Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T18:58:03.551Z Has data issue: false hasContentIssue false

A new breakfast cereal containing guar gum reduces postprandial plasma glucose and insulin concentrations in normal-weight human subjects

Published online by Cambridge University Press:  09 March 2007

R. M. Fairchild
Affiliation:
Food Research Group, Sheffield Hallam University, Totley Hall Lane, Sheffield S17 4AB
P. R. Ellis
Affiliation:
Biopolymers Group, Division of Life Sciences, King's College London, Campden Hill Road, London W8 7AH
A. J. Byrne
Affiliation:
Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XW
S. D. Luzio
Affiliation:
Diabetes Research Unit, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XW
M. A. Mir
Affiliation:
Department of Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XW
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new guar-containing wheatflake product was developed to assess its effect on carbohydrate tolerance in normal-weight, healthy subjects. The extruded wheatflake breakfast cereals containing 0 (control) or approximately 90 g guar gum/kg DM were fed to ten fasting, normal-weight, healthy subjects using a repeated measures design. The meals were similar in energy (approximately 1·8 MJ), available carbohydrate (78 g), protein (15 g) and fat (5·4 g) content. The guar gum content of the test meals was 6·3 g. Venous blood samples were taken fasting and at 15, 30, 45,60, 90, 120, 150 and 240 min after commencing each breakfast and analysed for plasma glucose, insulin and C-peptide. The guar wheafflake meal produced a significant main effect for glucose and insulin at 0-60 min and 0-240 min time intervals respectively, but not for the C-peptide levels compared with the control meal. Significant reductions in postprandial glucose and insulin responses were seen following the guar wheatflake meal compared with the control meal at 15 and 60 min (glucose) and 15, 60, 90 and 120 min (insulin). The 60 and 120 min areas under the curve for glucose and insulin were significantly reduced by the guar gum meal, as was the 240 min area under the curve for insulin. Thus, it can be concluded that the use of a severe method of heat extrusion to produce guar wheatflakes does not diminish the physiological activity of the guar gum.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Blackburn, N. A., Redfern, J. S., Jarjis, H., Holgate, A. M., Hanning, I., Scarpello, J. H. B., Johnson, I. T. & Read, N. W. (1984). The mechanism of action of guar gum in improving glucose tolerance in man. Clinical Science 66, 329336.CrossRefGoogle ScholarPubMed
Braaten, J. T., Wood, P. J., Scott, F. W., Riedel, K. D., Poste, L. M. & Collins, M. W. (1991). Oat gum lowers glucose and insulin after an oral glucose load. American Journal of Clinical Nutrition 53, 14251430.CrossRefGoogle ScholarPubMed
Brand, J. C., Nicholson, P. L., Thorburn, A. W. & Truswell, A. S. (1985). Food processing and the glycemic index. American Journal of Clinical Nutrition 42, 11921196.CrossRefGoogle ScholarPubMed
Collier, G., McLean, A. & O'Dea, K. (1984). Effect of co-ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia 26, 5054.CrossRefGoogle ScholarPubMed
Collier, G. & O'Dea, K. (1983). The effect of coingestion of fat on the glucose, insulin and gastric inhibitory polypeptide responses to carbohydrate and protein. American Journal of Clinical Nutrition 37, 941944.CrossRefGoogle ScholarPubMed
Defronzo, F. & Ferrannini, E. (1991). Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14, 173194.CrossRefGoogle ScholarPubMed
Egan, H., Kirk, R. S. & Sawyer, R. (1981). Pearson's Chemical Analysis of Foods, 8th ed. Edinburgh: Churchill Livingstone.Google Scholar
Ellis, P. R., Burley, V. J., Leeds, A. R. & Peterson, D. B. (1988 a). A guar-enriched wholemeal bread reduces postprandial glucose and insulin responses. Journal of Human Nutrition and Dietetics 1, 7784.CrossRefGoogle Scholar
Ellis, P. R., Dawoud, F. M. & Morris, E. R. (1991). Blood glucose, plasma insulin and sensory responses to guarcontaining wheat breads: effects of molecular weight and particle size of guar gum. British Journal of Nutrition 66, 363379.Google Scholar
Ellis, P. R., Kamalanathan, T., Dawoud, F. M., Strange, R. N. & Coultate, T. P. (1988 b). Evaluation of guar biscuits for use in the management of diabetes: tests of physiological effects and palatability in non-diabetic volunteers. European Journal of Clinical Nutrition 42, 425435.Google ScholarPubMed
Ellis, P. R. & Morris, E. R. (1991). Importance of the rate of hydration of pharmaceutical preparations of guar gum: a new in vitro monitoring method. Diabetic Medicine 8, 378381.CrossRefGoogle ScholarPubMed
Ellis, P. R., Roberts, F. G., Low, A. G. & Morgan, L. M. (1995). The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: a relationship to rheological changes in jejunal digesta. British Journal of Nutrition 74, 539556.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1984). Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 109, 937942.CrossRefGoogle Scholar
Fairchild, R. M. (1991). The development, sensory analysis and physiological testing of guar gum containing breakfast foods for use in the treatment of diabetes mellitus. PhD Thesis, University of Wales.Google Scholar
Fairchild, R. M., Daniels, C. E. J., Ellis, P. R., Naqvi, S. K. M., Kwan, K. M. F. & Mir, M. A. (1990). Effect of two types of guar gum in solid and liquid foods on postprandial blood glucose, plasma insulin and C-peptide in healthy subjects. Proceedings of the Nutrition Society 49, 54A.Google Scholar
Fell, J. (1987). Extrusion: a revolution in food manufacture. Food Manufacturer January, 2729.Google Scholar
Fuessl, H. S., Adrian, T. E., Bacarese-Hamilton, A. J. & Bloom, S. R. (1986). Guar in NIDD: effect of different modes of administration on plasma glucose and insulin responses to a starch meal. Practical Diabetes 3, 258260.CrossRefGoogle Scholar
Gatenby, S. J. (1990). Guar gum and hyperlipidaemia - a review of the literature. In Dietary Fibre Perspectives, vol. 2, pp. 100115 [Leeds, A. R. editor]. London: John Libbey.Google Scholar
Gatti, E., Catenazzo, G., Camisasca, E., Torri, A., Dengri, E. & Sirtori, C. R. (1984). Effects of guar enriched pasta in the treatment of diabetes and hyperlipidaemia. Annals of Nutrition and Metabolism 28, 110.CrossRefGoogle Scholar
Groop, P. H., Groop, L., Totterman, K. J. & Fyhrquist, F. (1986). Relationship between changes in GIP concentrations and changes in insulin and C-peptide concentrations after guar gum therapy. Scandinavian Journal of Clinical and Laboratory Investigation 46, 505510.CrossRefGoogle ScholarPubMed
Heding, L. G. (1972). Determination of total serum insulin (IRI) in insulin treated diabetic patients. Diabetologia 8, 260266.CrossRefGoogle ScholarPubMed
Heding, L. G. (1975). Radioimmunological determination of human C-peptide in serum. Diabetologia 11, 541548.CrossRefGoogle ScholarPubMed
Holm, J., Lundquist, I., Björck, I., Eliasson, A. -C. & Asp, N. -G. (1988). Degree of starch gelatinisation, digestion rate of starch in vitro, and metabolic response rate in rats. American Journal of Clinical Nutrition 47, 10101016.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Haiseman, P., Diliwari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). Dietary fibres, fibre analogues and glucose tolerance: importance of viscosity. British Medical Journal 1, 13921394.Google Scholar
Mathers, J. C., Lawlor, P. A. & Parker, D. S. (1992). Effects of guar gum supplementation of breakfast cereals on small intestinal hydrolases in the rat. Proceedings ofthe Nutrition Society 51, 2A.Google Scholar
Morgan, L. M., Flatt, P. R. & Marks, V. (1988). Nutrient regulation of the enteroinsular axis and insulin secretion. Nutrition Research Reviews 1, 7997.Google Scholar
Morgan, L. M., Goulder, T. J., Tsiolakis, D., Marks, V. & Alberti, K. G. M. M. (1979). The effect of unabsorbable carbohydrate on gut hormones. Modification of post-prandial GIP secretion by guar. Diabetologia 17, 8589.CrossRefGoogle ScholarPubMed
Peterson, D. B. (1985). Fibre and diabetes - new perspectives. In Dietary Fibre Perspectives, vol. 1, pp. 4760 [Leeds, A. R. editor]. London: John Libbey.Google Scholar
Peterson, D. B., Ellis, P. R., Baylis, J. M., Fielden, P., Ajodhia, J., Leeds, A. R. & Jepson, E. M. (1987). Low dose guar in a novel food product: improved metabolic control in non-insulin dependent diabetes. Diabetic Medicine 4, 111115.CrossRefGoogle Scholar
Polonsky, K., Frank, B., Pugh, W., Addis, A., Karrison, T., Meier, P., Tager, H. & Rubenstein, A. H. (1986). Limitations to and valid use of C-peptide as a marker of the secretion of insulin. Diabetes 35, 379386.CrossRefGoogle ScholarPubMed
Polonsky, K. S. & Rubenstein, A. H. (1984). C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes 33, 486495.CrossRefGoogle ScholarPubMed
Ryan, T. A., Joiner, B. L. & Ryan, B. F. (1981). Minitab Student Handbook, 2nd ed. Massachusetts: Duxberry Press.Google Scholar
Sambrook, I. E. & Rainbird, A. L. (1985). The effect of guar gum and level and source of dietary fat on glucose tolerance in growing pigs. British Journal of Nutrition 54, 2735.CrossRefGoogle ScholarPubMed
Schmidt, M. I., Hadji-Georgopoulos, A., Rendell, M., Margolis, S. & Kowarsi, A. (1981). The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Cure 4, 579585.Google Scholar
Simões Nunes, C. & Malmlöf, K. (1992). Effect of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig. British Journal of Nutrition 68, 693700.Google Scholar
Smith, J. C., Levitt, N. S. & Rosman, M. S. (1985). The use of guar gum in the diabetic diet. In Advances in Diet and Nutrition, pp. 5964 [Horwitz, C. editor]. London: John Libbey.Google Scholar
Statistical Analysis Systems Institute Inc. (1985). SAS User's Guide Statistics, 5th ed. Cary, NC: SAS Institute Inc.Google Scholar
Wolever, T. M. S. (1990). The glycemic index. World Review of Nutrition and Dietetics 61, 120185.CrossRefGoogle Scholar
World Health Organization (1985). Diabetes Mellitus Technical Report Series no. 727, p. 11. Geneva: World Health Organization.Google Scholar