Published online by Cambridge University Press: 20 November 2018
Dans cet article on étudie la différence entre les deux premières valeurs propres, le splitting, d’un opérateur de Klein–Gordon semi-classique unidimensionnel, dans le cas d’un potentiel symétrique présentant un double puits. Dans le cas d’une petite barrière de potentiel, B. Helffer et B. Parisse ont obtenu des résultats analogues à ceux existant pour l’opérateur de Schrödinger. Dans le cas d’une grande barrière de potentiel, on obtient ici des estimations des tranformées de Fourier des fonctions propres qui conduisent à une conjecture du splitting. Des calculs numériques viennent appuyer cette conjecture.