Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T07:48:03.291Z Has data issue: false hasContentIssue false

Rapid growth of the Bar-headed Goose Anser indicus wintering population in Tibet, China: 1991–2017

Published online by Cambridge University Press:  28 July 2021

MARY ANNE BISHOP*
Affiliation:
International Crane Foundation, Baraboo, WI, USA. Prince William Sound Science Center, Cordova, AK, USA.
DONGPING LIU*
Affiliation:
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, PRC.
GUOGANG ZHANG*
Affiliation:
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, PRC.
DROLMA TSAMCHU
Affiliation:
Tibet Plateau Institute of Biology, Lhasa, Tibet, PRC.
LE YANG
Affiliation:
Tibet Plateau Institute of Biology, Lhasa, Tibet, PRC. present address: Beijing Forestry University, Beijing, PRC.
FAWEN QIAN
Affiliation:
Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, PRC.
FENGSHAN LI
Affiliation:
International Crane Foundation, Baraboo, WI, USA.
*
*Authors for correspondence; emails: mbishop@pwssc.org; dpliu@caf.ac.cn; zm7672@126.com
*Authors for correspondence; emails: mbishop@pwssc.org; dpliu@caf.ac.cn; zm7672@126.com
*Authors for correspondence; emails: mbishop@pwssc.org; dpliu@caf.ac.cn; zm7672@126.com

Summary

Four of China’s six wintering populations of “grey” geese Anser spp. declined during the last decade. In contrast, the Bar-headed Goose A. indicus wintering population in China’s Tibet Autonomous Region more than doubled. During six surveys in Tibet over a 27-year period (1991/92 to 2017/18 winters) we documented an annual growth rate of 6.8% in the Bar-headed Goose population – an increase from approximately 10,100 to 68,100 birds. We propose that in addition to the cessation of hunting, the population growth of Bar-headed Goose is being driven by changes in agricultural land use patterns in Tibet, the establishment of protected areas on the wintering and breeding grounds, and the impacts of climate change across the Tibetan Plateau. Consistent with this hypothesis, the sown area of winter wheat in Tibet has increased and geese have shifted from primarily feeding in crop stubble to planted winter wheat fields. We also found that the most rapid population growth coincided with a 1998 climate regime shift across the Tibetan Plateau resulting in warmer temperatures, an increase in net precipitation, the appearance of new lakes and changes in the water levels and surface area of historical lakes. We suggest that warmer temperatures and high-quality forage on the south-central Tibet wintering grounds may be enhancing over-winter survival, while on the breeding grounds the expansion of lakes and wet meadows is augmenting breeding and brood-rearing habitat.

Type
Research Article
Copyright
© International Crane Foundation and Prince William Sound Science Center, National Bird Banding Center and the Tibet Plateau Institute of Biology 2021. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batbayar, N., Takekawa, J. Y., Natsagdorj, T., Spragens, K. A. and Xiao, X. (2014) Site selection and nest survival of the Bar-headed Goose (Anser indicus) on the Mongolian Plateau. Waterbirds 37: 381393.CrossRefGoogle Scholar
Batbayar, N. (2013) Breeding and migration ecology of Bar-headed Goose Anser indicus and Swan Goose Anser cygnoides in Asia. Ph.D. diss. Univ. Oklahoma, Norman, Oklahoma.Google Scholar
Bishop, M. A. and Tsamchu, D. (2005) History and influence of a nature reserve on a local population of wintering Black-necked Cranes in Tibet. Pp. 155160 in Wang, Q. and Li, F., eds., Crane research in China. Kunming, China: Yunnan Nationalities Publishing House.Google Scholar
Bishop, M. A., Yanling, S., Zhouma, C. and Binyuan, G. (1997) Bar-headed Geese Anser indicus wintering in south-central Tibet. Wildfowl 48: 118126.Google Scholar
Bishop, M. A., Zhouma, C., Yanling, S., Harkness, J. and Binyuan, G. (1998) Winter habitat use by Black-necked Cranes Grus nigricollis in Tibet. Wildfowl 49: 228241.Google Scholar
Brown, C. and Waldron, S. (2013) Agrarian change, agricultural modernization and the modelling of agricultural households in Tibet. Agr. Syst. 115: 8394.CrossRefGoogle Scholar
Buner, F., Dhadwal, D. S., Ranganathan, L., Dhiman, S., Hoare, D., and Walker, T. (2016) Pioneering bird-ringing capacity-building at Nagrota Surian, Pong Dam Lake Wildlife Sanctuary, Himachal Pradesh, India. Birding ASIA 26: 5964Google Scholar
Bureau of Statistics of Tibet Autonomous Region (2019) Tibet Statistical Yearbook 2019. Beijing, China: China Statistical Press.Google Scholar
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J. and Kang, X. et. al. (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai‐Tibetan Plateau. Global Change Biol. 19: 29402955.CrossRefGoogle ScholarPubMed
Chu, D., Zhang, Y., Bianba, C. and Liu, L. (2010) Land use dynamics in Lhasa area, Tibetan Plateau. J. Geogr. Sci. 20: 899912.CrossRefGoogle Scholar
Dickey, M. H., Gauthier, G., and Cadieux, M. C. (2008) Climatic effects on the breeding phenology and reproductive success of an arctic‐nesting goose species. Global Change Biol. 14: 19731985.CrossRefGoogle Scholar
Dikötter, F. (2011) Mao’s great famine. New York, USA: Bloomsbury USA.Google Scholar
Farrington, J. D. (2016) A survey of the autumn 2009 and spring 2010 bird migrations at Lhasa, Tibet Autonomous Region, China. Forktail 32: 1425.Google Scholar
Feare, C. J., Kato, T. and Thomas, R. (2010) Captive rearing and release of Bar-headed Geese (Anser indicus) in China: a possible HPAI H5N1 virus infection route to wild birds. J. Wildlife Dis. 46: 13401342.CrossRefGoogle ScholarPubMed
Forestry Administration of Tibet Autonomous Region (2004) Life on the world roof - forestry ecology in Tibet, China. Beijing, China: Encyclopedia of China Publishing HouseGoogle Scholar
Fox, A. D. and Abraham, K. F. (2017) Why geese benefit from the transition from natural vegetation to agriculture. Ambio 46: 188197.CrossRefGoogle Scholar
Fox, A. D. and Leafloor, J. O. (2018) A global audit of the status and trends of Arctic and Northern Hemisphere goose populations. Akureyri, Iceland: CAFF International Secretariat.Google Scholar
Fox, A. D. and Madsen, J. (2017) Threatened species to super-abundance: the unexpected international implications of successful goose conservation. Ambio 46: 179187CrossRefGoogle ScholarPubMed
International Crane Foundation and Tibet Plateau Institute of Biology (2010) Wintering ecology of Black-necked Cranes in the area around the Xietongmen Copper Mine Project, October 2009-April 2010. Final Report to Continental Minerals Corporation. Unpublished.Google Scholar
Lang, A., Bishop, M. A. and Le Sueur, A. (2007) An annotated list of birds wintering in the Lhasa river watershed and Yamzho Yumco, Tibet Autonomous Region, China. Forktail 23: 111.Google Scholar
Layton‐Matthews, K., Hansen, B. B., Grøtan, V., Fuglei, E. and Loonen, M. J. (2020) Contrasting consequences of climate change for migratory geese: Predation, density dependence and carryover effects offset benefits of high‐arctic warming. Global Change Biol. 26 : 642657.CrossRefGoogle ScholarPubMed
Lei, Y. and Yang, K. (2017) The cause of rapid lake expansion in the Tibetan Plateau: climate wetting or warming? Wires. Water 4(6): e1236.Google Scholar
Li, B., Zhou, W., Zhao, Y., Ju, Q., Yu, Z., Liang, Z. and Acharya, K. (2015) Using the SPEI to assess recent climate change in the Yarlung Zangbo River Basin, South Tibet. Water 7: 54745486.CrossRefGoogle Scholar
Li, C., Tang, Y., Luo, H., Di, B. and Zhang, L. (2013) Local farmers’ perceptions of climate change and local adaptive strategies: a case study from the Middle Yarlung Zangbo River Valley, Tibet, China. Environ. Manage. 52: 894906.CrossRefGoogle ScholarPubMed
Li, P. J. (2007) Enforcing wildlife protection in China: the legislative and political solutions. China Inform. 21: 71107.CrossRefGoogle Scholar
Li, S., Wang, Z. and Zhang, Y. (2017) Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900-2000. J. Geogr. Sci. 27: 786800.CrossRefGoogle Scholar
Liu, D., Zhang, G., Li, F., Ma, T., Lu, J. and Qian, F. (2017) A revised species population estimate for the Bar-headed Goose (Anser indicus). Avian Res. 8: 7.CrossRefGoogle Scholar
Lu, J. J. (1993) The utilisation of migratory waterfowl in China. Pp. 9092 in Moser, M. and Prentice, C., eds. Waterfowl and wetlands conservation in the 1990s: a global perspective. Slimbridge, UK: International Wetlands Research Bureau. (IWRB Special Publication No. 26).Google Scholar
Luo, H. D., Wan, L. X., Ma, Y. R., Yang, J. C., Se, Y. J. and Jia, Y. Y. (2020) Nest-site selection of Bar-headed Goose (Anser indicus) in Yanchi Bay, Gansu. Chi. J. Zool. 55: 277288. (In Chinese).Google Scholar
MaMing, R., Zhang, T., Blank, D., Ding, D. and Zhao, X. (2012) Geese and ducks killed by poison and analysis of the extent of poaching cases in China. Goose Bull. 15: 211.Google Scholar
Mao, D., Wang, Z., Yang, H., Li, H., Thompson, J. R., Li, L., Song, K., Chen, B., Gao, H. and Wu, J. (2018) Impacts of climate change on Tibetan lakes: patterns and processes. Remote Sens. 10: 358.CrossRefGoogle Scholar
Miyabayashi, Y. and Mundkur, T. (1999) Atlas of key sites for Anatidae in the East Asian Flyway. Tokyo, Japan: Wetlands International.Google Scholar
National Oceanic and Atmosphere Administration (NOAA) (2020) National Centers for Environmental Information, Climate at a glance: Global time series, published August 2020; retrieved on August 22, 2020 from https://www.ncdc.noaa.gov/cag/).Google Scholar
Paltridge, N., Tao, J., Unkovich, M., Bonamano, A., Gason, A., Grover, S., Wilkins, J., Tashi, N. and Coventry, D. (2009) Agriculture in central Tibet: an assessment of climate, farming systems, and strategies to boost production. Crop Pasture Sci. 60: 627639.CrossRefGoogle Scholar
Pandey, S. (1993) Changes in waterbird diversity due to construction of Pong Dam reservoir, Himachal Pradesh. Biol. Conserv. 66: 125130.CrossRefGoogle Scholar
Prosser, D. J., Cui, P., Takekawa, J. Y., Tang, M., Hou, Y., Collins, B. M., Yan, B., Hill, N. J., Li, T., Li, Y. and Lei, F. (2011) Wild bird migration across the Qinghai-Tibetan plateau: a transmission route for highly pathogenic H5N1. PLoS One 6: e17622.CrossRefGoogle ScholarPubMed
Richardson, H. E. (1962) A short history of Tibet. New York, USA: Dutton.Google Scholar
Ryavec, K. E. (2001) Land use/cover change in central Tibet, c. 1830-1990: devising a GIS methodology to study a historical Tibetan land decree. Geogr. J. 167: 342357.CrossRefGoogle Scholar
Tao, S., Fang, J., Zhao, X., Zhao, S., Shen, H., Hu, H., Tang, Z., Wang, Z. and Guo, Q. (2015) Rapid loss of lakes on the Mongolian Plateau. P. Natl. Acad. Sci. USA 112: 22812286.CrossRefGoogle ScholarPubMed
Takekawa, J. Y., Heath, S. R., Douglas, D. C., Perry, W. M., Javed, S., Newman, S. H., Suwal, R. N., Rahmani, A. R., Choudhury, B. C., Prosser, D. J. and Yan, B. et al. (2013) Geographic variation in Bar-headed Geese Anser indicus: connectivity of wintering areas and breeding grounds across a broad front. Wildfowl 59: 100123.Google Scholar
Takekawa, J. Y., Palm, E. C., Prosser, D. J., Hawkes, L. A., Batbayar, N., Balachandran, S., Luo, Z., Xiao, X. and Newman, S. H. (2017) Goose migration across the Himalayas: migratory routes and movement patterns of Bar-headed Geese. Pp. 1529 in Prins, H. H. and Namgail, T., eds. Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
van Oudenhove, L., Gauthier, G. and Lebreton, J. D. (2014) Year‐round effects of climate on demographic parameters of an arctic‐nesting goose species. J. Anim. Ecol. 83: 13221333.CrossRefGoogle ScholarPubMed
Waddell, L. A. (1905) Lhasa and its mysteries: With a record of the expedition of 1903-1904. Reprinted 1988. Mineola New York USA: Dover Publications.Google Scholar
Wan, W., Long, D., Hong, Y., Ma, Y., Yuan, Y., Xiao, P., Duan, H., Han, Z. and Gu, X. (2016) A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data 3: p.160039.CrossRefGoogle ScholarPubMed
Wang, G., Bai, W., Li, N. and Hu, H. (2011) Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Climatic Change 106: 463482.CrossRefGoogle Scholar
Xing, Y., Jiang, Q., Qiao, Z. and Li, W. (2010) Analysis of the wetland environment change in Qinghai-Tibet Plateau using remote sensing. Pp. 14 in 2010 4th International Conference on Bioinformatics and Biomedical Engineering. IEEE.CrossRefGoogle Scholar
Xue, Z., Lyu, X., Chen, Z., Zhang, Z., Jiang, M., Zhang, K. and Lyu, Y. (2018) Spatial and temporal changes of wetlands on the Qinghai-Tibetan Plateau from the 1970s to 2010ss. Chi. Geogr. Sci. 28: 935945.CrossRefGoogle Scholar
Yang, F. (2005) Report on a three year survey of Black-necked Crane and large-sized waterbirds on the Yunnan and Guizhou Plateau. Pp. 5964 in Li, F., Yang, X. and Yang, F., eds. Status and conservation of Black-necked Cranes on the Yunnan and Guizhou Plateau, People’s Republic of China. Kunming: Yunnan Nationality Publishing House (in Chinese).Google Scholar
Yang, F. and Zhang, Y. (2014) Quantities and distributions of the Black-necked Crane (Grus nigricollis) and other large waterfowls on the Yunnan and Guizhou Plateau. Zool. Res. 35: 8084Google Scholar
Yeh, E. T. (2003) Taming the Tibetan landscape: Chinese development and the transformation of agriculture. Ph.D. diss. University of California, Berkeley, California USA.Google Scholar
Yeh, E. T. (2009) From wasteland to wetland? Nature and nation in China’s Tibet. Environ. Hist. 14: 103137.CrossRefGoogle Scholar
You, Q., Kang, S., Wu, Y. and Yan, Y. (2007) Climate change over the Yarlung Zangbo river basin during 1961-2005. J. Geogr. Sci. 17: 409420.CrossRefGoogle Scholar
Zeng, Q., Zhang, Y., Wen, L., Li, Z., Duo, H. and Lei, G. (2017) Productivity benefits of warming at regional scale could be offset by detrimental impacts on site level hydrology. Sci. Rep. 7: 15144.CrossRefGoogle ScholarPubMed
Zeng, X., Long, H., Wang, Z., Zhao, S., Tang, Y., Huang, Z., Wang, Y., Xu, Q., Mao, L., Deng, G. and Yao, X. et al. (2015) The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. P. Natl. Acad. Sci. USA 112: 10951100.CrossRefGoogle Scholar
Zhang, G., Dong, J., Zhou, C., Xu, X., Wang, M., Ouyang, H. and Xiao, X. (2013) Increasing cropping intensity in response to climate warming in Tibetan Plateau, China. Field Crop Res. 142: 3646.CrossRefGoogle Scholar
Zhang, G., Liu, D., Hou, Y., Jiang, H. X., Dai, M., Qian, F., Lu, J., Xing, Z. and Li, F. (2011) Migration routes and stop-over sites determined with satellite tracking of bar-headed geese Anser indicus breeding at Qinghai Lake, China. Waterbirds 34: 112116.Google Scholar
Zhang, G., Liu, D., Li, F., Qian, F., Ma, T., Dan, D. and Lu, J. (2014) Species and populations of waterbirds wintering in the Yarlung Zangbo and its tributaries in Tibet, China. Zool. Res. 35(S1): 92100.Google Scholar
Zhang, G., Liu, D., Jiang, H., Zhang, K., Zhao, H., Kang, Ai., Liang, H. and Qian, F. (2015) Abundance and conservation of waterbirds breeding on the Changtang Plateau, Tibet Autonomous Region, China. Waterbirds 38: 1929.Google Scholar
Zhang, G., Yao, T., Piao, S., Bolch, T., Xie, H., Chen, D., Gao, Y., O’Reilly, C.M., Shum, C. K., Yang, K. and Yi, S. et al. (2017) Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 44 : 252260.CrossRefGoogle Scholar
Zhang, T., Ma, M., Ding, P., Xu, F., Li, W., Zhang, X., and Zhang, H. (2012) Population ecology and current status of Bar-headed Goose (Anser indicus) in autumn at the Altun Mountain Natural Reserve, Xinjiang, China. Goose Bull. 14: 2734.Google Scholar
Zhang, Y., Wang, C., Bai, W., Wang, Z., Tu, Y. and Yangjaen, D. G. (2010) Alpine wetlands in the Lhasa River Basin, China. J. Geogr. Sci. 20 : 375388.CrossRefGoogle Scholar
Zhang, Y. N., Hao, M. Y., Lei, F. M., Xing, Z., Hou, Y. S., and Luo, Z. (2009) Simulation of population dynamics of Bar-headed Geese (Anser indicus) around Qinghai Lake region and trend analysis. Zool. Res. 30: 578584.CrossRefGoogle Scholar
Zheng, C., Chen, C., Zhang, X., Song, Z., Deng, A., Zhang, B., Wang, L., Mao, N. and Zhang, W. (2016) Actual impacts of global warming on winter wheat yield in Eastern Himalayas. Int. J. Plant Prod. 10: 159174.Google Scholar
Zöckler, C. (2018) Status and trends of wintering Bar-headed Geese Anser indicus in Myanmar. Goose Bull. 23: 15-23Google Scholar
Supplementary material: File

Bishop et al. supplementary material

Bishop et al. supplementary material

Download Bishop et al. supplementary material(File)
File 19.9 KB