Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T19:54:28.947Z Has data issue: false hasContentIssue false

SUB- AND SUPERADDITIVE PROPERTIES OF FEJÉR'S SINE POLYNOMIAL

Published online by Cambridge University Press:  16 March 2006

HORST ALZER
Affiliation:
Morsbacher Str. 10, 51545 Waldbröl, Germanyalzerhorst@freenet.de
STAMATIS KOUMANDOS
Affiliation:
Department of Mathematics and Statistics, The University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprusskoumand@ucy.ac.cy
Get access

Abstract

Let $ S_n(x)=\sum_{k=1}^{n}({\sin(kx)})/{k} $ be Fejér's sine polynomial. We prove the following statements.

  1. The inequality $ (S_n(x+y))^{\alpha} (x+y)^{\beta} \leq (S_n(x))^{\alpha}x^{\beta}+ (S_n(y))^{\alpha}y^{\beta} {(n\in \mathbb{N}; \; \alpha, \beta \in \mathbb{R})}$ holds for all $x,y \in (0,\pi)$ with $x+y<\pi$ if and only if $\alpha\geq 0$ and $\alpha+\beta \leq 1$.

  2. The converse of the above inequality is valid for all $x,y \in (0,\pi)$ with $x+y<\pi$ if and only if $\alpha\leq 0$ and $\alpha+\beta \geq 1$.

  3. For all $n\in\mathbb{N}$ and $x,y \in [0,\pi]$ we have $ 0\leq S_n(x)+S_n(y)- S_n(x+y)\leq \frac{3}{2}\sqrt{3}.$ Both bounds are best possible.

Type
Papers
Copyright
The London Mathematical Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)