Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T18:32:57.592Z Has data issue: false hasContentIssue false

Effects of ileo-rectal anastomosis on cholesterol metabolism in pigs fed either casein or extruded soya beans

Published online by Cambridge University Press:  09 March 2007

Ofélia P. Bento
Affiliation:
Departamento de Zootecnia, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
José M. Martins*
Affiliation:
Departamento de Zootecnia, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
Maria J. Lança
Affiliation:
Departamento de Zootecnia, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
Manuel C. de Abreu
Affiliation:
Departamento de Zootecnia, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
Ana M. Viegas-Crespo
Affiliation:
CBA/Departamento de Biologia Animal, Faculdade de Ciências de Lisboa, Bloco C2, 3° Piso, 1740-016, Lisboa, Portugal
João P. B. Freire
Affiliation:
Departamento de Produção Agrícola e Animal, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017, Lisboa, Portugal
José A. A. Almeida
Affiliation:
Departamento de Zootecnia, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
Michel Riottot
Affiliation:
Laboratoire de Physiologie de la Nutrition – INRA, Université Paris Sud, bâtiment 447, 91405 Orsay Cedex, France
*
*Corresponding author: Dr José M. Martins, fax +351 266 760841, email jmartins@uevora.pt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The importance of legume proteins in cholesterol metabolism has been recognised, but the hindgut contribution is still unclear. The present work was undertaken to address the role of the caecum–colon in cholesterol metabolism in intact (I) and ileo-rectal anastomosed (IRA) pigs fed with casein or extruded soyabean (ES) diets. Four groups of six growing pigs were assigned to the treatments (casein–I, casein–IRA, ES–I, ES–IRA) for 3 weeks. Plasma total cholesterol, LDL- and HDL-cholesterol were not modified by surgery or diet. In the liver, the ES diet significantly depressed non-esterified, esterified and total cholesterol. The treatments did not affect hepatic 3-hydroxy-3-methylglutaryl CoA reductase, cholesterol 7α-hydroxylase or sterol 27-hydroxylase activities. In the gallbladder bile of ES-fed pigs, total cholesterol was depressed while total bile acid concentration was increased. IRA and the ES diet markedly decreased the biliary bile acid microbial metabolites (namely hyodeoxycholic acid) and increased the primary bile acids (mainly hyocholic acid). The concentration of bile hydrophobic acids was decreased only by the ES diet. Faecal neutral sterol output was increased in ES-fed pigs, but the bile acid and the sum of neutral and acidic steroid outputs were not. Microbial transformation of neutral and acidic steroids was markedly reduced by IRA, especially in the ES-fed pigs. Thus, surgery and ES modulated the steroid profile but the caecum–colon did not seem to play a crucial role in determining cholesterolaemia in pigs.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2004

References

Aigueperse, J, Remy, J & Chevallier, F (1981) Modes of intestinal cholesterol absorption in adult sows. Reprod Nutr Dev 21, 531544.CrossRefGoogle Scholar
Alvarez-Leite, JI, Andrieux, CFérézou, JRiottot, M & Vieira, EC (1994) Evidence for the absence of participation of the microbial flora in the hypocholesterolemic effect of guar gum in gnotobiotic rats. Comp Biochem Physiol 109, 503510 A.CrossRefGoogle ScholarPubMed
Anderson, RL & Wolf, WJ (1995) Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutr 125, 581S588S.Google ScholarPubMed
Andrieux, C, Gadelle, D, Leprince, C & Sacquet, E (1989) Effects of some poorly digestible carbohydrates on bile acid bacterial transformations in the rat. Br J Nutr 62, 103119.CrossRefGoogle ScholarPubMed
Beynen, AC, West, CE, Spaaij, CJK, Huisman, J, Van Leeuwen, P, Schutte, JB & Hackeng, WH (1990) Cholesterol metabolism, digestion rates and postprandial changes in serum of swine fed purified diets containing either casein or soybean protein. J Nutr 120, 422430.CrossRefGoogle ScholarPubMed
Carr, TP, Cornelison, RM, Illston, BJ, Stuefer-Powell, CL & Gallaher, DD (2002) Plant sterols alter bile acid metabolism and reduce cholesterol absorption in hamsters fed a beef-based diet. Nutr Res 22, 745754.CrossRefGoogle Scholar
Chevallier, F & Lutton, C (1973) The intestine is the major site of cholesterol synthesis in the rat. Nat New Biol 242, 6162.CrossRefGoogle ScholarPubMed
Costa, NMB, Low, AG, Walker, AF, Owen, RW & Englyst, HN (1994) Effect of baked beans ( Phaseolus vulgaris ) on steroid metabolism and non-starch polysaccharide output of hypercholesterolaemic pigs with or without an ileo-rectal anastomosis. Br J Nutr 71, 871886.CrossRefGoogle ScholarPubMed
Dietschy, JM & Wilson, JD (1970) Regulation of cholesterol metabolism. N Engl J Med 282, 11281138.CrossRefGoogle ScholarPubMed
Férézou, J, Riottot, M, Sérougne, C et al. (1997) Hypocholesterolemic action of β-cyclodextrin and its effects on cholesterol metabolism in pigs fed a cholesterol-enriched diet. J Lipid Res 38, 86100.CrossRefGoogle ScholarPubMed
Friedman, M & Brandon, D (2001) Nutritional and health benefits of soy proteins. J Agric Food Chem 49, 10691086.CrossRefGoogle ScholarPubMed
Fumagalli, R, Paoletti, R & Howard, AN (1978) Hypocholesterolaemic effect of soya. Life Sci 22, 947952.CrossRefGoogle ScholarPubMed
Green, SA (1988) A note on amino acid digestibility measured in pigs with pre- or post-valve ileo-rectal anastomoses, fed soyabean, pea and meat meals. Anim Prod 47, 317320.Google Scholar
Grundy, SM, Ahrens, EH & Miettinen, TA (1965) Quantitative isolation and gas liquid chromatography analysis of total fecal bile acids. J Lipid Res 6, 397410.CrossRefGoogle ScholarPubMed
Hakala, K, Vuoristo, M, Luukkonen, P, Jarvinen, HJ & Miettinen, TA (1997) Impaired absorption of cholesterol and bile acids in patients with an ileoanal anastomosis. Gut 41, 771777.CrossRefGoogle ScholarPubMed
Hara, H, Satoko, H, Yoritaka, A & Shuhachi, K (1999) Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129, 942948.CrossRefGoogle ScholarPubMed
Harper, JM (1978) Food extrusion. Crit Rev Food Sci Nutr 11, 155215.CrossRefGoogle ScholarPubMed
Hoffman, NE & Hofmann, AF (1977) Metabolism of steroid and amino acid moieties of conjugated bile acids in man. V. Equations for the perturbed enterohepatic circulation and their application. Gastroenterology 72, 141148.CrossRefGoogle Scholar
Kellogg, TF (1971) Microbiological aspects of enterohepatic neutral sterol and bile acid metabolism. Fed Proc 30, 18081814.Google ScholarPubMed
Khallou, J, Riottot, M, Parquet, M, Verneau, C & Lutton, C (1995) Antilithiasic and hypocholesterolemic effects of diets containing autoclaved amylomaize starch in hamster. Dig Dis Sci 40, 25402548.CrossRefGoogle ScholarPubMed
Kim, DN, Lee, KT, Reiner, JM & Thomas, WA (1980) Increased steroid excretion in swine fed high-fat, high-cholesterol diet with soy protein. Exp Mol Pathol 33, 2535.CrossRefGoogle ScholarPubMed
Kovanen, PT, Brown, MS & Goldstein, JL (1979) Increased binding of low density lipoprotein to liver membranes from rats treated with 17α-ethinyl estradiol. J Biol Chem 254, 1136711373.CrossRefGoogle Scholar
Levrat, MA, Favier, ML, Moundras, C, Remesy, C, Demigné, C & Morand, C (1994) Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effect of oligosaccharides in rats. J Nutr 124, 531538.CrossRefGoogle ScholarPubMed
Lichtenstein, AH (1998) Soy protein, isoflavones and cardiovascular disease risk. J Nutr 128, 15891592.CrossRefGoogle ScholarPubMed
Lindstedt, S (1957) The turnover of bile acids in the rat. Acta Physiol Scand 38, 121128.CrossRefGoogle Scholar
Loison, C, Mendy, F, Sérougne, C & Lutton, C (2002) Dietary myristic acid modifies the HDL-cholesterol concentration and liver scavenger receptor BI expression in the hamster. Br J Nutr 87, 199212.CrossRefGoogle ScholarPubMed
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 192, 265275.CrossRefGoogle Scholar
Lucas, EA, Khalil, DA, Daggy, BP & Arjmandi, BH (2001) Ethanol-extracted soy protein isolate does not modulate serum cholesterol in golden Syrian hamsters: a model of postmenopausal hypercholesterolemia. J Nutr 131, 211214.CrossRefGoogle ScholarPubMed
Marsh, A, Kim, DN, Lee, KT, Reiner, JM & Thomas, WA (1972) Cholesterol turnover, synthesis and retention in hypercholesterolemic growing swine. J Lipid Res 13, 600615.CrossRefGoogle ScholarPubMed
Morita, T, Oh-Hashi, A, Takei, K, Ikai, M, Kasaok, S & Kiriyama, S (1997) Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. J Nutr 127, 470477.CrossRefGoogle ScholarPubMed
Nagengast, FM, Grubben, MJA, Van Munster, IP (1995) Role of bile acids in colorectal carcinogenesis. Eur J Cancer 31, 10671070.CrossRefGoogle Scholar
Nakamura, M, Tanigichi, Y, Yamamoto, M, Hino, K & Manabe, M (1997) Homogenous assay of serum LDL-cholesterol on an automatic analyzer. Clin Chem 43, Suppl. 6, 718.Google Scholar
Nishimura, N, Nishikawa, H & Kiriyama, S (1993) Ileorectostomy or cecectomy but not colectomy abolishes the plasma cholesterol-lowering effect of dietary beet fiber in rats. J Nutr 123, 12601269.CrossRefGoogle Scholar
Noblet, J, Fortune, H, Dubois, S & Henry, Y (1989) Nouvelles Bases d'Estimation des Teneurs en Energie Digestible Metabolisable et Nette des Aliments pour le Porc. Paris, France: INRA.Google Scholar
Pandak, WM, Vlahcevic, ZR, Heuman, DM, Redford, KS, Chiang, JY & Hylemon, PB (1994) Effects of different bile salts on steady-state mRNA levels and transcriptional activity of cholesterol 7α-hydroxylase. Hepatology 19, 941947.CrossRefGoogle Scholar
Philipp, BW & Shapiro, DJ (1979) Improved method for the assay and activation of hydroxy-3-methylglutaryl CoA reductase. J Lipid Res 20, 588593.CrossRefGoogle Scholar
Potter, S (1995) Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J Nutr 125, 606S611S.Google ScholarPubMed
Riottot, M, Olivier, P, Huet, A, Caboche, JJ, Parquet, M, Khallou, J & Lutton, C (1993) Hypolipidemic effects of β-cyclodextrin in the hamster and in the genetically hypercholesterolemic Rico rat. Lipids 28, 181188.CrossRefGoogle ScholarPubMed
Roy, T, Treadwell, CR & Vahouny, GV (1978) Comparative intestinal and colonic absorption of [4-14C] cholesterol in the rat. Lipids 13, 99101.CrossRefGoogle ScholarPubMed
Sacquet, E, Leprince, C & Riottot, M (1983) Effect of amylomaize starch on cholesterol and bile acid metabolism in germ-free (axenic) and conventional (holoxenic) rats. Reprod Nutr Dev 23, 783792.CrossRefGoogle ScholarPubMed
Schiff, ER, Small, NC & Dietschy, JM (1972) Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 51, 13511362.CrossRefGoogle ScholarPubMed
Schneider, WJ, Beisiegel, U, Golstein, JL & Brown, MS (1982) Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. J Biol Chem 257, 26642673.CrossRefGoogle Scholar
Souidi, M, Parquet, M, Férézou, J & Lutton, C (1999) Modulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase activities by steroids and physiological conditions in the hamster liver. Life Sci 64, 15851593.CrossRefGoogle Scholar
Souidi, M, Parquet, M & Lutton, C (1998) Improved assay of hepatic microsomal cholesterol 7α-hydroxylase activity by the use of hydroxypropyl β-cyclodextrin and an NADPH-regenerating system. Clin Chim Acta 269, 201217.CrossRefGoogle Scholar
Spady, DK & Dietschy, JM (1983) Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster and rat. J Lipid Res 24, 303315.CrossRefGoogle Scholar
Strandberg, K, Sedvall, G, Midtvedt, T & Gustafsson, B (1966) Effect of some biologically active amines on the caecum wall of germfree rats. Proc Soc Exp Biol Med 121, 699702.CrossRefGoogle ScholarPubMed
Sugano, M, Goto, S, Yamada, Y, Yoshida, K, Hashimoto, Y, Matsuo, T & Kimoto, M (1990) Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J Nutr 120, 977985.CrossRefGoogle ScholarPubMed
Sugiuchi, H, Uji, Y, Okabe, H, Irie, T, Uekama, K, Kayahara, N & Miyauchi, K (1995) Direct measurement of high-density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulphated α-cyclodextrin. Clin Chem 41, 717723.CrossRefGoogle ScholarPubMed
Terpstra, AHM, Holmes, JC & Nicolosi, RJ (1991) The hypocholesterolemic effect of dietary soybean protein vs. casein in hamsters fed cholesterol-free or cholesterol-enriched semipurified diets. J Nutr 121, 944947.CrossRefGoogle ScholarPubMed
Turley, SD & Dietschy, JM (1978) Reevaluation of the 3α-hydroxysteroid dehydrogenase assay for total bile acids in bile. J Lipid Res 19, 924928.CrossRefGoogle Scholar
Turley, SD & Dietschy, JM (2003) Sterol absorption by the small intestine. Curr Opin Lipidol 14, 233240.CrossRefGoogle ScholarPubMed
Vitic, J & Stevanovic, J (1993) Comparative studies of the serum lipoproteins and lipids in some domestic, laboratory and wild animals. Comp Biochem Physiol 106B, 223229.Google Scholar
Yamasmita, H, Kuroki, S & Nakayama, F (1989) An assay of cholesterol 7α-hydroxylase utilizing a silica cartridge column and 5α-cholesten-3β,7β-diol as an internal standard. J Chromatogr 496, 255268.CrossRefGoogle Scholar