Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T12:01:06.909Z Has data issue: false hasContentIssue false

Phenotypic trait changes in laboratory – reared colonies of the maize herbivore, Diabrotica virgifera virgifera

Published online by Cambridge University Press:  22 November 2013

H. Li
Affiliation:
Chinese Ministry of Agriculture – CABI Joint Laboratory for Biosafety, Yuanmingyuan Western Road 2, CN – 100193 Beijing, People's Republic of China CABI, Rue des Grillons 1, CH – 2800 Delémont, Switzerland
T. Guillemaud
Affiliation:
INRA UMR, Route des Chappes 400, F – 06903 Sophia Antipolis, France
B. W. French
Affiliation:
USDA ARS, North Central Agricultural Research Laboratory, Medary Avenue 2923, US – 57006 Brookings, South Dakota, USA
U. Kuhlmann
Affiliation:
CABI, Rue des Grillons 1, CH – 2800 Delémont, Switzerland
S. Toepfer*
Affiliation:
CABI, Rue des Grillons 1, CH – 2800 Delémont, Switzerland CABI, c/o Plant Protection Directorate, Rarosi ut 110, H – 6800 Hodmezovasarhely, Hungary
*
*Author for correspondence Phone: +41 32 4214882 Fax: +41 32 4214871 E-mail: s.toepfer@cabi.org

Abstract

The North American and European maize pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) was used to assess whether conditions of the natal field, subsequent laboratory rearing, or genetic population origin affect phenotypic traits of fitness, activity, or morphometrics. Standardized laboratory bioassays with large sample sizes revealed that none of the 16 tested traits, except crawling behaviours, appeared consistently stable across all seven tested colonies. Environmental conditions in the natal field of the F0 generation affected trait averages of the subsequently reared F1 generation in laboratory in ca. 47% of cases, and trait variability in 67% of cases. This was apparent for fitness and morphometrics, but less obvious for activity traits. Early generation laboratory rearing affected trait averages in ca. 56% of cases: morphometrics changed; fecundity and egg survival increased from F1 to F2. Trait variability increased or decreased in 38% of cases. Laboratory rearing for over more than 190 generations affected the trait averages in 60% of cases, reflected by decreases in flight activity and increases in body size, weight, and fecundity to some extent. It had little effect on trait variability, especially so for morphometric variability. The genetic population origin affected average levels of 55% and variability of 63% of phenotypic traits. A comparison among D. v. virgifera studies might be difficult if they use different populations or laboratory colonies. It is advised to consider possible effects of original field conditions, laboratory rearing, and population genetics when planning comparative studies targeting fitness, activity, or morphometric questions regarding Diabrotica species.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begley, C.G. (2013) Six red flags for suspect work. Nature 497, 433434.CrossRefGoogle ScholarPubMed
Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society 57, 289300.Google Scholar
Bernardo, J. (1996) Maternal effects in animal ecology. American Zoologist 36, 83105.Google Scholar
Boiler, E.F. & Chambers, D.L. (1977) Quality control of mass-reared insects. pp. 219236 in Ridgway, R.I. & Vinson, S.B. (Eds) Biological Control of Insects by Augmentation of Natural Enemies. New York, USA, Plenum Press. 480 pp.Google Scholar
Branson, T.F. (1976) The selection of a non-diapause strain of Diabrotica virgifera (Coleoptera: Chrysomelidae). Entomologia Experimentalis et Applicata 19, 148154.Google Scholar
Branson, T.F. & Jackson, J.J. (1988) An improved diet for adult Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Journal Kansas Entomological Society 61, 353355.Google Scholar
Branson, T.F. & Johnson, R.D. (1973) Adult western corn rootworms: oviposition, fecundity, and longevity in the laboratory. Journal of Economic Entomology 66, 417418.Google Scholar
Branson, T.F. & Krysan, J.L. (1981) Feeding and oviposition behaviour and life cycle strategies of Diabrotica: an evolutionary view with implications for pest management. Environmental Entomology 10, 826831.Google Scholar
Branson, T.F. & Ortman, E.E. (1970) The host range of larvae of the western corn rootworm: further studies. Journal of Economic Entomology 63, 800803.Google Scholar
Branson, T.F. & Sutter, G.R. (1985) Influence of population density of immatures on size, longevity, and fecundity of adult Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environmental Entomology 14, 687690.Google Scholar
Branson, T.F., Guss, P.L., Krysan, J.L. & Sutter, G.R. (1975) Corn Rootworms: Laboratory Rearing and Manipulation. Peoria, IL, USA, ARS-NC-28, ARS USDA.Google Scholar
Bush, G.L., Neck, R.W. & Kitto, G.B. (1976) Screwworm eradication, inadvertent selection for non-competitive ecotypes during mass rearing. Science 193, 491493.Google Scholar
Chambers, D.L. (1977) Quality control in mass-rearing. Annual Review of Entomology 22, 2851–308.Google Scholar
Chiang, H.C. (1973) Bionomics of the northern and western corn rootworms. Annual Review of Entomology 18, 4772.Google Scholar
Ciosi, M., Miller, N.J., Kim, K.S., Giordano, R., Estoup, A. & Guillemaud, T. (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Molecular Ecology 17, 36143627.CrossRefGoogle ScholarPubMed
Coats, S.A., Tollefson, J.J. & Mutchmor, J.A. (1986) Study of migratory flight in the western corn rootworm (Diabrotica virgifera virgifera) (Coleoptera: Chrysomelidae). Environmental Entomology 15, 620625.Google Scholar
Culy, M.D., Edwards, C.R. & Cornelius, J.R. (1992) Effect of silk feeding by western corn rootworm (Coleoptera: Chrysomelidae) on yield and quality of inbred corn in seed corn production fields. Journal of Economic Entomology 85, 24402446.Google Scholar
Diamantidis, A.D., Carey, J.R., Nakas, Ch.T. & Papadopoulos, N.T. (2011) Ancestral populations perform better in a novel environment: domestication of Mediterranean fruit fly populations from five global regions. Biological Journal of Linnaean Society 102, 334345.Google Scholar
Diamond, S.E., Hawkins, S.D., Nijhout, H.F. & Kingsolver, J.G. (2010) Evolutionary divergence of field and laboratory populations of Manduca sexta in response to host plant quality. Ecological Entomology 35, 166174.Google Scholar
Duan, J.J., Weber, D.C. & Dorn, S. (1998) Flight behaviour of pre- and postdiapause apple blossom weevils in relation to ambient temperature. Entomologia Experimentalis et Applicata 88, 9799.Google Scholar
Facon, B., Genton, B.J., Shykoff, J., Jarne, P., Estoup, A. & David, P. (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends in Ecology and Evolution 21, 130135.Google Scholar
Fox, C.W. & Czesak, M.E. (2006) Selection of body size and sexual dimorphism differs between host species in a seed-feeding beetle. Journal of Evolutionary Biology 19, 11671174.Google Scholar
Games, P.A. & Howell, J.F. (1976) Pairwise multiple comparison procedures with unequal n’s and/or variances: a Monte Carlo study. Journal of Educational Statistics 1, 113125.Google Scholar
George, B.W. & Ortman, E.E. (1965) Rearing the western corn rootworm in the laboratory. Journal of Economic Entomology 58, 375377.Google Scholar
Gillette, C.P. (1912) Diabrotica virgifera as a corn rootworm. Journal of Economic Entomology 5, 364366.CrossRefGoogle Scholar
Hammack, L. & French, B.W. (2007) Sexual dimorphism of basitarsi in pest species of Diabrotica and Cerotoma (Coleoptera : Chrysomelidae). Annual Review of Entomological Society of America 100, 5963.Google Scholar
Hill, R.E. (1975) Mating, oviposition patterns, fecundity and longevity of the western corn rootworm. Journal of Economic Entomology 68, 311315.Google Scholar
Hill, W.G. & Caballero, A. (1992) Artificial selection experiments. Annual Review Ecological Systems 23, 287310.Google Scholar
Huettel, M.D. (1976) Monitoring the quality of laboratory reared insects: a biological and behavioural perspective. Environmental Entomology 5, 807814.Google Scholar
Jenner, W.H. & Kuhlmann, U. (2006) Significance of host size for a solitary endoparasitoid: a trade-off between fitness parameters. Basic and Applied Ecology 7, 461471.Google Scholar
Johnston, J.A., Donovan, L.A. & Arnold, M.L. (2004) Novel phenotypes among early generation hybrids of two Louisiana iris species: flooding experiments. Journal of Ecology 92, 967976.Google Scholar
Khazaeli, A.A. & Curtsinger, J.W. (2010) Life history variation in an artificially selected population of Drosophila melanogaster: Pleiotropy, superflies, and age-specific adaptation. Evolution 64, 34093416.Google Scholar
Kim, K.S. & Sappington, T.W. (2005) Genetic structuring of western corn rootworm (Coleoptera: Chrysomelidae) populations in the United States based on microsatellite loci analysis. Environmental Entomology 34, 494503.Google Scholar
Kim, K.S., French, B.W., Summerford, D. & Sappington, T.W. (2007) Genetic diversity in laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae), including a non-diapause colony. Environmental Entomology 36, 637645.Google Scholar
Kinnear, P.R. & Gray, C.D. (2000) SPSS for Windows Made Simple . East Sussex, UK, Psychology Press Ltd.Google Scholar
Kiss, J., Edwards, C.R., Berger, H.K., Cate, P., Cean, M., Cheek, S., Derron, J., Festic, H., Furlan, L., Igrc-Barcic, J., Ivanova, I., Lammers, W., Omelyuta, V., Princzinger, G., Reynaud, P., Sivcev, I., Sivicek, P., Urek, G. & Vahala, O. (2005) Monitoring of western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe 1992–2003. pp. 2939 in Vidal, S., Kuhlmann, U. & Edwards, C.R. (Eds) Western Corn Rootworm: Ecology and Management. Wallingford, UK, CABI Publishing.Google Scholar
Krebs, C.J. (1994) Ecology: the Experimental Analysis of Distribution and Abundance. New York, USA, Harper Collins.Google Scholar
Krysan, J.L. (1972) Embryonic stages of Diabrotica virgifera (Coleoptera: Chrysomelidae) at diapause. Annals of the Entomological Society of America 65, 768769.Google Scholar
Krysan, J.L. (1982) Diapause in the Nearctic species of the virgifera group of Diabrotica: evidence for tropical origin and temperate adaptations. Annals of the Entomological Society of America 75, 136142.Google Scholar
Krysan, J.L. & Miller, T.A. (1986) Methods for Study of Pest Diabrotica. New York, Springer. p. 260.Google Scholar
Krysan, J.L. & Smith, R.F. (1987) Systematics of the virgifera species group of Diabrotica (Coleoptera: Chrysomelidae: Galerucinae). Entomography 5, 375484.Google Scholar
Kuhar, T.P. & Youngman, R.R. (1995) Sex ratio and sexual dimorphism in western corn rootworm (Coleoptera: Chrysomelidae) adults on yellow sticky traps in corn. Environmental Entomology 24, 14081413.Google Scholar
Lande, R. & Arnold, S.J. (1983) The measurement of selection on correlated characters. Evolution 37, 12101226.Google Scholar
Lefko, S.A., Nowatzki, T.M., Thompson, S.D., Binning, R.R., Pascual, M.A., Peters, M.L., Simnbro, E.J. & Stanley, B.H. (2008) Characterizing laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae) selected for survival on maize containing event DAS-59122-7. Journal of Applied Entomology 132, 189204.CrossRefGoogle Scholar
Levine, E. & Oloumi-Sadeghi, H. (1991) Management of Diabroticite Rootworms in corn. Annual Review of Entomology 36, 229255.Google Scholar
Levine, E., Spencer, J.L., Isard, S.A., Onstad, D.W. & Gray, M.E. (2002) Adaptation of the western corn rootworm to crop rotation: evolution of a new strain in response to a management practice. American Entomologist. 48, 94107.Google Scholar
Li, H., Toepfer, S. & Kuhlmann, U. (2009) Relationship between phenotypic traits and selected fitness components of Diabrotica virgifera virgifera . Entomologia Experimentalis et Applicata 131, 254263.Google Scholar
Li, H., Toepfer, S. & Kuhlmann, U. (2010) Flight and crawling activities of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) in relation to morphometric traits. Journal of Applied Entomology 134, 449461.Google Scholar
Mabry, T.R., Spencer, J.L., Levine, E. & Isard, S.A. (2004) Western corn rootworm (Coleoptera: Chrysomelidae) behaviour is affected by alternating diets of maize and soybean. Environmental Entomology 33, 860871.Google Scholar
Masson, L.J., Pashley, D.P. & Johnson, S.J. (1987) The laboratory as an altered habitat: phenotypic and genetic consequences of colonization. Florida Entomologist 70, 4958.Google Scholar
Meihls, L.N., Higdon, M.L., Siegfried, B., Miller, N.J., Sappington, T.W., Ellersieck, M.R., Spencer, T.A. & Hibbard, B.E. (2008) Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. Proceedings of the National Academy of Sciences of the United States of America 105, 1917719182.Google Scholar
Miller, N.J., Estoup, A., Toepfer, S., Bourguet, D., Lapchin, L., Derridj, S., Kim, K.S., Reynaud, P., Furlan, L. & Guillemaud, T. (2005) Multiple transatlantic introductions of the western corn rootworm. Science 310, 992.Google Scholar
Miller, N.J., Kim, K.S., Ratcliffe, S.T., Estoup, A., Bourguet, D. & Guillemaud, T. (2006) Absence of genetic divergence between western corn rootworms (Coleoptera: Chrysomelidae) resistant and susceptible to control by crop rotation. Journal of Economic Entomology 99, 685690.Google Scholar
Miller, N.J., Ciosi, M., Sappington, T.W., Ratcliffe, S., Spencer, J.L. & Guillemaud, T. (2007) Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance. Journal Applied Entomology 131, 378385.Google Scholar
Miller, N.J., Guillemaud, T., Giordano, R., Siegfried, B.D., Gray, M.E., Meinke, L.J. & Sappington, T.W. (2009) Genes, gene flow and adaptation of Diabrotica virgifera virgifera . Agricultural and Forest Entomology 11, 4760.Google Scholar
Miyatake, T. & Yamagishi, M. (1999) Rapid evolution of larval development time during mass-rearing in the melon fly, Bactrocera cucurbitae . Research Population Ecology 41, 291297.Google Scholar
Mohaghegh, J., de Clercq, P., Tirry, L. (1999) Effects of rearing history and geographical origin on reproduction and body size of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). European Journal of Entomology 96, 6972.Google Scholar
Modic, S., Schoers, H.J. & Urek, G. (2008) Survival of eggs of D. v. virgifera during Winter and Isolation of their Fungal Enemies. in Conference on Western Corn Rootworm: Research and Long Term Management Needs for the European Maize Production, Symposium on western corn rootworm ecology and management, 25–29 May 2008, Gottingen, Germany.Google Scholar
Moeser, J. & Hibbard, B.E. (2005) A synopsis of the nutritional ecology of larvae and adults of Diabrotica virgifera virgifera in the new and old world – nouvelle cuisine for the invasive maize pest Diabrotica virgifera virgifera in Europe? pp. 4165 in Vidal, S., Kuhlmann, U. & Edwards, C.R. (Eds) Western Corn Rootworm: Ecology and Management. Wallingford, UK, CABI Publishing.Google Scholar
Mousseau, T.A. & Fox, C.W. (1998) Maternal Effects as Adaptations. New York, Oxford University Press.Google Scholar
Norris, D.E., Shurtleff, A.C., Toure, Y.T. & Lanzaro, C. (2001) Microsatellite DNA polymorphism and heterozygosity mong field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). Journal of Medical Entomology 38, 336340.Google Scholar
Oswald, K., French, B.W., Nielson, C. & Bagley, M. (2011) Selection for Cry3Bb1 resistance in a genetically diverse population of non-diapausing western corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology 104, 10381044.Google Scholar
Prokopy, R.J., Economopoulos, A.P. & McFadden, M.W. (1975) Attraction of wild and laboratory-cultured Dacus oleae flies to small rectangles of different hues, shades, and tints. Entomologia Experimentalis et Applicata 18, 141152.CrossRefGoogle Scholar
R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org (accessed May 2009).Google Scholar
Richerson, J.V. & Cameron, E.A. (1974) Differences in pheromone release and sexual behaviour between laboratory-reared and wild gypsy moth adults. Environmental Entomology 3, 475481.Google Scholar
Rossler, Y. (1975) The ability to inseminate: a comparison between laboratory-reared and field populations of the Mediterranean fruit fly (Ceratitis capitata). Entomologia Experimentalis et Applicata 18, 255260.Google Scholar
Scannapieco, A.C., Sambucetti, P. & Norry, F.M. (2009) Direct and correlated responses to selection for longevity in Drosophila buzzatii . Biological Journal Linnaean Society 97, 738748.Google Scholar
Singh, P. & Moore, R.F. (1999) Handbook of Insect Rearing. Amsterdam, Netherlands, Elsevier.Google Scholar
Sivcev, I., Manojlovic, B., Krnjajic, S., Dimic, N., Draganic, M., Baca, F., Kaitovic, Z., Sekulic, R. & Keresi, T. (1994) Distribution and harmfulness of Diabrotica virgifera LeConte (Coleoptera, Chrysomelidae), a new maize pest in Yugoslavia. Zashita Bilja 45, 1926.Google Scholar
Spencer, J.L., Hibbard, B.E., Moeser, J. & Onstad, D.W. (2009) Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agricultural and Forest Entomology 11, 927.Google Scholar
Spurgeon, D.W. (2012) Physiological consequences of laboratory rearing of Lygus hesperus (Hemiptera: Miridae). Environmental Entomology 41, 415419.Google Scholar
Staetz, C.A., Ball, H.J. & Carlson, S.D. (1976) Antennal morphology of Diabrotica virgifera adults (Coleoptera: Chrysomelidae). Annual Review of the Entomological Society of America 69, 695698.Google Scholar
Stearns, S.C. (1992) The Evolution of Life Histories. Oxford, UK, Oxford University Press.Google Scholar
Storey, J.D. (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society 64, 479498.Google Scholar
Storey, J.D. & Tibshirani, R. (2003) Statistical significance for genome-wide experiments. Proceeding of the National Academy of Sciences USA 100, 94409445.Google Scholar
Tingey, W.M. (1986) Techniques for evaluating plant resistance to insects. pp. 251284 in Miller, J.R. & Miller, T.A. (Eds) Insect–plant Interactions. New York, USA, Springer.Google Scholar
Toepfer, S. & Kuhlmann, U. (2006) Constructing life-tables for the invasive maize pest Diabrotica virgifera virgifera (Col.; Chrysomelidae) in Europe. Journal of Applied Entomology 130, 193205.Google Scholar
Toepfer, S., Levay, N. & Kiss, J. (2005) Suitability of different fluorescent powders for mass-marking the Chrysomelid, Diabrotica virgifera virgifera LeConte. Journal of Applied Entomology 129, 456464.Google Scholar
Toepfer, S., Li, H., Guillemaud, Th., Wang, Zh. & Wu, K. (2012) Bioassay arenas for studying the biology and ecology of adult western corn rootworm. IOBC/IWGO Newsletter.Google Scholar
Valladares, F., Sanchez-Gomez, D. & Zavala, M.A. (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94, 11031116.Google Scholar
VanWoerkom, G.J., Turpin, F.T. & Barrett, J.R. Jr. (1980) Influence of constant and changing temperatures on locomotor activity of adult western corn rootworms (Diabrotica virgifera) in the laboratory. Environmental Entomology 9, 3234.Google Scholar
Vidal, S., Kuhlmann, U. & Edwards, C.R. (2005) Western Corn Rootworm: Ecology and Management. Wallingford, UK, CABI Publishing, p. 310.Google Scholar