Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:05:00.631Z Has data issue: false hasContentIssue false

Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae)

Published online by Cambridge University Press:  30 January 2017

S. Mitra
Affiliation:
Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan – 713 104, West Bengal, India
N. Sarkar
Affiliation:
Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan – 713 104, West Bengal, India
A. Barik*
Affiliation:
Ecology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan – 713 104, West Bengal, India
*
*Author for correspondence Tel.: 0342 2634200 Fax: 0342 2634200 E-mail: anandamaybarik@yahoo.co.in

Abstract

The importance of leaf surface wax compounds from the rice-field weed Ludwigia octovalvis (Jacq.) Raven (Onagraceae) was determined in the flea beetle Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Extraction, thin layer chromatography and GC-MS and GC-FID analyses of surface waxes of young, mature and senescent leaves revealed 20, 19 and 19 n-alkanes between n-C15 and n-C35, respectively; whereas 14, 14 and 12 free fatty acids between C12:0 and C22:0 fatty acids were identified in young, mature and senescent leaves, respectively. Tricosane was predominant n-alkane in young and mature leaves, whilst eicosane predominated in senescent leaves. Heneicosanoic acid, palmitic acid and docosanoic acid were the most abundant free fatty acids in young, mature and senescent leaves, respectively. A. cyanea females showed attraction to 0.25 mature leaf equivalent surface waxes compared with young or senescent leaves in a short glass Y-tube olfactometer bioassay. The insects were attracted to a synthetic blend of 0.90, 1.86, 1.83, 1.95, 0.50 and 0.18 µg ml−1 petroleum ether of hexadecane, octadecane, eicosane, tricosane, palmitic acid and alpha-linolenic acid, respectively, comparable with the proportions as present in 0.25 mature leaf equivalent surface waxes. A. cyanea also laid eggs on a filter paper moistened with 0.25 mature leaf equivalent surface waxes or a synthetic blend of 0.90, 1.86, 1.83, 1.95, 0.50 and 0.18 µg ml−1 petroleum ether of hexadecane, octadecane, eicosane, tricosane, palmitic acid and alpha-linolenic acid, respectively. This finding could provide a basis for monitoring of the potential biocontrol agent in the field.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikary, P., Mukherjee, A. & Barik, A. (2014) Role of surface wax alkanes from Lathyrus sativus L. seeds for attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research 59, 113119.Google Scholar
Adhikary, P., Mukherjee, A. & Barik, A. (2015) Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bulletin of Entomological Research 105, 187201.CrossRefGoogle ScholarPubMed
Adhikary, P., Mukherjee, A. & Barik, A. (2016) Free fatty acids from Lathyrus sativus seed coats acting as short–range attractants to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research 67, 5662.CrossRefGoogle Scholar
Alam, S. & Karim, A.N.M.R. (1980) The black beetle: an efficient weed feeder in Bangladesh. International Rice Research Newsletter 5, 23.Google Scholar
Baker, E.A. (1982) Chemistry and morphology of plant epicuticular waxes. pp. 139165 in Cutler, D.F., Alvin, K.L. & Price, C.E. (Eds) The Plant Cuticle. London, Academic Press.Google Scholar
Baker, E.A. & Hunt, G.M. (1981) Developmental changes in leaf epicuticular waxes in relation to foliar penetration. New Phytologist 88, 731747.Google Scholar
Burdi, D.K., Samejo, M.Q., Bhanger, M.I. & Khan, K.M. (2007) Fatty acid composition of Abies pindrow (West Himalayan fir). Pakistan Journal of Pharmaceutical Sciences 20, 1519.Google Scholar
Demir, R. & Cakmak, O. (2007) Investigation on fatty acids in leaves, stems and fruits of some species of Medicago . International Journal of Agriculture and Biology 9, 934936.Google Scholar
Dodoš, T., Rajčević, N., Tešević, V., Matevski, V., Janaćković, P. & Marin, P.D. (2015) Composition of leaf n-alkanes in three Satureja montana L. subspecies from the Balkan peninsula: ecological and taxonomic aspects. Chemistry & Biodiversity 12, 157169.Google Scholar
Dubey, A.N. (1981) Biological control of weeds in rice fields. Tropical Pest Management 27, 143144.Google Scholar
Dutton, A., Mattiacci, L. & Dorn, S. (2000) Plant-derived semiochemicals as contact host location stimuli for a parasitoid of leafminers. Journal of Chemical Ecology 26, 22592273.CrossRefGoogle Scholar
Eigenbrode, S.D. & Espelie, K.E. (1995) Effects of plant epicuticular lipids on insect herbivores. Annual Review of Entomology 40, 171194.Google Scholar
Grant, G.G., Zhao, B. & Langevin, D. (2000) Oviposition response of spruce budworm (Lepidoptera: Tortricidae) to aliphatic carboxylic acids. Environmental Entomology 29, 164170.Google Scholar
Hellmann, M. & Stoesser, R. (1992) Seasonal, ontogenic and variety specific changes of the surface wax from apple leaves. Angewandte Botanik 66, 109114.Google Scholar
Imeokparia, P.O. (1994) Weed control in flooded rice with various herbicide combinations in the southern Guinea savanna zone of Nigeria. International Journal of Pest Management 40, 3139.Google Scholar
Imeokparia, P.O., Lagoke, S.T.O. & Olunuga, B.A. (1992) Evaluation of postemergence herbicides for broad-spectrum weed control in three cultivars of flooded rice in Nigeria. Crop Protection 11, 165173.Google Scholar
Jetter, R., Schaffer, S. & Riederer, M. (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant, Cell & Environment 23, 619628.Google Scholar
Kandasamy, O.S. & Palaniappan, S.P. (1990) Weed control in dry and wet seeded irrigated rice. International Rice Research Newsletter 15, 33.Google Scholar
Koukos, D., Meletiou-Christou, M.-S. & Rhizopoulou, S. (2015) Leaf surface wettability and fatty acid composition of Arbutus unedo and Arbutus andrachne grown under ambient conditions in a natural macchia. Acta Botanica Gallica 162, 225232.Google Scholar
Li, G. & Ishikawa, Y. (2006) Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis . Journal of Chemical Ecology 32, 595604.Google Scholar
Malik, U. & Barik, A. (2015) Free fatty acids from the weed, Polygonum orientale leaves for attraction of the potential biocontrol agent, Galerucella placida (Coleoptera: Chrysomelidae). Biocontrol Science & Technology 25, 593607.Google Scholar
Manosalva, L., Pardo, F., Perich, F., Mutis, A., Parra, L., Ortega, F., Isaacs, R. & Quiroz, A. (2011) Behavioural responses of clover root borer to long-chain fatty acids from young red clover (Trifolium pratense) roots. Environmental Entomology 40, 399404.Google Scholar
Maulik, S. (1936) The Fauna of British India, Including Ceylon and Burma. Coleoptera. Chrysomelidae (Galerucinae). London, Taylor and Francis.Google Scholar
Moody, K. (1989) Weeds reported in Rice in South and Southeast Asia. Manila, Philippines, International Rice Research Institute.Google Scholar
Mukherjee, A., Sarkar, N. & Barik, A. (2013) Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Neotropical Entomology 42, 366371.Google Scholar
Mukherjee, A., Sarkar, N. & Barik, A. (2014) Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Journal of Asia-Pacific Entomology 17, 229234.Google Scholar
Mukherjee, A., Sarkar, N. & Barik, A. (2015 a) Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25, 93104.Google Scholar
Mukherjee, A., Sarkar, N. & Barik, A. (2015 b) Leaf surface n–alkanes of Momordica cochinchinensis Spreng as short–range attractants for its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Allelopathy Journal 36, 109122.Google Scholar
Müller, C. (2006) Plant insect interactions on cuticular surfaces. pp. 398422 in Riederer, M. & Muller, C. (Eds) Biology of the Plant Cuticle. Oxford, Blackwell Publishing.Google Scholar
Müller, C. & Hilker, M. (2001) Host finding and oviposition behavior in a chrysomelid specialist--the importance of host plant surface waxes. Journal of Chemical Ecology 27, 985994.Google Scholar
Naples, M.L. & Kessler, P.J.A. (2005) Weeds of Rain Fed Lowland Rice Fields of Laos & Cambodia. Description, Illustrations, Identification, and Information Retrieval. Version: 12 September 2005. Available online at: http://www.nationaalherbarium.nl Google Scholar
Nayek, T.K. & Banerjee, T.C. (1987) Life history and host specificity of Altica cyanea (Coleoptera–Chrysomelidae), a potential biocontrol agent for water primrose, Ludwigia adscendens . Entomophaga 32, 407414.Google Scholar
Padovan, A., Keszei, A., Köllner, T.G., Degenhardt, J. & Foley, W.J. (2010) The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. Phytochemistry 71, 12371244.Google Scholar
Parr, M.J., Tran, B.M.D., Simmonds, M.S.J., Kite, G.C. & Credland, P.F. (1998) Influence of some fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus . Journal of Chemical Ecology 24, 15771593.Google Scholar
Piasentier, E., Bovolenta, S. & Malossini, F. (2000) The n-alkane concentrations in buds and leaves of browsed broadleaf trees. Journal of Agricultural Science 135, 311320.Google Scholar
Piesik, D., Wenda-Piesik, A., Ligor, M., Buszewski, B. & Delaney, K.J. (2012) Dock leaf beetle, Gastrophysa viridula Deg., herbivory on the mossy sorrel, Rumex confertus Willd: induced plant volatiles and beetle orientation responses. Journal of Agricultural Science 4, 97103.Google Scholar
Raju, R.A. & Reddy, M.N. (1986) Protecting the world's rice crops. Agricultural Information Development Bulletin 8, 1718.Google Scholar
Roy, N. & Barik, A. (2012) Alkanes used for host recognition by the arctiid moth, Diacrisia casignetum Kollar. Journal of Entomological Research 36, 345350.Google Scholar
Sarkar, N. & Barik, A. (2014) Role of alkanes from bitter gourd flower surface waxes as allelochemicals in olfactory responses of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). Allelopathy Journal 33, 4352.Google Scholar
Sarkar, N. & Barik, A. (2015) Free fatty acids from Momordica charantia L. flower surface waxes influencing attraction of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). International Journal of Pest Management 61, 4753.Google Scholar
Sarkar, N., Mukherjee, A. & Barik, A. (2013) Long-chain alkanes: allelochemicals for host location by the insect pest, Epilachna dodecastigma (Coleoptera: Coccinellidae). Applied Entomology & Zoology 48, 171179.Google Scholar
Sarkar, N., Malik, U. & Barik, A. (2014) n–alkanes in epicuticular waxes of Vigna unguiculata (L.) Walp. leaves. Acta Botanica Gallica 161, 373377.Google Scholar
Sarkar, N., Mukherjee, A. & Barik, A. (2015) Attraction of Epilachna dodecastigma (Coleoptera: Coccinellidae) to Momordica charantia (Cucurbitaceae) leaf volatiles. Canadian Entomologist 147, 169180.CrossRefGoogle Scholar
Sato, M., Seki, K., Kita, K., Moriguchi, Y., Yunoki, K., Kofujita, H. & Ohnishi, M. (2008) Prominent differences in leaf fatty acid composition in the F1 hybrid compared with parent trees Larix gmelinii var. japonica and L. kaempferi . Bioscience, Biotechnology & Biochemistry 72, 28952902.Google Scholar
Schiestl, F.P., Ayasse, M., Paulus, H.F., Lofstedt, C., Hansson, B.S., Ibarra, F. & Francke, W. (1999) Orchid pollination by sexual swindle. Nature 399, 421422.Google Scholar
Schoonhoven, L.M., van Loon, J.J.A. & Dicke, M. (2005) Insect-Plant Biology. Oxford, Oxford University Press.Google Scholar
Smith, L. & Beck, J.J. (2013) Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds. Biocontrol Science & Technology 23, 880907.Google Scholar
Tasin, M., Anfora, G., Ioriatti, C., Carlin, S., De Cristofaro, A., Schmidt, S., Bengtsson, M., Versini, G. & Witzgall, P. (2005) Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. Journal of Chemical Ecology 31, 7787.Google Scholar
Van Maarseveen, C., Han, H. & Jetter, R. (2009) Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Plant, Cell & Environment 32, 7381.Google Scholar
Wheeler, G.S. & Schaffner, U. (2013) Improved understanding of weed biological control safety and impact with chemical ecology: a review. Invasive Plant Science and Management 6, 1629.Google Scholar
Xiao-Shui, W. (1990) Altica cyanea (Col: Chrysomelidae) for the biological control of Ludwigia prostrata (Onagraceae) in China. Tropical Pest Management 36, 368370.CrossRefGoogle Scholar
Youngman, R.R. & Baker, T.C. (1989) Host odor mediated response of female navel orangeworm moths (Lepidoptera: Pyralidae) to black and white sticky traps. Journal of Economic Entomology 82, 13391343.Google Scholar
Supplementary material: File

Mitra supplementary material

Mitra supplementary material 1

Download Mitra supplementary material(File)
File 37.1 KB