Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T12:46:02.715Z Has data issue: false hasContentIssue false

Consequences of reduced fibre intake on digestion, rate of passage and caecal microbial activity in the young rabbit

Published online by Cambridge University Press:  09 March 2007

R. Bellier
Affiliation:
Institut National de la Recherche Agronomique Station de Recherches Cunicoles BP 27, 31326 Castanet-Tolosan, France
T. Gidenne
Affiliation:
Institut National de la Recherche Agronomique Station de Recherches Cunicoles BP 27, 31326 Castanet-Tolosan, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work was undertaken to study in vivo fibre degradation, rate of passage and caecal fermentation activity (CFA) in the young rabbit (7 weeks old) receiving ad lib. a control (C) or a lowfibre (LF) diet (400 and 220 g neutral-detergent fibre (NDF)/kg respectively). As a consequence of the 50% reduction in the dietary fibre level, the voluntary food intake of the rabbits decreased by 25%, and the daily fibre intake was reduced by 60% (26·7 and 10·8 g NDF/d for groups C and LF, respectively).In spite of a longer mean retention time of the fibre particles, the quantity of fibre digested daily was significantly lower (P<0·01) for the LF than for the C group (4·0 and 7·8 g NDF/d respectively). The circadian distribution of the faecal excretion (as a percentage of the total DM output) did not differ between diets (P = 0·52) and no interaction was found (P = 0·96) between diet and time of excretion. Also, variables describing the CFA showed no interactions between diet (C or LF) and time of sampling (during caecotrophy or during hard faeces excretion). Our results indicated no direct relationship between the quantity of fibre digested and the total short-chain fatty acid concentration in the caecum, but the fermentation pattern indicated lower proportions of acetate for the LF diet. Higher levels of diaminopimelic acid (DAPA) and ATP were found for the LF diet associated with an improved dietary fibre digestibility, suggesting a higher microbial activity. However, this effect was balanced by a lower caecal digesta turnover rate and the microbial biomass output estimated through the faecal DAPA output did not vary significantly

Type
Effects of dietary fibre on gastrointestinal function
Copyright
Copyright © The Nutrition Society 1996

References

Bach Kundsen, K. E., Borg, J. B., Andersen, J. O. & Hansen, I. (1991). Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. British Journal of Nutrition 65, 233248.CrossRefGoogle Scholar
Bach Knudsen, K. E., Wolstrup, J. & Eggum, B. O. (1984). The nutritive value of botanically defined millfractions of barley. 4. The influence of hind-gut microflora in rats on digestibility of protein and energy of pericarp, testa, germ, aleuron and endosperm rich decortication fractions of the variety Bomi. Zeitschrift für Tierphysiologie, Tierernahrung und Futterrnittelkunde 52, 182193.Google Scholar
Bellier, R. (1994). Contrôle nutritionnel de l'activité fermentaire caecale (Nutritional control of the caecal fermentative activity in the rabbit). Thèse de Doctorat, Institut National Polytechnique, Ecole Nationale Supérieure d'Agronomie de Toulouse, France.Google Scholar
BellierR., R.,, GidenneT., T.,, Vernay, M. & Colin, M. (1995). In vivo study o circadian variations of the cecal fermentation pattern in post-weaned and adult rabbits. Journal of Animal Science 73, 128135.CrossRefGoogle Scholar
Carré, B. & Brillouet, J. M. (1989). Determination of water insoluble cell-walls in feeds: interlaboratory study. Journal of the Association of Official Analytical Chemists 72, 463467.Google Scholar
Champe, K. A. & Maurice, D. V. (1983). Response of early weaned rabbits to source and leve of dietry fiber. Journal of Animal Science 56, 11051114.Google Scholar
Erfle, J. D., Mahadevan, S. & Sauer, F. (1981). Relationship between adenylate energy charge, rumen volatile fatty acid concentrations, and rates of production and dry matter digestibility in the cow. Journal of Dairy Science 64, 634642.CrossRefGoogle Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastro-intestinal tract of ruminants. In Digestion and Metabolism in the Ruminant, pp. 227241 [ McDonald, I. W. and Warner, A. C. I., editors. ] Armidale: Uinversity of New England Publishing Unit.Google Scholar
Gallouin, F. (1983). Le comportement de caecotrophie chez la lapin (The behaviour of caecotrophy in the rabbit). Cuni-Sciences 1, 130.Google Scholar
Gidenne, T. (1986). Evolution nycthemerale des produits de la fermentation bacterienne dans le tube digestif dulapin en croissance. Relations avec la teneur en lignines de la ration (Circadian change of bacterial fermentation products in the digestive tract of the growing rabbit. Relationships with the dietary lignin content). Annales de Zootechnie 35, 121136.CrossRefGoogle Scholar
Gidenne, T. (1992). Effect of fibre level particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. British Journal of Nutrition 67 133146.Google Scholar
Gidenne, T. (1994). Effets d'une reduction de la teneur en fibres alimentaires sur le transit digestif du lapin. Comparaison et validation de modèles d'adjustement des cinétiques d'excretion fecale des marqueurs (Effect of a reduction in dietary fibre content on the rate of passage through the digestive tract of the rabbit. Comparison of models for the faecal kinetics of two markers). Reproduction Nutrition Developpement 34, 295306.CrossRefGoogle Scholar
Gidenne, T. &Bellier, R. (1992). Etude in vivo de l'activitè fermentaire caecale chezle lapin. Mise au point et validation d'une nouvelle technique de canulation caecale (In vivo study of caecal fermentation activity in the rabbit. Use and validation of a novel caecal cannulation technique). Reproduction Nutrition DPveloppement 32, 365376.Google Scholar
GidenneT., T.,, Scalabrini, F. & Marchais, C. (1991). Adaptation digestive du lapin à la teneur en consituants pariétaux du regime (Digestive adaptation of the rabbit to the level of the dietary fibre). Annales de Zootechnie 40, 7384.CrossRefGoogle Scholar
Goodlad, J. S. & Mathess, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisum sativum). British Journal of Nutrition 64, 569587.Google Scholar
Grigorov, I. (1989). Effect of the amount of crude fiber on digestibility of mixed feed and nitrogen balance in rabbits. Zhivotnov'dni Nauki 26, 5761.Google Scholar
Herrman, A. (1990). Parameters of microbial activity in the gastrointestinal tract of weaned rabbits dependent on crude fibre and starch content of feeds. 7. Arbeitstargung über Haltung und Krankheiten der Kaninchen, Peltztire und Heimtiere, pp. 103112. 31 May-1 June, Celle, Giessen, Germany.Google Scholar
Hirs, C. H. W.., Stein, H. H. & Moore, S. (1954). The amino acid composition of ribonuclease. Journal of Biological Chemistry 211, 941950.CrossRefGoogle ScholarPubMed
HörnickeH., H.,, RuoffG., G.,, VogtB., B.,, Clauss, W. & Ehrlein, H. J. (1984). Phase relationship of the circadian rhythms of feed intake, caecal motility and production of soft and hard faeces in domestic rabbits. Laboratory Animal 18, 169172.Google Scholar
Jouany, J. P. (1982). Dosage des acides gras volatils (A.G.V.) et des alcools, dans les contenus digestifs, les jusd'ensilage, les cultures bactérienne et les contenus de fermenteurs anaerobies (Analysis of volatile fatty acids and alcohols in digestive contents, silage juice, bacterial culture and the contents of anaerobic fermenters). Sciences des Aliments 2, 131144.Google Scholar
KomisarczukS., S.,, DurandM., M.,, & Hannequart, G. (1984). ATP measurement in sheep rumen digesta using dimethyl sulfoxide as an extraction reagent. Reproduction Nutrition DPveloppement 24, 903913.Google Scholar
Lebas, F. & Laplace, J. P. (1974). Note: sur l'excretion fecale chezle lapin (Note: on faecal excretion in the rabbit). Annales de Zootechnie 23, 577581.Google Scholar
Leng, E. & Hörnicke, H. (1975). Tagesrhytmische Unterschiede in der Zusammensetzung das Blindarminhalts von Kaninchen (Circadian rhythm in the composition of caecal contents in the rabbit). Zietschrift fur Versuchstier Keit 17, 285299.Google Scholar
LesaultA., A.,, Elchinger, B. & Desbals, B. (1991). Circadian rhythms of food intake, plasma glucose and insulin level in fed and fasted rabbits. Hormone and Metabolic Research 23, 515516.Google Scholar
McElroy, W. D. (1947). The energy source for bioluminescence in an isolated system. Proceedings of the National Academy of Sciences USA 33, 342345.Google Scholar
McKay, L. & Eastwood, M. A. (1983). The influence of dietary fibre on caecal metabolism in the rat. British Journal of Nutrition 50, 679684.Google Scholar
Mathers, J. C. & Fotso Tagny, J. M. (1994). Diurnal changes in large bowel metabolism: short-chain fatty acids and transit time in rats fed on wheat bran. British Journal of Nutrition 71, 209222.Google Scholar
PartridgeG. G., G. G.,, Garthwaite, P. H. & Findlay, M. (1989). Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. Journal of Agricultural Science 112, 171178.Google Scholar
Peeters, J. E. & Maertens, L. (1988). L'alirnentation et les entérites post-sevrage (Feeding and post-weaning enteritis). Cuniculture 83, 224229.Google Scholar
Prud'honM., M.,, CarlesY., Y.,, Goussopoulos, J. & Koehl, P. F. (1972). Enregistrement graphique des consommations d'aliments solide et liquide du lapin domestique (Automatic graph recording of the solid and liquid feed intake in ad libitum fed domestic rabbits). Annales de Zootechnie 21, 451460.Google Scholar
RowanA. M., A. M.,, Moughan, P. J. & Wilson, M. N. (1992). The flows of desoxyribonucleic acid and diaminopimelic acid and the digestibility of dietary fibre components at the terminal ileum, as indicators of microbial activity in the upper digestive tract of ileostomised pigs. Animal Feed Science and Technology 36, 129141.Google Scholar
Statistical Analysis Systems (1988). SAS/STAT Guide for Personal Computers, verson 6.03. Cary, NC SAS Institute Inc.Google Scholar
Van SoestP. J., P. J.,, Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Vernay, M. (1987). Origin and utilization of volatile fatty acids and lactate in the rabbit: influence of the faecal excretion pattern. British Journal of Nutrition 57, 371381.CrossRefGoogle ScholarPubMed
WalterD. J., D. J.,, EastwoodM. A., M. A.,, Brydon, W. G. & Elton,, R. A. (1988). Fermentation of wheat bran and gumarabic in rats fed on an elemental diet. British Journal ofNutrition 60, 225232.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 911974.CrossRefGoogle Scholar
Yu, B. & Chiou, W. S. (1992). Effect of dietary fiber on the VFA production and absorption in the domestic rabbit's hindgut. Journal of the Chinese Society of Animal Science 21, 2935.Google Scholar