Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:56:25.912Z Has data issue: false hasContentIssue false

Is Bactra bactrana (Kennel, 1901) a novel pest of sweet peppers?

Published online by Cambridge University Press:  23 December 2015

E. Roditakis*
Affiliation:
Laboratory of Entomology, Hellenic Agricultural Organisation ‘Demeter’, Plant Protection Institute of Heraklion, Heraklion, Greece
S. Morin
Affiliation:
The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
J. Baixeras*
Affiliation:
Universitat de València, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Paterna, Spain
*
*Author for correspondence Phone: +30 2810 302309 Fax: +30 2810 245858 E-mail: eroditakis@gmail.com and Phone: +34 963543636 Fax: +34 963543733 E-mail: joaquin.baixeras@uv.es
*Author for correspondence Phone: +30 2810 302309 Fax: +30 2810 245858 E-mail: eroditakis@gmail.com and Phone: +34 963543636 Fax: +34 963543733 E-mail: joaquin.baixeras@uv.es

Abstract

This is the first report of Bactra bactrana (Kennel, 1901) (Lepidoptera: Tortricidae) attacking a major solanaceous crop, sweet pepper Capsicum annuum L. The infestation was detected in two greenhouses at the area of Tympaki (Southern Crete, Greece). The moth larvae caused typical symptoms of a fruit borer with numerous small holes on the surface of the peppers and extensive damage on the inside of the fruit as a result of the feeding activity. Unknown factors facilitated this major shift in host range since B. bactrana is typically a stem borer of sedges. In addition, the pest status of B. bactrana is currently under question, as in both cases the infestations by the moth were associated with significant yield losses. B. bactrana was moderately controlled with chemicals registered for Lepidoptera management in sweet pepper due to the boring nature of the infestation. Some comparative taxonomic notes are provided to facilitate accurate pest discrimination of related Bactra species. Finally, biological attributes of the species are summarized and are discussed from pest control and ecological perspectives. Because Bactra species have been used in augmentative releases for the control of sage, the implications of our findings on the release of biocontrol agents are placed in perspective.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarvik, L.E. (2008) New data on Bactrini (Lepidoptera, Tortricidae) from Africa. Norwegian Journal of Entomology 55, 713.Google Scholar
Aarvik, L.E. (2013) Fauna Europaea: Tortricidae. in Karsholt, O., van Nieukerken, E.J. & de Jong, Y.S.D.M. (Eds) Fauna Europaea: Lepidoptera, Moths. Fauna Europaea. Version 2.6. Available online at http://www.faunaeur.org (accessed 10 November 2014).Google Scholar
Andersen, M.C., Ewald, M. & Northcott, J. (2005) Risk analysis and management decisions for weed biological control agents: ecological theory and modeling results. Biological Control 35, 330337.Google Scholar
Bale, J.S., Van Lenteren, J.C. & Bigler, F. (2008) Biological control and sustainable food production. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 761776.Google Scholar
Barratt, B.I.P., Howarth, F.G., Withers, T.M., Kean, J.M. & Ridley, G.S. (2010) Progress in risk assessment for classical biological control. Biological Control 52, 245254.Google Scholar
Bean, D.W., Dalin, P. & Dudley, T.L. (2012) Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evolutionary Applications 5, 511523.CrossRefGoogle ScholarPubMed
Bengtsson, B.Å. (1990) Description of Bactra suedana sp. n. and notes on the Nordic species of Bactra Stephens (Lepidoptera: Tortricidae). Entomologica scandinavica 20, 479488.CrossRefGoogle Scholar
Booij, C.J. & Voerman, S. (1984) New sex attractants for 35 tortricid and 4 other lepidopterous species, found by systematic field screening in the Netherlands. Journal of Chemical Ecology 10, 135144.CrossRefGoogle ScholarPubMed
Brown, J.W., Robinson, G. & Powell, J.A. (2008) Food plant database of the leafrollers of the world (Lepidoptera: Tortricidae). Version 1.0. Available online at http://www.tortricid.net/foodplants.asp (accessed 10 November 2014).Google Scholar
Collier, T. & Van Steenwyk, R. (2004) A critical evaluation of augmentative biological control. Biological Control 31, 245256.Google Scholar
Cruttwell McFadyen, R.E. (1998) Biological control of weeds. Annual Review of Entomology 43, 369393.Google Scholar
Delfosse, E.S. (2005) Risk and ethics in biological control. Biological Control 35, 319329.Google Scholar
Diakonoff, A. (1956) Records and descriptions of Microlepidoptera (8). Zoologische Verhandelingen 29, 160.Google Scholar
Diakonoff, A. (1962) Preliminary survey of the Palaearctic species of the subgenus Bactra Stephens (Bactra, Tortricidae, Lepidoptera). Zoologische Verhandelingen 59, 148, 18 plates.Google Scholar
Diakonoff, A. (1963) African species of the genus Bactra Stephens (Lepidoptera, Tortricidae). Tijdschrift voor Entomologie 106, 285357.Google Scholar
Diakonoff, A. (1964) Further records and descriptions of the species of Bactra Stephens (Lepidoptera, Tortricidae). Zoologische Verhandelingen 70, 181, 18 plates.Google Scholar
Fletcher, T.B. (1932) Life-histories of Indian Microlepidoptera (second series) Alucitidae (Pterophoridae), Tortricina and Gelechiadae. Imperial Council of Agricultural Research, Scientific Monograph 2, 158.Google Scholar
Frick, K.E. (1978) Purple nutsedge (Cyperus rotundus L.): a case for augmentation. pp. 145–151 in Proceedings of the 4th International Symposium on Biological Control of Weeds, Gainsville.Google Scholar
Frick, K.E. (1982) Evaluation of field releases of laboratory – reared larval and adult Bactra verutana for control of purple nutsedge. Environmental Entomology 11, 838945.Google Scholar
Frick, K.E. & Chandler, J.M. (1978) Augmenting the moth (Bactra verutana) in field plots for early-season suppression of purple nutsedge (Cyperus rotundus). Weed Science 26, 703710.CrossRefGoogle Scholar
Frick, K.E. & Garcia, C. (1975) Bactra verutana as a biological control agent for purple nutsedge. Annals of the Entomological Society of America 68, 714.Google Scholar
Frick, K.E. & Wilson, R.F. (1980) Suitability of the immature stages of Bactra verutana for use in mass releases. Annals of the Entomological Society of America 73, 674678.CrossRefGoogle Scholar
Gilligan, T.M., Baixeras, J., Brown, J.W. & Tuck, K.R. (2012) Online World Catalogue of the Tortricidae. Version 2.0. Available online at http://www.tortricid.net/catalogue.asp (accessed 10 November 2014).Google Scholar
Giorgi, F. & Lionello, P. (2008) Climate change projections for the Mediterranean region. Global and Planetary Change 63, 90104.Google Scholar
Hinton, H.E. (1946) On the homology and nomenclature of the setae of lepidopterous larvae, with some notes on the phylogeny of the Lepidoptera. Transactions of the Royal Entomological Society of London 97, 137.Google Scholar
Hokkanen, H.M.T. (2000) The making of a pest: recruitment of Meligethes aeneus onto oilseed Brassicas. Entomologia Experimentalis et Applicata 95, 141149.Google Scholar
Horak, M. (1999) The Tortricoidea. pp. 199215 in Kristensen, N.P. (Ed.) Handbook of Zoology, 4 Arthropoda: Insecta, 35: Lepidoptera, Moths and Butterflies, 1: Evolution, Systematics, and Biogeography. Berlin, New York, Walter de Gruyter.Google Scholar
Horak, M. (2006) Olethreutine moths of Australia (Lepidoptera: Tortricidae) Collingwood. Australia, CSIRO.Google Scholar
Hufbauer, R.A. & Roderick, G.K. (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biological Control: Theory and Applications in Pest Management 35, 227239.Google Scholar
Jepsen, J.U., Hagen, S.B., Ims, R.A. & Yoccoz, N.G. (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Journal of Animal Ecology 77, 257264.Google Scholar
Karsholt, O. & Vieira, V. (2005) Lepidoptera. pp. 207210, 230 in Borges, P.A.V., Cunha, R., Gabriel, R., Martins, A.F., Silva, L. & Vieira, V. (Eds) A list of the terrestrial fauna (Mollusca and Arthopoda) and flora (Bryopypa, Pteridophyta and Spermatophyta) from the Azores. Angra do Heroismo and Ponta Delgada, Direccao Regional do Ambiente and Universidade dos Açores.Google Scholar
Klots, A. (1970) Lepidoptera. pp. 115130 in Tuxen, S.L. (Ed.) Taxonomist's Glossary of Genitalia of Insects. Munksgaard, Copenhagen, Denmark, Scandinavian University Books.Google Scholar
Kocsis, M. & Hufnagel, L. (2011) Impacts of climate change on lepidoptera species and communities. Applied Ecology and Environmental Research 9, 4372.Google Scholar
Louda, S.M., Kendall, D., Connor, J. & Simberloff, D. (1997) Ecological effects of an insect introduced for the biological control of weeds. Science 277, 10881090.Google Scholar
Louda, S.M., Pemberton, R.W., Johnson, M.T. & Follett, P.A. (2003) Nontarget effects: the Achilles’ heel of biological control. Annual Review of Entomology 48, 365.Google Scholar
Lu, X., Siemann, E., He, M., Wei, H., Shao, X. & Ding, J. (2015) Climate warming increases biological control agent impact on a non-target species. Ecology Letters 18, 4856.Google Scholar
McKay, M.R. (1959) Larvae of the North American Olethreutidae (Lepidoptera). Canadian Entomologist 41(Suppl 10), 1338.Google Scholar
Naranjo, S.E., Ellsworth, P.C. & Frisvold, G.B. (2015) Economic value of biological control in integrated pest management of managed plant systems. Annual Review of Entomology 60, 621645.Google Scholar
Parkash, R., Ramniwas, S. & Kajla, B. (2013) Climate warming mediates range shift of two differentially adapted stenothermal Drosophila species in the Western Himalayas. Journal of Asia-Pacific Entomology 16, 147153.Google Scholar
Patterson, D.T., Westbrook, J.K., Joyce, R.J.V., Lingren, P.D. & Rogasik, J. (1999) Weeds, insects, and diseases. Climatic Change 43, 711727.Google Scholar
Phillips, C.B., Baird, D.B., Iline, I.I., McNeill, M.R., Proffitt, J.R., Goldson, S.L. & Kean, J.M. (2008) East meets west: adaptive evolution of an insect introduced for biological control. Journal of Applied Ecology 45, 948956.Google Scholar
Poinar, G.O. (1964 a) Observations of nutgrass insects in Hawaii with notes on the host range of Bactra truculenta Meyrick and Athesapeuta cyperi Marshall. Proceedings of the Hawaiian Entomological Society 18, 417423.Google Scholar
Poinar, G.O. (1964 b) Studies on nutgrass insects in southern California and their effectiveness as biological control agents. Journal of Economic Entomology 57, 379383.Google Scholar
Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L. & Kaplan, I. (2011) Insect Ecology. Behavior, Populations and Communities. New York, Cambridge University Press.Google Scholar
Prick, K.E., Hartley, G.G. & King, E.G. (1983) Large-scale production of Bactra verutana [Lep.: Tortricidae] for the biological control of nutsedge. Entomophaga 28, 107115.Google Scholar
Riemens, M.M., van der Weide, R.Y. & Runia, W.T. (2008) Biology and control of Cyperus rotundus and Cyperus esculentus, review of a literature survey, Plant Research International B. V. Wageningen.Google Scholar
Robinson, G.S. (1976) The preparation of slides of Lepidoptera genitalia with special reference to the microlepidoptera. Entomologist's Gazette 27, 127132.Google Scholar
Roditakis, E., Stavrakaki, M., Bassi, A. & Rison, J.L. (2014) Toxicity of insecticides on tomato borer Tuta absoluta (Lepidoptera: Gelechiidae): effect of developmental stage and time. pp. 131, P278 in Proceedings of the Xth European Congress of Entomology, University of York, Heslington, York, UK, 2014.Google Scholar
Sánchez-Zapata, E., Fernández-López, J. & Pérez-Alvarez, J.A. (2012) Tiger nut (Cyperus esculentus) commercialization: health aspects, composition, properties, and food applications. Comprehensive Reviews in Food Science and Safety 11, 366–377.Google Scholar
Sheppard, A.W., van Klinken, R.D. & Heard, T.A. (2005) Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biological Control 35, 215226.CrossRefGoogle Scholar
Simberloff, D. (2012) Risks of biological control for conservation purposes. BioControl 57, 263276.Google Scholar
Slater, R., Ellis, S., Genay, J.P., Heimbach, U., Huart, G., Sarazin, M., Longhurst, C., Müller, A., Nauen, R., Rison, J.L. & Robin, F. (2011) Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes spp.): a coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest Management Science 67, 633638.Google Scholar
Swatschek, B. (1958) Die Larvalsystematik der Wickler (Tortricidae und Carposinidae). Berlin, Akademie Verlag.Google Scholar
Swezey, O.H. (1926) Recent introductions of beneficial insects in Hawaii. Journal of Economic Entomology 19, 714720.Google Scholar
Szűcs, M., Schaffner, U., Price, W.J. & Schwarzländer, M. (2012) Post-introduction evolution in the biological control agent Longitarsus jacobaeae (Coleoptera: Chrysomelidae). Evolutionary Applications 5, 858868.Google Scholar
Thomas, M.B. & Reid, A.M. (2007) Are exotic natural enemies an effective way of controlling invasive plants? Trends in Ecology and Evolution 22, 447453.Google Scholar
Traill, L.W., Lim, M.L.M., Sodhi, N.S. & Bradshaw, C.J.A. (2010) Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology 79, 937947.Google Scholar
Trematerra, P. & Ciampolini, M. (1989) Il genere Bactra Stephens (Lepidoptera Tortricidae) nella biocenosi di Cyperus rotundus L., in Italia. Bolletino di Zoologia Agraria e di Bachicoltura Serie II 21, 726.Google Scholar
Tsung-Kai, W. (1978) The biology and control of Bactra phaeopis Meyrick (Tortricidae). Acta Entomologica Sinica 21, 407414 (in Chinese).Google Scholar
van Lenteren, J. & Woets, J. (1988) Biological and integrated pest control in greenhouses. Annual Review of Entomology 33, 239.Google Scholar
van Lenteren, J.C., Bale, J., Bigler, F., Hokkanen, H.M.T. & Loomans, A.J.M. (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annual Review of Entomology 51, 609634.Google Scholar
Visalakshy, P.N. & Jayanth, K.P. (1995) Suppression of Bactra venosana, a potential natural enemy of Cyperus rotundus, by Trichogrammatoidea bactrae in Bangalore, India. Phytoparasitica 23, 355356.Google Scholar
Zhang, B.C. (1994) Index of Economically Important Lepidoptera. Cambridge, United Kingdom, CAB International, University Press.Google Scholar
Zhang, H.Y., Hama, M.A., Ali, Y. & Nan, L. (1996) Yellow nut-sedge (Cyperus esculentus) tuber oil as a fuel. Industrial Crops and Products 5, 177181.Google Scholar