Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T17:57:59.577Z Has data issue: false hasContentIssue false

Molecular phylogeny supports the paraphyletic nature of the genus Trogoderma (Coleoptera: Dermestidae) collected in the Australasian ecozone

Published online by Cambridge University Press:  13 July 2011

M.A. Castalanelli*
Affiliation:
Cooperative Research Centre for National Plant Biosecurity, Deakin, ACT, Australia Curtin Health Innovation Research Institute, Western Australian Biomedical Research Institute, Curtin University of Technology, Perth, Australia Division of Biosecurity and Research, Department of Agriculture Western Australia, WA, 6151, Australia
A.M. Baker
Affiliation:
Discipline of Biogeoscience, Faculty of Science and Technology, Queensland University of Technology, Brisbane, QLD, Australia
K.A. Munyard
Affiliation:
Curtin Health Innovation Research Institute, Western Australian Biomedical Research Institute, Curtin University of Technology, Perth, Australia
M. Grimm
Affiliation:
Division of Biosecurity and Research, Department of Agriculture Western Australia, WA, 6151, Australia
D.M. Groth
Affiliation:
Curtin Health Innovation Research Institute, Western Australian Biomedical Research Institute, Curtin University of Technology, Perth, Australia
*
*Author for correspondence Fax: +61 8 9266 2342 E-mail: mark.castalanelli@agric.wa.gov.au

Abstract

To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beal, R.S. Jr & Zhantiev, R.D. (2001) A new California species of Egidyella Reitter (Coleoptera: Dermestidae), a genus previously unknown in the new world. The Coleopterists Bulletin 55, 7074.Google Scholar
Booth, R.G., Cox, M.L. & Madge, R.B. (1990) IIE Guides to Insects of Importance to Man. No. 3. Coleoptera. Wallingford, UK, CAB International.Google Scholar
Bossuyt, F. & Milinkovitch, M.C. (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Sciences of the United States of America 97, 65856590.CrossRefGoogle ScholarPubMed
Brenner, G.J. (1996) Evidence for the Earliest Stage of Angiosperm Pollen Evolution: A Paleoequatorial Section from Israel. New York, USA, Chapman and Hall.Google Scholar
Buckley, T.R., Attanayake, D. & Bradler, S. (2009) Extreme convergence in stick insect evolution: phylogenetic placement of the Lord Howe Island tree lobster. Proceedings of the Royal Society, Series B: Biological Sciences 276, 10551062.Google Scholar
Cantarel, B.L., Morrison, H.G. & Pearson, W. (2006) Exploring the Relationship between Sequence Similarity and Accurate Phylogenetic Trees. Molecular Biology and Evolution 23, 20902100.CrossRefGoogle ScholarPubMed
Castalanelli, M.A., Severtson, D.L., Brumley, C., Szito, A., Grimm, M., Munyard, K. & Groth, D.M. (2010) A Rapid non-Destructive DNA extraction method for insects and other arthropods. Journal of Asia-Pacific Entomology 13, 243248.Google Scholar
Castalanelli, M.A., Mikac, K.K., Baker, A., Grimm, M., Munyard, K. & Groth, D.M. (2011) Putative Species Revealed using a Mitochondrial and Nuclear Phylogenetic approach to Trogoderma variabile Trapping Program. Bulletin of Entomological Research 101, 333343.Google Scholar
Castresana, J. (2001) Cytochrome b Phylogeny and the Taxonomy of Great Apes and Mammals. Molecular Biology and Evolution 18, 465471.CrossRefGoogle ScholarPubMed
Chiari, Y., Vences, M., Vieites, D.R., Rabemananjara, F., Bora, P., Ramilijaona Ravoahangimalala, O. & Meyer, A. (2004) New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Molecular Ecology 13, 37633774.CrossRefGoogle ScholarPubMed
Cockerell, T.D.A. (1917) Arthropods in Burmese Amber. Psyche 24, 4045.CrossRefGoogle Scholar
Crowson, R.A. (1981) The Biology of the Coleoptera. London, UK, Academic Press.Google Scholar
Degnan, P.H., Lazarus, A.B. & Wernegreen, J.J. (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Research 15, 10231033.Google Scholar
deWaard, J.R., Landry, J.-F., Schmidt, B.C., Derhousoff, J., McLean, J.A. & Humble, L.M. (2009) In the dark in a large urban park: DNA barcodes illuminate cryptic and introduced moth species. Biodiversity and Conservation 18, 38253839.CrossRefGoogle Scholar
Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.Google Scholar
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.Google Scholar
Foottit, R.G., Maw, H.E.L., Von Dohlen, C.D. & Herbert, P.D.N. (2008) Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources 8, 11891201.Google Scholar
Gillespie, J.J., Tallamy, D.W., Riley, E.G. & Cognato, A.I. (2008) Molecular phylogeny of rootworms and related galerucine beetles (Coleoptera: Chrysomelidae). Zoologica Scripta 37, 195222.CrossRefGoogle Scholar
Hava, J. (2003) World Catalogue of the Dermestidae (Coleoptera). Prague, Czech Republic, Brandýse nad Labem.Google Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Hinton, H.E. (1945) A Monograph of the Beetles Associated with Stored Products. London, UK, British Museum.Google Scholar
Humphries, E.M. & Winker, K. (2010) Working through polytomies: auklets revisited. Molecular Phylogenetics and Evolution 54, 8896.CrossRefGoogle ScholarPubMed
Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O.S., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., Gómez-Zurita, J., Ribera, I., Barraclough, T.G., Bocakova, M., Bocak, L. & Volger, A.P. (2007) A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation. Science 318, 19131916.Google Scholar
Hwang, U.-W., Ree, H.I. & Won, K. (2000) Evolution of Hypervariable Regions, V4 and V7, of Insect 18S rRNA and Their Phylogenetic Implications. Zoological Science 17, 111121.CrossRefGoogle ScholarPubMed
Khan, H.A., Arif, I.A., Bahkali, A.H., Farhan, A.H.A. & Homeidan, A.A.A. (2008) Bayesian, Maximum Parsimony and UPGMA Models for Inferring the Phylogenies of Antelopes Using Mitochondrial Markers. Evolutionary Bioinformatics 2008, 263270.Google Scholar
Kiselyova, T. & McHugh, J.V. (2006) A phylogenetic study of Dermestidae (Coleoptera) based on larval morphology. Systematic Entomology 31, 469507.CrossRefGoogle Scholar
Klootwijk, C.T., Gee, J.S., Peirce, J.W., Smith, G.M. & McFadden, P.L. (1992) An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 20, 395398.2.3.CO;2>CrossRefGoogle Scholar
Li, Z.X. & Powell, C.M. (2001) An Outline of the palaeogeographical evolution of the Australian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237277.CrossRefGoogle Scholar
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (2000) 100 of the World's Worst Invasive Alien Species A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) of the World Conservation Union (IUCN), 12.Google Scholar
Maddison, W. (1989) Reconstructing character evolution on polytomous cladograms. Cladistics 5, 365377.Google Scholar
McCormack, J.E., Huang, H. & Knowles, L.L. (2009) Maximum Likelihood Estimates of Species Trees: How Accuracy of Phylogenetic Inference Depends upon the Divergence History and Sampling Design. Systematic Biology 58, 501508.CrossRefGoogle ScholarPubMed
McCracken, K.G. & Sorenson, M.D. (2005) Is Homoplasy or Lineage Sorting the Source of Incongruent mtDNA and Nuclear Gene Trees in the Stiff-Tailed Ducks (Nomonyx-Oxyura)? Systematic Biology 54, 3555.Google Scholar
Mroczkowski, M. (1968) Distribution of the Dermestidae (Coleoptera) of the world with a catalogue of all known species. Annales Zoologici. Warszawa 26, 15191.Google Scholar
O'Huigin, C., Satta, Y., Takahata, N. & Klein, J. (2002) Contribution of Homoplasy and of Ancestral Polymorphism to the Evolution of Genes in Anthropoid Primates. Molecular Biology and Evolution 19, 15011513.CrossRefGoogle Scholar
Page, R.D.M. & Holmes, E.C. (1998) Molecular Evolution A Phylogenetic Approach. Oxford, UK, Blackwell Science Ltd.Google Scholar
Peacock, E.R. (1993) Adults and Larvae of Hide, Larder and Carpet Beetles and their Relatives (Coleoptera: Dermestidae) and of Derodontid Beetles (Coleoptera: Derodontidae). London, UK, The Natural History Museum.Google Scholar
Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Rasmussen, M.D. & Kellis, M. (2007) Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates across multiple complete genomes. Genome Research 17, 19321942.Google Scholar
Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Sanderson, M.J. & Doyle, J.A. (2001) Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. American Journal of Botany 88, 14991516.CrossRefGoogle ScholarPubMed
Shoup, S. & Lewis, L.A. (2003) Polyphyletic Origin of Parallel Basl Bodies in Swimming Cells of Chlorophycean Green Algae (CHLOROPHYTA). Journal of Phycology 39, 789796.CrossRefGoogle Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America 87, 651701.CrossRefGoogle Scholar
Swofford, D.L. (2003) PAUP*. Phylogenetic Analysis using Parsimony (*and Other Methods). 4th edn.Sunderland, MA, USA, Sinauer Associates.Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Weider, L.J., Elser, J.J., Crease, T.J., Mateos, M., Cotner, J.B. & Markow, T.A. (2005) The Functional Significance of Ribosomal rDNA Variation: Impacts on the Evolutionary Ecology of Organisms. Annual Review of Ecology, Evolution, and Systematics 36, 219242.Google Scholar
Wiens, J.J., Chippindale, P.T. & Hillis, D.M. (2003) When Are Phylogenetic Analyses Misled by Convergence? A Case Study in Texas Cave Salamanders. Systematic Biology 52, 501514.CrossRefGoogle ScholarPubMed
Zhantiev, R.D. (2009) Ecology and Classification of Dermestid Beetles (Coleoptera,Dermestidae) of the Palaearctic Fauna. Entomological Review 89, 157174.CrossRefGoogle Scholar