Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:09:49.197Z Has data issue: false hasContentIssue false

Interspecific interactions between two Tuta absoluta (Lepidoptera: Gelechiidae) larval parasitoids with contrasting life histories

Published online by Cambridge University Press:  21 October 2016

V. Savino
Affiliation:
Programa Ecología Terrestre Instituto de Ecología y Desarrollo Sustentable (INEDES) UNLu – CONICET y Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, (6700) Luján, Buenos Aires, Argentina Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET – FCNyM, UNLP), Boulevard 120 entre 60 y 64, (1900) La Plata, Argentina
M.G. Luna*
Affiliation:
Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET – FCNyM, UNLP), Boulevard 120 entre 60 y 64, (1900) La Plata, Argentina
N.G. Salas Gervassio
Affiliation:
Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET – FCNyM, UNLP), Boulevard 120 entre 60 y 64, (1900) La Plata, Argentina
C.E. Coviella
Affiliation:
Programa Ecología Terrestre Instituto de Ecología y Desarrollo Sustentable (INEDES) UNLu – CONICET y Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, (6700) Luján, Buenos Aires, Argentina
*
* Author for correspondence: Phone: +54-221-423-2327, ext. 31. Fax: +54-221-423-2327, ext. 12. E-mail: lunam@cepave.edu.ar

Abstract

Interspecific interactions between two larval parasitoids of Tuta absoluta (Meyrick) with partially overlapping host niches were studied: the idiobiont ectoparasitoid Dineulophus phthorimaeae De Santis, and the koinobiont endoparasitoid Pseudapanteles dignus (Muesebeck). T. absoluta is an important pest of tomato crops worldwide, and its management could be improved by understanding the competitive interactions and potential coexistence between these two parasitoids. Firstly, a 15-min fixed time laboratory test evaluated the host-searching ability of adult D. phthorimaeae and P. dignus wasps on T. absoluta larvae. Secondly, D. phthorimaeae host discrimination against endoparasitized and non-endoparasitized hosts by P. dignus, at different adult female ages, was experimentally examined. D. phthorimaeae wasps spent significantly more time in general searching in the presence of its competitor than in its absence, but, parasitism was only effective by P. dignus. Older D. phthorimaeae wasps discriminated significantly less than young wasps between T. absoluta larvae parasitized and unparasitized by P. dignus, and an interaction took place by non-concurrent host-feeding. Intra-guild predation of P. dignus larvae by D. phthorimaeae female feeding behaviour might have a minor effect in this system. Results are discussed in the context of literature supporting diverse evidence of coexistence in other parasitoid-host systems, with implications for T. absoluta biological control.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Wahaibi, A.K. & Walker, G.P. (1999) Oviposition behaviour of Anagrus nigriventis, an egg parasitoid of beet leafhopper, Circulifer tenellus . BioControl 45, 139153.Google Scholar
Al-Wahaibi, A.K. & Walker, G.P. (2000) Searching and oviposition behaviour of a mymarid egg parasitoid, Anagrus nigriventis, on five host plant species of its leafhopper host, Circulifer tenellus . Entomologia Experimentalis et Applicata 96, 925.Google Scholar
Bernstein, C. & Jervis, M. (2008) Food-searching in parasitoids: the dilemma of choosing between ‘immediate’ or future fitness gains. pp. 129171 in Wajnberg, E., Bernstein, C. & van Alphen, J. (Eds) Behavioral Ecology of Insect Parasitoids. USA, Blackwell Publishing.Google Scholar
Boivin, G. & Brodeur, J. (2006) Intra- and interspecific interaction among parasitoids: mechanisms, outcomes and biological control. pp. 123144 in Brodeur, J. & Boivin, G. (Eds) Trophic and Guild Interaccions in Biological Control. The Netherlands, Springer.CrossRefGoogle Scholar
Borer, E.T. (2002) Intraguild predation in larval parasitoids: implications for coexistence. Journal of Animal Ecology 71, 957965.Google Scholar
Brodeur, J. & Boivin, G. (2006) Trophic and Guild Interactions in Biological Control. The Netherlands, Springer.Google Scholar
Cancino, J., Liedo, P., Ruiz, L., López, G., Montoya, P., Barrera, J.F., Sivinski, J. & Aluja, M. (2012) Discrimination by Coptera haywardi (Hymenoptera: Diapriidae) of host previously attacked by conspecifics of by the larval parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Biocontrol Science and Technology 22, 899914.Google Scholar
Cardona, C. & Oatman, R. (1971) Biology of Apanteles dignus (Hymenoptera:Braconidae), a primary parasite of the tomato pinworm. Annals of the Entomological Society of America 64, 9961007.Google Scholar
Collier, T.R. & Hunter, M.S. (2001) Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia sophia . Oecologia 129, 147154.Google Scholar
Colomo, M.V., Berta, D.C. & Chocobar, M.J. (2002) El complejo de himenópteros parasitoides que atacan a la ‘polilla del tomate’ Tuta absoluta (Lepidoptera: Gelechiidae) en la Argentina. Acta zoológica lilloana 46, 8192.Google Scholar
Cusumano, A., Peri, E., Vinson, S.B. & Colazza, S. (2011) Intraguild interactions between two egg parasitoids exploring host patches. BioControl 56, 173184.Google Scholar
Desneux, N., Wajnberg, E., Wyckhuys, K.A.G., Burgio, G., Arpaia, S., Narváez-Vazquez, C.A., González-Cabrera, J., Catalán Ruescas, D., Tabone, E., Frandon, J., Pizzol, J., Poncet, C., Cabello, T. & Urbaneja, A. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 3, 197215.CrossRefGoogle Scholar
Desneux, N., Luna, M.G., Guillemaud, T. & Urbaneja, A. (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. Journal of Pest Science 84, 403408.Google Scholar
Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. USA, Princeton University Press.Google Scholar
Hawkins, B.A. (1994) Patterns and Processes in Host-parasitoid Interactions. UK, Cambridge University Press.Google Scholar
Hawkins, B.A. (2000). Species coexistence in parasitoid communities: does competition matter? pp. 198213 in Hochberg, M.E. & Ives, A.R. (Eds) Parasitoid Population Biology. UK, Princeton University Press.Google Scholar
Hochberg, M.E. & Lawton, J.H. (1990) Spatial heterogeneity in parasitism and population dynamics. Oikos 59, 914.Google Scholar
Infante, F., Mumford, J., Baker, P., Barrera, J. & Fowler, S. (2001) Interspecific competition between Cephalonomia stephanoderis and Prorops nasuta (Hym., Bethylidae), parasitoids of the coffee berry borer, Hypothenemus hampei (Col., Scolytidae). Journal of Applied Entomology 125, 6370.Google Scholar
Leveque, L., Monge, J.P., Rojas-Rousse, D., Van Alebeek, F. & Huignaud, J. (1993) Analysis of multiparasitism by Eupelmus vuilleti (Craw) (Eupelmidae) and Dinarmus basalis (Rond) (Pteromalidae) in the presence of one of their common host, Bruchidius atrolineatus (Pic) (Coleptera Bruchidae). Oecologia 94, 272277.Google Scholar
Lotka, A.J. (1925) Elements of Physical Biology. Baltimore, Mariland, USA, Williams and Wilkins.Google Scholar
Luna, M.G., Sánchez, N.E. & Pereyra, P.C. (2007). Parasitism of Tuta absoluta (Lepidoptera: Gelechiidae) by Pseudapanteles dignus (Hymenoptera: Braconidae) under laboratory conditions. Environmental Entomology 36, 887893.Google Scholar
Luna, M.G., Sánchez, N.E. & Wada, V.I. (2010) Biology of Dineulophus phtorimaeae and field interaction with Pseudapanteles dignus (Hymenoptera: Braconidae), larval parasitoids of Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Annals of Entomological Society of America 103, 936942.Google Scholar
Mac Arthur, R.H. & Levins, R. (1967) The limiting similarity, convergent and divergent of coexisting species. American Naturalist 101, 377385.Google Scholar
May, R.M. (1973) Stability and Complexity in Model Ecosystems. Princeton, UK, Princeton University Press.Google Scholar
Mills, N.J. (1992) Parasitoid guilds, life-styles and host ranges in the parasitoid complexes of tortricoid hosts. Environmental Entomology 21, 230239.CrossRefGoogle Scholar
Mills, N.J. (2006) Interspecific competition among natural enemies and single versus multiple introductions in biological control. pp. 123144 in Brodeur, J. & Boivin, G. (Eds) Trophic and Guild Interaccions in Biological Control. The Netherlands, Springer.Google Scholar
Nieves, E.L., Pereyra, P.C., Luna, M.G., Medone, P. & Sánchez, N.E. (2015) Laboratory population parameters and field impact of the larval endoparasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on its host Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops in Argentina. Journal of Economic Entomology 108, 15531559.Google Scholar
Pérez-Lachaud, G., Batchelor, T.P. & Hardy, I.C.W. (2004) Wasp eat wasp: facultative hyperparasitism and intra-guild predation by bethylid wasp. Biological Control 30, 149155.Google Scholar
Persad, A.B. & Hoy, M.A. (2003) Intra- and interspecifc interaction between Lysiphlebus testaceipes and Lipolexis scutellaris (Hymenoptera: Aphidiidae) reared on Toxoptera citricida (Homoptera: Aphididae). Journal of Economic Entomology 96, 564569.Google Scholar
Polis, G.A., Myers, C.A. & Holt, R.D. (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology and Systematics 20, 297330.Google Scholar
Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L. & Kaplan, I. (2011) Insect Ecology, Behavior, Populations and Communities. UK, Cambridge University Press.Google Scholar
Rosenheim, J.A., Kaya, H.K., Ehler, L.E., Marois, J.J. & Jaffee, B.A. (1995) Intraguild predation among biological – control agents: theory and evidence. Biological Control 5, 303335.Google Scholar
Savino, V. (2014) Biología reproductiva del ectoparasitoide Dineulophus phthorimaeae De Santis y su interacción con el endoparasitoide Pseudapanteles dignus (Muesebeck). Implicancias para el control biológico de la polilla del tomate Tuta absoluta (Meyrick). PhD Thesis dissertation UNLP (Argentina), 146 pages.Google Scholar
Savino, V., Coviella, C.E. & Luna, M.G. (2012) Reproductive biology of Dineulophus phhtorimaeae de Santis (Hymenoptera: Eulophidae), a natural enemy of the tomato moth Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Journal of Insect Science 12, Article 153.Google Scholar
Shi, Z.-H., Li, Q.-B. & Li, X. (2004) Interspecific competition between Diadegma semiclausum Hellen (Hym., Ichneumonidae) and Cotesia plutellae (Kurdjumov) (Hym., Braconidae) in parasiting Plutella xylostella (L.) (Lep., Plutellidae). Journal of Applied Entomology 128, 437444.Google Scholar
StatSoft, Inc. (2007) Statistica (Data Analysis Software System). Version 8.0. Tulsa, OK, StatSoft.Google Scholar
Ulyshen, M.D., Duan, J.J. & Bauer, L.S. (2009) Interactions between Spathius agrili (Hymenoptera: Braconidae) and Tetratischus planipennisi (Hymenoptera: Eulophidae), larval parasitoids of Agrilus planipennis (Coleoptera: Buprestidae). Biological Control 52, 188193.CrossRefGoogle Scholar
Varley, G.C. (1947) The natural control of population balance in the knapweed gallfly (Urophaga jaceana). Journal of Animal Ecology 16, 139187.Google Scholar
Volterra, V. (1926) Variations and fluctuations of the numbers of individuals in animal species living together. pp. 558560 in Chapman, R.N. (Ed.) Animal Ecology. New York, USA, McGraw–Hill.Google Scholar
Waage, J. & Greathead, D. (1986) Insect Parasitoids. UK, Academic Press.Google Scholar
Weisser, W.W. & Houston, A.I. (1993) Host discrimination in parasitic wasps: when is it advantageous? Functional Ecology 7, 2739.Google Scholar
Xu, H.Y., Yang, N.W. & Wan, F.H. (2013) Competitive interactions between parasitoids provide new insight into host suppression. PLoS ONE 8, e82003.Google Scholar
Zaviezo, T. & Mills, N.J. (2001) The response of Hyssopus pallidus to host previously parasitized by Ascogaster quadridentata: heterospecific discrimination and host quality. Ecological Entomology 26, 9199.Google Scholar
Zwölfer, H. (1971) The structure and effect to parasite complexes attacking phytophagous host insects. pp. 405–418 in Der Boer, P.J. & Gradwel, G.R. (Eds) Dynamics of Populations: Proceedings of the Advanced Study Institute on ‘Dynamics of Numbers of Populations’ (Oosterbeck, 1970), Wageningen, The Netherlands, Centre for Agricultural Publishing and Documentation.Google Scholar