Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T21:02:10.223Z Has data issue: false hasContentIssue false

Chromium supplementation in impaired glucose tolerance of elderly: effects on blood glucose, plasma insulin, C-peptide and lipid levels

Published online by Cambridge University Press:  09 March 2007

Matti I. J. Uusitupa
Affiliation:
Department of Clinical NutritionUniversity of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Leena Mykkänen
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Onni Siitonen
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Markku Laakso
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Helena Sarlund
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Päivi Kolehmainen
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Tiina Räsänen
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Jorma Kumpulainen
Affiliation:
Central Laboratory, Agricultural Research Centre of Finland, Jokioinen, Finland
Kalevi Pyörälä
Affiliation:
Department of Medicine, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Altogether twenty-six elderly subjects (aged 65–74 years) with persistent impaired glucose tolerance (World Health Organization (1985) criteria) identified in a population-based study, were randomly treated either with chromium-rich yeast (160 μg Cr/d) or with placebo for 6 months. The 24 h urinary Cr increased from 0.13 (se 0.03) to 0.40 (se 0.06) μg/d in the Cr group (n 13) but no change was found in the placebo group (n 11) (0.13 (se 0.02) v. 0.11 (se 0.02) μg/d). No significant change was observed in the oral glucose tolerance test (glucose dose 75 g; 0, 1 and 2 h blood glucose respectively): 5.3 (se 0.1), 9.3 (se 0.3), 8.2 (se 0.3) mmol/l v. 5.0 (se 0.1), 8.5 (se 0.4), 7.3 (se 0.5) mmol/l in the Cr group; 4.9 (se 0.2), 9.2 (se 0.6), 8.1 (se 0.3) mmol/l v. 4.8 (se 0.2), 8.5 (se 0.5), 7.0 (se 0.6) mmol/l in the placebo group (baseline v. 6 months). Glycosylated haemoglobin, plasma insulin, C-peptide and apolipoprotein Al and B levels remained unchanged, and no improvement was seen in serum total cholesterol (6.2 (se 0.3) v. 6.4 (se 0.3) mmol/l for the Cr group, 6.2 (se 0.4) v. 6.5 (se 0.3) mmol/l for the placebo group), high-density-lipoprotein-cholesterol (1.1 (se 0.1) v. 1.2 (se 0.1) mmol/l for the Cr group, 1.0 (se 0.1) v. 1.1 (se 0.1) mmol/l for the placebo group) or triacylglycerols (2.5 (se 0.4) v. 2.0 (se 0.4) mmol/l for the Cr group, 2.4 (se 0.2) v. 2.5 (se 0.2) mmol/l for the placebo group). The present results indicate that Cr supplementation does not improve glucose tolerance or serum lipid levels in elderly subjects with stable impaired glucose tolerance.

Type
Chromium and Carbohydrate Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Anderson, R. A. (1981). Nutritional role of chromium. Science of the Total Environment 17, 1329.CrossRefGoogle ScholarPubMed
Anderson, R. A., Polansky, M. M., Bryden, N. A., Roginski, E. E., Mertz, W. & Glinsman, W. H. (1983). Chromium supplementation of human subjects: effects on glucose, insulin and lipid variables. Metabolism 32, 894899.CrossRefGoogle ScholarPubMed
Avogaro, P., Bon, G. B., Cazzolato, G. & Quinci, G. B. (1979). Are apolipoproteins better discriminators than lipids for atherosclerosis? Lancet i, 901903.CrossRefGoogle Scholar
Brown, R. O., Forloines-Lynn, S., Cross, R. E. & Heizer, W. D. (1986). Chromium deficiency after long-term total parenteral nutrition. Digestive Diseases and Sciences 31, 661664.CrossRefGoogle ScholarPubMed
De Fronzo, R. A. (1981). Glucose tolerance and aging. Diabetes Care 4, 493501.CrossRefGoogle ScholarPubMed
Doisy, R. J., Streeten, D. H. P., Freiberg, T. M. & Schneider, A. J. (1976). Chromium metabolism in man and biological effects. In Trace Elements in Human Health and Disease, vol. 2, pp. 79104 [Prasad, A. S. and Oberleas, D., editors]. New York: Academic Press.Google Scholar
Donaldson, D. L., Lee, D. E., Smith, C. C. & Rennert, O. M. (1985). Glucose tolerance and plasma lipid distributions in rats fed on a high sucrose, high cholesterol, low Cr diet. Metabolism 34, 10861093.CrossRefGoogle Scholar
Freund, H., Atamiam, S. & Fischer, J. E. (1979). Chromium deficiency during total parenteral nutrition. Journal of the American Medical Association 241, 496498.CrossRefGoogle ScholarPubMed
Fruchart, J. C., Kora, I., Cachera, C., Clavey, V., Duthilleul, P. & Moschetto, Y. (1982). Simultaneous measurement of plasma apolipoproteins A I and B by electroimmunoassay. Clinical Chemistry 28, 5962.CrossRefGoogle Scholar
Glinsman, W. H. & Mertz, W. (1966). Effect of trivalent chromium on glucose tolerance. Metabolism 15, 510520.CrossRefGoogle Scholar
Jeejeebhoy, K. N., Chu, R. C., Marliss, E. B., Greenberg, G. R. & Bruce-Robertson, A. (1977). Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long term parenteral nutrition. American Journal of Clinical Nutrition 30, 531538.CrossRefGoogle Scholar
Kumpulainen, J., Lehto, J., Uusitupa, M., Vuori, E. & Koivistoinen, P. (1983). Determination of chromium in human milk, serum and urine by electrothermal atomic absorption spectrometry without preliminary ashing. Science of the Total Environment 31, 7180.CrossRefGoogle ScholarPubMed
Kumpulainen, J., Vuori, E., Mäkinen, S. & Kara, R. (1980). Dietary chromium intake of lactating Finnish mothers: effect on the Cr content of their breast milk. British Journal of Nutrition 44, 257263.CrossRefGoogle ScholarPubMed
Levine, R. A., Streeten, H. P. & Doisy, R. J. (1968). Effects of oral chromium supplementation on the glucose tolerance of elderly subjects. Metabolism 17, 114125.CrossRefGoogle Scholar
Mertz, W. (1979). Chromium -an overview. In Chromium in Nutrition and Metabolism, pp. 114 [Shapcott, D. and Hubert, J., editors]. Amsterdam: Elsevier/North-Holland Biochemical Press.Google Scholar
Mykkänen, L., Laakso, M., Uusitupa, M. & Pyörälä, K. (1989). Prevalence of impaired glucose tolerance and diabetes in elderly patients in East Finland. Contribution of overall and central obesity and family history of diabetes. Diabetologia 32, 520A.Google Scholar
National Research Council (1989). Recommended Dietary Allowances, 10th ed. Washington, DC: National Academy of Sciences.Google Scholar
Offenbacher, E. G. & Pi-Sunyer, F. X. (1980). Beneficial effects of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects. Diabetes 29, 919925.CrossRefGoogle ScholarPubMed
Offenbacher, E. G. & Pi-Sunyer, F. X. (1988). Chromium in human nutrition. Annual Review of Nutrition 8, 543563.CrossRefGoogle ScholarPubMed
Offenbacher, E. G., Rinko, C. J. & Pi-Sunyer, F. X. (1985). The effects of inorganic chromium and brewer's yeast on glucose tolerance, plasma lipids, and plasma chromium in elderly subjects. American Journal of Clinical Nutrition 42, 454461.CrossRefGoogle ScholarPubMed
Rabinowitz, M. B., Gonick, H. C., Levin, S. R. & Davidson, M. D. (1983). Effects of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Diabetes Care 6, 319327.CrossRefGoogle ScholarPubMed
Riales, R. & Albrink, M. J. (1981). Effects of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men. American Journal of Clinical Nutrition 34, 26702678.CrossRefGoogle ScholarPubMed
Röschlau, P., Bernt, E. & Gruber, W. (1974). Enzymatische Bestimmung des Gesamt-Cholesterins in Serum. Zeitschrift für Klinische Chemie Klinische Biochemie 12, 403407.Google ScholarPubMed
Schwarz, K. & Mertz, W. (1959). Chromium III and the glucose tolerance factor. Archives of Biochemistry and Biophysics 85, 292295.CrossRefGoogle ScholarPubMed
Sherman, L., Glennon, J. A., Brech, W. J., Klomberg, G. H. & Gordon, E. S. (1968). Failure of trivalent chromium to improve hyperglycemia in diabetes mellitus. Metabolism 17, 439442.CrossRefGoogle ScholarPubMed
Uusitupa, M., Kumpulainen, J., Voutilainen, E., Hersio, K., Sarlund, H., Pyörälä, K., Koivistoinen, P. & Lehto, J. (1983). Effect of inorganic chromium supplementation on glucose tolerance, insulin response, and serum lipids in non-insulin-dependent diabetics. Amercican Journal of Clinical Nutrition 38, 404410.CrossRefGoogle Scholar
Varo, P. & Koivistoinen, P. (1980). General discussion and nutritional evaluations. In [Koivistoinen, P., editor]. Mineral Element Composition of Finnish Foods. Acta Agricola Scandinavica Suppl. 22, 165171.Google Scholar
Versieck, J., Vanballenberghe, L., de Kasel, A., Hoste, J., Wallaeys, B., Vandenhaute, J., Baeck, W., Steyaert, H., Byrne, A. R. & Sunderman, F. Jr (1988). Certification of a second-generation biological reference material (Freeze-dried human serum) for trace element determinations. Analytica Chimica Acta 204, 6375.CrossRefGoogle Scholar
Vuori, E. & Kumpulainen, J. (1987). A new low level of chromium in human liver and spleen. Trace Elements in Medicine 4, 8891.Google Scholar
Wahlefeld, A. W. (1974). Triglycerides. Determination after enzymatic hydrolysis. In Methods in Enzymatic Analysis, pp. 18311835, [Bergmeyer, H. U., editor]. New York: Academic Press.CrossRefGoogle Scholar
World Health Organization (1985). Diabetes Mellitus. Report of a WHO Study Group. Technical Report Series no. 727. Geneva: WHO.Google Scholar