Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T20:28:58.380Z Has data issue: false hasContentIssue false

Facteurs environnementaux dans l'étiologie de la maladie de Parkinson

Published online by Cambridge University Press:  18 September 2015

J. Zayed*
Affiliation:
Département de médicine du travail et d'hygiène du milieu, Université de Montréal
S. Ducic
Affiliation:
Département de médicine sociale et préventive, Université de Montréal
G. Campanella
Affiliation:
Département de neurologie de l'Université de Naples
J.C. Panisset
Affiliation:
Département de médicine du travail et d'hygiène du milieu, Université de Montréal
P. André
Affiliation:
Faculté de l'éducation permanente, Université de Montréal
H. Masson
Affiliation:
Hôpital Notre-Dame de Montréal
M. Roy
Affiliation:
Département de neurobiologie de l'Institut de Recherches Cliniques de Montréal
*
Département de médecine du travail et d'hygiène du milieu, Faculté de médecine, Université de Montréal, C.P. 6128, Succ. “A”, Montréal, Québec, Canada H3C 3J7
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examined the role of the environment in the development of Parkinson's disease (PD). A group of 42 parkinsonians have been compared with a group of 84 matched controls. The epidemiological study (1987-1989) covered the territory of the Community Health Department of Valleyfield, in southern Quebec (Canada). Odds ratio adjusted for age and sex were calculated for seven environmental factors. A decreased risk for PD was associated with residence in rural areas (OR: 0.31; p ≤ 0.05) and residence near industry or mining (OR: 0.15; p ≤ 0.05). An increased risk for PD seems to be associated with occupational exposure to the three metals Mn, Fe and Al (OR: 2.28; p = 0.07) especially when the duration of exposure is longer than 30 years (OR: 13.64; p ≤ 0.05). Other environmental factors not found to be associated with PD were: pesticides manipulation, farm work, industrial work and well water consumption.

Résumé:

RÉSUMÉ:

Nous avons examiné le rôle de l'environnement dans le développement de la maladie de Parkinson (MP). Un groupe de 42 parkinsoniens a été comparé à un groupe de 84 témoins appariés, dans le cadre d'une étude épidémiologique (1987-1989) menée sur le territoire du Département de Santé Communautaire de Valleyfield, au sud du Québec (Canada). Les rapports de cotes ajustés pour l'âge et le sexe ont été calculés pour sept facteurs environnementaux. La résidence à la campagne (OR: 0,31; p ≤ 0,05) et la résidence près de mines et d'industries (OR: 0,15; p ≤ 0,05) sont associés à une diminution du risque de développer la MP. L'exposition professionnelle aux trois métaux Mn-Fe-Al semble être associée à une augmentation du risque de MP (OR: 2,28; p = 0,07) principalement lorsque la durée de l'exposition dépasse 30 ans (OR: 13,64; p ≤ 0,05). Les autres facteurs environnementaux qui n'ont pas été associés à la MP sont: la manipulation de pesticides, le travail à la ferme, le travail dans l'industrie et la consommation de l'eau de puits.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

RÉFÉRENCES

1. Rajput, AH, Offord, KP, Beard, MC, et al. Epidemiology of parkinsonism: incidence, classification, and mortality. Ann Neurol 1984; 16: 278282.Google Scholar
2. Rondot, P, Recondo, J. La maladie de parkinson. Paris: J.B. Baillière 1976.Google Scholar
3. Barbeau, A. Etiology of Parkinson’s disease: a research strategy. Can J Neurol Sei 1984; 11: 2428.Google Scholar
4. Calne, DB, Langston, JW. Aetiology of Parkinson’s disease. Lancet 1983, 2: 14571459.Google Scholar
5. Langston, JW, Ballard, P, Tetrud, JW, et al. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1982; 219: 979980.Google Scholar
6. Lewin, R. Trail of ironies to Parkinson’s disease. Science 1984; 224: 10831085.Google Scholar
7. Irwin, I, Langston, JW. Selective accumulation of MPP+ in the substantia nigra: a key to neurotoxicity? Life Sci 1985; 36: 207212.Google Scholar
8. Barbeau, A, Dallaire, L, Buu, NT, et al. New amphibian models for the study of l-methyl-4-phenil-l,2,3,6-tetrahydropiridine (MPTP). Life Sci 1985; 37: 11251134.Google Scholar
9. Solomon, H, D’Amato, RJ. Predicting Parkinson’s disease. Nature 1985; 317: 198199.Google Scholar
10. Mena, I, Marin, O, Fuenzalida, A. Chronic manganese poisoning: clinical picture and manganese turnover. Neurology 1976; 17: 128136.Google Scholar
11. Rajput, AJ, Stern, W, Christ, A. Etiology of Parkinson’s disease: environmental factor(s). Neurology 1984; 34 (Suppl 1): 207.Google Scholar
12. Barbeau, A, Roy, M, Bernier, G, et al. Ecogenetics of Parkinson’s disease: prevalence and environmental aspects in rural areas. Can J Neurol Sci 1987; 14: 3641.Google Scholar
13. Eldridge, R, Rocca, WA. The clinical syndrome of striatal dopamine deficiency: parkinsonism induced by MPTP. New Engl J Med 1985; 313: 11591160.Google Scholar
14. Marttila, RJ, Rinne, UK. Epidemiology of Parkinson’s disease — an overview. J Neurol Transm 1981; 51: 135148.Google Scholar
15. Rajput, AH, Uitti, RJ, Stern, W, et al. Early onset of Parkinson’s disease in Saskatchewan — environmental considerations for etiology. Can J Neurol Sci 1986; 13: 312316.Google Scholar
16. Cotzias, GC, Papavisiliou, PS, Ginos, J, et al. Metabolic modification of Parkinson’s disease and of chronic manganese poisoning. Ann Rev Med 1971; 22: 305326.Google Scholar
17. Emara, AM. Chronic manganese poisoning in the dry battery industry. Brit J Indust Med 1971; 28: 7884.Google ScholarPubMed
18. Barbeau, A, Roy, M, Cloutier, L, et al. Environmental and genetic factors in the etiology of Parkinson’s disease. Adv Neurol 1986; 45: 299306.Google Scholar
19. Tanner, CM, Chen, B, Wang, W-Z, et al. Environmental factors and Parkinson’s disease: a case-control study in China. Neurol 1989; 39: 660664.Google Scholar
20. Siegel, S. Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill, 1956.Google Scholar
21. Kahn, HA. An introduction to epidemiologic methods. New York: Oxford University Press, 1983.Google Scholar
22. Ho, SC, Woo, J, Lee, CM. Epidemiologic study of Parkinson’s disease in Hong Kong. Neurol 1989; 39: 13141318.Google Scholar
23. Godwin-Austen, RB, Lee, PN, Marmot, MG, et al. Smoking and Parkinson’s disease. J Neurol Neurosurg Psychiat 1982; 45: 577581.Google Scholar
24. Zayed, J, André, P, Panisset, JC, et al. Environmental contamination by metals and Parkinson’s disease. Water, Air and Soil Pol 1990; 49: 197203.CrossRefGoogle Scholar
25. Jorgensen, SE, Johnsen, I. Principals of environmental science and technology. New York: Elsevier 1989.Google Scholar
26. Jimenez-Jimenez , FJ, Gonzales, DM, Gimenez-Roldan, S. Exposure to well water drinking and pesticides in Parkinson’s disease: a case-control study from the southeast area of Madrid. Proceedings of the Ninth International Symposium on Parkinson’s disease, World Congress of Neurology 1988; 118.Google Scholar
27. Aquilonius, SM, Hartvig, P. Utilization of antiparkinson drugs in Sweden. Upsala J Med Sci 1986; (Suppl 43): 93.Google Scholar
28. Poirier, J, Dallaire, L, Barbeau, A. Parkinson’s disease and free radicals. Free radicals, cell damage and disease. London: Catherine Rice-Evans, 1986.Google Scholar
29. Yanagihara, R, Garruto, RM, Gajdusek, DC, et al. Calcium and vitamin D metabolism in Guamania chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia. Ann Neurol 1984; 15: 4248.Google Scholar
30. Piccardo, P, Yanagihara, R, Garruto, RM, et al. Histochemical and x-ray microanalytical localization of aluminium in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Acta Neuropathol 1988; 71: 14.Google Scholar