Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T23:41:25.421Z Has data issue: false hasContentIssue false

Ecology and distribution of the “Critically Endangered” Blue-throated Hillstar Oreotrochilus cyanolaemus

Published online by Cambridge University Press:  25 April 2023

Boris A. Tinoco*
Affiliation:
Escuela de Biología, Universidad de Azuay, Cuenca, Ecuador
Juan F. Freile
Affiliation:
Comité Ecuatoriano de Registros Ornitológicos, Quito, Ecuador
Paul Molina
Affiliation:
Autilloproducciones, Cuenca, Ecuador
Agustín Carrasco
Affiliation:
Autilloproducciones, Cuenca, Ecuador
Nolberto Ordoñez
Affiliation:
Fundación Jocotoco, Quito, Ecuador
Elisa Bonaccorso
Affiliation:
Universidad San Francisco de Quito, Laboratorio de Biología Evolutiva, Instituto Biósfera y Colegio de Ciencias Biológicas y Ambientales, Quito, Ecuador
*
Corresponding author: Boris A. Tinoco; Email: btinoco@uazuay.edu.ec

Summary

The Blue-throated Hillstar Oreotrochilus cyanolaemus is a recently described hummingbird endemic to the southern Andes of Ecuador. This “Critically Endangered” species faces multiple conservation problems; thus, acquiring basic ecological information is a key step for guiding sound and integral conservation actions. We performed a series of expeditions throughout the cordillera Chilla-Tioloma-Fierro Urco to gain new data about its ecology, abundance, breeding, and distribution. From November 2019 to March 2020, we surveyed a total of 161.6 km searching for O. cyanolaemus, and gathered data on encounter rates, microhabitats used, and flower resources used. From November 2020 to January 2021 we studied the breeding ecology of the species. Occurrence records of O. cyanolaemus were used to build a species distribution model, based on climatic variables and the normalised difference vegetation index (NDVI). We found that the species is relatively more abundant in the western and central portion of its distribution range. Males were found using more shrubby habitats than females, who used more open habitats. They visited flowers of 11 plant species, with Chuquiraga jussieui and Puya ssp. being the most frequently used flowers. Nests were found in caves and rocky walls, and only one out of three active nests was successful. The distribution model indicated that the species has a potential distribution range of 62.7 km2. This manuscript is the first comprehensive evaluation of the ecological requirements of the species, and the information provided has important potential for use as a conservation guide for the species and its habitats.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamczyk, S., Poretschkin, C. and Renner, S. S. (2017) Evolutionary flexibility in five hummingbird/plant mutualistic systems: testing temporal and geographic matching. J. Biogeogr. 44 : 18471855.CrossRefGoogle Scholar
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. and Anderson, R. P. (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38 : 541545.CrossRefGoogle Scholar
Altshuler, D. L. and Dudley, R. (2003) Kinematics of hovering hummingbird flight along simulated and natural elevational gradients. J. Exp. Biol. 206 : 31393147.CrossRefGoogle ScholarPubMed
Anderson, R. P. and Raza, A. (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37 : 13781393.CrossRefGoogle Scholar
Areta, J. I., Vila Moret, S., Mazar Barnett, J. and Casañas, H. (2006) Primer registro de nidificación del Picaflor Andino Castaño (Oreotrochilus adela) en la Argentina. Nuestras Aves 51 : 2123.Google Scholar
Astudillo, P. X., Tinoco, B. A. and Siddons, D. (2015) The avifauna of Cajas National Park and Mazán Reserve, southern Ecuador, with notes on new records. Cotinga 37 : 111.Google Scholar
Bennett, J. R., Maloney, R. and Possingham, H. P. (2015) Biodiversity gains from efficient use of private sponsorship for flagship species conservation. Proc. R. Soc. Lond. B Biol. Sci. 282 : 20142693.Google ScholarPubMed
BirdLife International (2022) Species Factsheet: Oreotrochilus cyanolamus. Accessed online 10 January 2022 from www.birdlife.org.Google Scholar
Bodrati, A., Mérida, E. and Montenegro, L. (2003) Nidificación del picaflor andino común (Oreotrochilus leucopleurus) en el parque nacional El Leoncito, provincia de San Juan, Argentina. Nuestras Aves 45 : 2628.Google Scholar
Carpenter, F. L. (1976) Ecology and evolution of an Andean hummingbird (Oreotrochilus estella). Berkeley, CA, USA: University of California Press.Google Scholar
Carrasco-Ugalde, A., Molina, P., Pacheco, D. and Tinoco, B. (2022) Nesting biology of an Ecuadorian endemic hummingbird, the endangered Violet-throated Metaltail Metallura baroni. Rev. Ecuatoriana Ornitol. 8 : 3140.CrossRefGoogle Scholar
Corley-Smith, G. T. (1969) A high altitude hummingbird on the volcano Cotopaxi. Ibis 111 : 1722.CrossRefGoogle Scholar
Didan, K. (2015) MYD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m. Sioux Falls, SD, USA: NASA EOSDIS Land Processes DAAC.Google Scholar
Dorst, J. (1962) Nouvelles recherches biologiques sur les Trochilidés des hautes Andes péruviennes (Oreotrochilus estella). Oiseau 32 : 95126.Google Scholar
Feinsinger, P. and Colwell, R. K. (1978) Community organization among Neotropical nectar-feeding birds. Am. Zool. 18 : 779795.CrossRefGoogle Scholar
Fick, S. E. and Hijmans, R. J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 : 43024315.CrossRefGoogle Scholar
Fjeldså, J. and Krabbe, N. (1990) Birds of the high Andes. Copenhagen, Denmark: Zoological Museum, University of Copenhagen; Svenborg, Denmark: Apollo Books.Google Scholar
Freile, J. F., Santander, T., Carrasco, L., Cisneros-Heredia, D. F., Guevara, E. A., Sánchez-Nivicela, M. and Tinoco, B. A. (2019) Lista roja de las aves del Ecuador continental. Quito, Ecuador: Ministerio del Ambiente, Aves y Conservación, Comité Ecuatoriano de Registros Ornitológicos, Universidad del Azuay, Red Aves Ecuador and Universidad San Francisco de Quito.Google Scholar
Galante, P. J., Alade, B., Muscarella, R., Jansa, S. A., Goodman, S. M. and Anderson, R. P. (2018) The challenge of modeling niches and distributions for data-poor species: a comprehensive approach to model complexity. Ecography 41 : 726736.CrossRefGoogle Scholar
García-Meneses, P. M. and Ramsay, P. M. (2014) Puya hamata demography as an indicator of recent fire history in the páramo of El Ángel and Volcán Chiles, Ecuador-Colombia. Caldasia 36 : 5369.CrossRefGoogle Scholar
Guevara, L., Gerstner, B. E., Kass, J. M. and Anderson, R. P. (2018) Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Glob. Chang. Biol. 24 : 15111522.CrossRefGoogle ScholarPubMed
Hejl, S. J., Verner, J. and Bell, G. W. (1990) Sequential versus initial observations in studies of avian foraging. Stud. Avian Biol. 13 : 166173.Google Scholar
Hijmans, R. J. and van Etten, J. (2012) raster: Geographic Analysis and Modeling with Raster Data. R package version 2.0-12.Google Scholar
Hornung-Leoni, C. T., González-Gómez, P. L. and Troncoso, A. J. (2013) Morphology, nectar characteristics and avian pollinators in five Andean Puya species (Bromeliaceae). Acta Oecol. 51 : 5461.CrossRefGoogle Scholar
Jabaily, R. S. and Sytsma, K. J. (2013) Historical biogeography and life-history evolution of Andean Puya (Bromeliaceae). Bot. J. Linn. Soc. 171 : 201224.CrossRefGoogle Scholar
James, F. C. and Shugart, H. H. Jr (1970) A quantitative method of habitat description. Audubon Field Notes 24 : 727736.Google Scholar
Langer, S. (1973) Zur Biologie des Hochlandkolibries Oreotrochilus estella in den Anden Boliveins. Bonn. Zool. Beitr. 24: 2447.Google Scholar
Menezes, J. C. T. and Marini, M. Â. (2017) Predators of bird nests in the Neotropics: a review. J. Field Ornithol. 88 : 99114.CrossRefGoogle Scholar
Miller, G. A. and Silander, J. A. (1991) Control of the distribution of giant rosette species of Puya (Bromeliaceae) in the Ecuadorian paramos. Biotropica 23 : 124133.CrossRefGoogle Scholar
Molina, P. A., Pacheco, D. O., Carrasco, A. and Tinoco, B. A. (2021) On the breeding biology of the Blue-throated Hillstar (Oreotrochilus cyanolaemus), a recently discovered species from southern Ecuador. Wilson J. Ornithol. 132 : 10071014.CrossRefGoogle Scholar
Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M. and Anderson, R. P. (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5 : 11981205.CrossRefGoogle Scholar
Oñate-Valdivieso, F., Fries, A., Mendoza, K., González-Jaramillo, V., Pucha-Cofrep, F., Rollenbeck, R. and Bendix, J. (2018) Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Meteorol. Atmos. Phys. 130 : 473484.CrossRefGoogle Scholar
Ordóñez-Delgado, L., Ramón-Vivanco, C. and Ortiz-Chalán, V. (2019) Systematic review of the state about the knowledge of the vertebrates of the Podocarpus National Park. La Granja 30 : 718.CrossRefGoogle Scholar
Ortiz-Crespo, F. (2000) The nest of the Rainbow Star-frontlet, Coeligena iris. Bull. Br. Ornithol. Club 120 : 205208.Google Scholar
Ortiz-Crespo, F. and Bleiweiss, R. (1982) The northern limit of the hummingbird genus Oreotrochilus in South America. Auk 99 : 376378.CrossRefGoogle Scholar
Phillips, S. J. and Dudık, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31 : 161175.CrossRefGoogle Scholar
R Core Team (2021) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Restrepo-Chica, M. and Bonilla-Gómez, M. A. (2017) Dinámica de la fenología y visitantes florales de dos bromelias terrestres de un páramo de Colombia. Rev. Mex. Biodivers. 88 : 636645.CrossRefGoogle Scholar
Rivadeneira, G., Ramsay, P. M. and Montúfar, R. (2020) Fire regimes and pollinator behaviour explain the genetic structure of Puya hamata (Bromeliaceae) rosette plants. Alp. Bot. 130 : 1323.CrossRefGoogle Scholar
Roberge, J. M. and Angelstam, P. (2004) Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18 : 7685.CrossRefGoogle Scholar
Solano-Ugalde, A. (2008) High in the Andes: colonial nesting of Ecuadorian Hillstar (Oreotrochilus chimborazo: Trochilidae) under a bridge. Ornitol. Colomb. 6 : 8688.Google Scholar
Sornoza-Molina, F., Freile, J. F., Nilsson, J., Krabbe, N. and Bonaccorso, E. (2018) A striking, critically endangered, new species of hillstar (Trochilidae: Oreotrochilus) from the southwestern Andes of Ecuador. Auk 135 : 11461171.CrossRefGoogle Scholar
Syfert, M. M., Smith, M. J. and Coomes, D. A. (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One 8 : e55158.CrossRefGoogle ScholarPubMed
Tinoco, B. A., Astudillo, P. X., Latta, S. C. and Graham, C. H. (2009) Distribution, ecology and conservation of an endangered Andean hummingbird: the Violet-Throated Metaltail (Metallura baroni). Bird Conserv. Internatn. 19 : 6376.CrossRefGoogle Scholar
Varadarajan, G. S. (1990) Patterns of geographic distribution and their implications on the phylogeny of Puya (Bromeliaceae). J. Arnold Arbor. 71 : 527552.CrossRefGoogle Scholar
Welton, L. J., Siler, C. D., Bennett, D., Diesmos, A., Duya, M. R., Dugay, R., Rico, E. B. R., et al. (2010) A spectacular new Philippine monitor lizard reveals hidden biogeographic boundary and a novel flagship species for conservation. Biol. Lett. 6 : 654658.CrossRefGoogle Scholar
Woods, S. and Ramsay, P. M. (2001) Variability in nectar supply: implications for high-altitude hummingbirds. Pp. 209217 in Ramsey, P. M. ed. The ecology of Volcán Chiles: high-altitude ecosystems on the Ecuador-Colombia border. Plymouth, UK: Pebble and Shell.Google Scholar
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. and Smith, G. M. (2009) Mixed effects models and extensions in ecology with R. New York, USA: Springer.CrossRefGoogle Scholar