Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:59:33.993Z Has data issue: false hasContentIssue false

CONGRUENCES DE SOMMES DE CHIFFRES DE VALEURS POLYNOMIALES

Published online by Cambridge University Press:  30 January 2006

CÉCILE DARTYGE ET GÉRALD TENENBAUM
Affiliation:
Institut Élie Cartan, Université Henri Poincaré–Nancy 1, BP 239, 54506 Vandœuvre Cedex, Francedartyge@iecn.u-nancy.fr, gerald.tenenbaum@iecn.u-nancy.fr
Get access

Abstract

Let $m,\,g,\,q \in\mathbb{N}$ with $q\,{\geq}\, 2$ and $(m,q-1)=1$. For $n\in\mathbb{N}$, denote by $s_q(n)$ the sum of digits of $n$ in the $q$-ary digital expansion. Given a polynomial $f$ with integer coefficients, degree $d\ge 1$, and such that $f(\mathbb{N})\subset\mathbb{N}$, it is shown that there exists $C=C(f,m,q)>0$ such that for any $g\in\mathbb{Z}$, and all large $N$, \[|\{ 0\,{\leq}\, n\,{\leq}\, N : s_q(f(n))\md gm\}|\,{\geq}\, CN^{\min(1,2/d!)}\]. In the special case $m=q=2$ and $f(n)=n^2$, the value $C=1/20$ is admissible.

Type
Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)