. Fractal Geom. 4(2017), 257303. https://doi.org/10.4171/JFG/51CrossRefGoogle Scholar
Troscheit, S., The quasi-Assouad dimension of stochastically self-similar sets. Proc. Royal Soc. Edinburgh(2019). https://doi.org/10.1017/prm.2018.112Google Scholar