Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:09:19.430Z Has data issue: false hasContentIssue false

Dose dependence of breath hydrogen and methane in healthy volunteers after ingestion of a commercial disaccharide mixture, Palatinit®

Published online by Cambridge University Press:  09 March 2007

Martin Fritz
Affiliation:
Division of Experimental Dentistry, University of Würzburg, Pleicherwall 2, D–8700 Würzburg, West Germany
Günther Siebert
Affiliation:
Division of Experimental Dentistry, University of Würzburg, Pleicherwall 2, D–8700 Würzburg, West Germany
Heinrich Kasper
Affiliation:
Department of Internal Medicine, University of Würzburg, Josef-Schneider-Str. 2, D–8700 Würzburg, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Breath hydrogen and methane were determined by gas chromatography in eleven normal individuals given a low-fibre, mixed diet (control) and after ingestion of 20–50 g Palatinit®/d, an equimolar mixture of D-glucosyl-α(1 → 1)-D-mannitol and D-glucosyl-α(1 → 6)-D-glucitol (Isomalt®).

2. A linear relation was found (r 0.85; P < 0.001) between the amount of Palatinit ingested and breath H2 per 10 h in subjects who did not exhale methane. If methane was formed in addition to H2, the sum of both gases followed a linear dose-effect relation.

3. The mouth-to-caecum time, indicated by the first increase in breath H2, after ingestion, was shortened by about half, yet no sign of diarrhoea was observed. Stool weight and stool frequency did not change significantly.

4. The linear relation between a dose of 20–50 g Palatinit and exhalation of H2 (eventually plus methane) indicated that a relatively constant fraction of the dose given underwent cleavage and absorption in the small intestine, the remainder being transported into the large bowel. Microbial gas formation in the colon as well as the fractional transfer of these gases into the expiratory air occurred at fixed proportions, thus allowing an insight into colonic microbial contributions to carbohydrate utilization in the human large bowel.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Allen, A. (1981). In Physiology of the Gastrointestinal Tract, pp. 617639 [Johnson, L. R., editor]. New York: Raven Press.Google Scholar
Anderson, J. H., Levine, A. S. & Levitt, M. D. (1981). New England Journal of Medicine 304, 891892.CrossRefGoogle Scholar
Bjørneklett, A. & Jenssen, E. (1980). Scandinavian Journal of Gastroenterology 15, 817823.Google Scholar
Bjørneklett, A. & Jenssen, E. (1982). Scandinavian Journal of Gastroenterology 17, 985992.Google Scholar
Bond, J. H., Currier, B. E., Buchwald, H. & Levitt, M. D. (1980). Gastroenterology 78, 444447.Google Scholar
Bond, J. H., Engel, R. R. & Levitt, M. D. (1971). Journal of Experimental Medicine 133, 572588.Google Scholar
Bond, J. H. & Levitt, M. D. (1972). Journal of Clinical Investigation 51, 12191225.Google Scholar
Bond, J. H. & Levitt, M. D. (1975). Journal of Laboratory and Clinical Medicine 85, 546555.Google Scholar
Bond, J. H. & Levitt, M. D. (1977). American Journal of Digestive Diseases 22, 379382.Google Scholar
Bryant, M. P. (1979). Journal of Animal Science 48, 193201.Google Scholar
Calloway, D. H. & Murphy, E. L. (1968). Annals of the New York Academy of Sciences 150, 8295.Google Scholar
Caspary, W. F. (1978). Clinics in Gastroenterology, vol. 7, pp. 351374 [Russell, R. I., editor]. London: Saunders.Google Scholar
Cummings, J. H. (1981). Gut 22, 763779.Google Scholar
Cummings, J. H. (1983). Lancet i, 12061209.CrossRefGoogle Scholar
Cummings, J. H. (1984). Proceedings of the Nutrition Society 43, 3544.CrossRefGoogle Scholar
Doddema, H. J., von der Drift, C., Vogels, G. D. & Veenhuis, M. (1979). Journal of Bacteriology 140, 10811089.CrossRefGoogle Scholar
Feibusch, J. A. & Holt, P. R. (1982). Digestive Diseases and Sciences 27, 10951100.CrossRefGoogle Scholar
Gau, W., Kurz, J., Müller, K., Fischer, E., Steinle, G., Grupp, U. & Siebert, G. (1979). Zeitschrift für Lebensmittel-Untersuchung und -Forschung 168, 125130.CrossRefGoogle Scholar
Grupp, U. & Siebert, G. (1978). Research in Experimental Medicine (Berlin) 173, 261278.CrossRefGoogle Scholar
Hepner, G. W. (1978). Advances in Internal Medicine 23, 2545.Google Scholar
Hungate, R. E. (1984). Proceedings of the Nutrition Society 43, 111.Google Scholar
Hyams, I. S. (1983). Gastroenterology 84, 3033.Google Scholar
Kirchgessner, M. P., Zinner, P. M. & Roth, H. P. (1983). International Journal of Vitamin and Nutrition Research 53, 8693.Google Scholar
Kroneberg, H. G.et al. (1979). Cited by Food Additives and Contaminants Committee Report on the Review of Sweeteners in Food (FAC/REP/34). London: H.M. Stationery Office.Google Scholar
La Brooy, S. J., Male, P. J., Breavis, A. K. & Misiewicz, J. J. (1983). Gut 24, 893896.Google Scholar
Levine, A. S. & Levitt, M. D. (1981). Gastroenterology 80, 1209.Google Scholar
Levitt, M. D. (1968). New England Journal of Medicine 281, 122127.Google Scholar
Levitt, M. D., Berggren, T., Hastings, J. & Bond, H. J. (1974). Journal of Laboratory and Clinical Medicine 84, 163167.Google Scholar
Marthinsen, D. & Fleming, S. E. (1982). Journal of Nutrition 112, 11331143.Google Scholar
Miller, T. L. & Wolin, M. J. (1982). Archives of Microbiology 131, 1418.Google Scholar
Musch, K., Siebert, G., Schiweck, H. & Steinle, G. (1973). Zeitschrift für Ernährungswissenschaft 15, Suppl., 316.Google Scholar
Nottingham, P. M. & Hungate, R. E. (1968). Journal of Bacteriology 96, 21782179.Google Scholar
Paige, D. M. & Bayless, T. M. (1981). Lactose Digestion: Clinical and Nutritional Implications. Baltimore: Johns Hopkins University Press.Google Scholar
Paul, A. A. & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Foods, 4th ed. Amsterdam: Elsevier.Google Scholar
Perman, J. A. & Modler, S. (1982). Gastroenterology 83, 388393.CrossRefGoogle Scholar
Pitt, P., De Bruijn, K. M., Beeching, M. F., Goldberg, E. & Blendis, L. M. (1980). Gut 21, 951954.CrossRefGoogle Scholar
Ravich, W. J., Bayless, T. M. & Thomas, M. (1983). Gastroenterology 84, 2629.Google Scholar
Read, N. W., Miles, C. A., Fischer, D., Holgate, A. M., Kime, N. D., Mitchell, M. A., Reeve, A. M., Roche, T. B. & Walker, M. (1980). Gastroenterology 79, 12761282.Google Scholar
Saunders, D. R. & Wiggins, H. S. (1981). American Journal ofPhysiology 241, G397G402..Google Scholar
Schnell-Dompert, E. & Siebert, G. (1980). Hoppe-Seyler's Zeitschrift für Physiologische Chemie 361, 10691075.CrossRefGoogle Scholar
Tadesse, K. & Eastwood, M. A. (1978). British Journal of Nutrition 40, 393396.Google Scholar
Tadesse, K., Smith, A., Brydon, W. G. & Eastwood, M. A. (1979). Journal of Chromatography 171, 416418.CrossRefGoogle Scholar
Tadesse, K., Smith, D. & Eastwood, M. A. (1980). Quarterly Journal of Experimental Physiology 65, 8897.Google Scholar
Wiggins, H. S. (1984). Proceedings of the Nutrition Society 43, 6975.Google Scholar
Winter, J. U. & Wolfe, R. S. (1980). Archives of Microbiology 124, 7379.Google Scholar
Wolin, M. J. & Miller, T. L. (1983). In Human Intestinal Microflora in Health and Disease, pp. 147165 [Hentges, D. J., editor]. New York: Academic Press.Google Scholar
Ziesenitz, S. C. (1983). Zeitschrqt für Ernährungswissenschaft 22, 185194.Google Scholar