Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T18:52:56.791Z Has data issue: false hasContentIssue false

Effect of size grading on sea bass (Dicentrarchuslabrax) juvenile self-feeding behaviour, social structure and cultureperformance

Published online by Cambridge University Press:  27 September 2011

David Benhaïm*
Affiliation:
LERMA, INTECHMER/CNAM, BP 324, 50103 Cherbourg Cedex, France
Samuel Péan
Affiliation:
IFREMER, place Gaby Coll, BP 7, 17137 L’Houmeau, France
Blandine Brisset
Affiliation:
IFREMER, place Gaby Coll, BP 7, 17137 L’Houmeau, France
Didier Leguay
Affiliation:
IFREMER, place Gaby Coll, BP 7, 17137 L’Houmeau, France
Marie-Laure Bégout
Affiliation:
IFREMER, place Gaby Coll, BP 7, 17137 L’Houmeau, France
Béatrice Chatain
Affiliation:
Station expérimentale d’Aquaculture Ifremer, Laboratoire de Recherche piscicole de Méditerranée, chemin de Maguelone, 34250 Palavas-les-Flots, France
*
a Corresponding author:david.benhaim@cnam.fr
Get access

Abstract

This study aims to test the influence of size grading on self-feeding behaviour, socialstructure (measured by the percentage of triggering acts per individual), growthperformances, and blood physiological variables of individually passive integratedtransponder (PIT)-tagged sea bass juveniles, using a computerized on-demand feeding systemcoupled with a PIT tag monitoring device. Three consecutive periods of 27 days each werecompared: a first period (P1) before grading (6 tanks of 100 fish; 40.2 ±  8.9 g) followed by a second period (P2) after grading. The protocolapplied aimed to create two groups of fish of similar mean weight but with either a low ora high coefficient of variation of weight(CVw) corresponding to an imposeddifference in social disruption (Tlow:CVw ~ 10%, 3 tanks of 60 fish each withsocial disruption;Thigh:CVw ~20%,3 tanks of 60 fish each, without social disruption). Tlow andThigh groups were studied over P2, and anadditional 27-day period under identical conditions (P3). The gradingprotocol used and/or time modified the social structure when comparing P1and P2. Thereafter, during P2 and P3,no difference could be observed in growth performances, feed demand, or physiologicalvariables between Tlow andThighgroups. Feeding rhythms and social structures weresimilar in both groups. In conclusion, such grading practice only transiently modifiesfeed demand behaviour and social structure built around the self-feeder, without furtherimprovement in individual growth performances in sea bass.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, J.C., Dill, L.M., 1989, The relative growth of dominant and subordinate juvenile steelhead trout (Salmo gairdneri) fed equal rations. Behaviour 108, 104113. CrossRefGoogle Scholar
Abbot, J.C., Dunbrack, R.L., Orr, C.D., 1985, The interaction of size and experience in dominance relationships of juvenile steelhead trout (Salmo gairdneri). Behaviour 92, 241253. Google Scholar
Adams, C.E., Huntingford, F.A., Turnbull, J.F., Beattie, C., 1998, Alternative competitive strategies and the cost of food acquisition in juvenile Atlantic salmon (Salmo salar). Aquaculture 167, 1726. CrossRefGoogle Scholar
Alanärä, A., Brännäs, E., 1993, A test of individual feeding activity and food size preference in rainbow trout using demand feeders. Aquac. Int. 1, 4754. CrossRefGoogle Scholar
Alanärä, A., Brännäs, E., 1996, Dominance in demand-feeding behaviour in Arctic charr and rainbow trout: the effect of stocking density. J. Fish Biol. 48, 242254. CrossRefGoogle Scholar
Aloisi, D.B., 1994, Growth of hatchery-reared lake trout fed by demand feeders. Prog. Fish-Cult. 56, 4043. 2.3.CO;2>CrossRefGoogle Scholar
Anthouard, M., Divanach, P., Kentouri, M., 1993, An analysis of feeding activities of sea bass Dicentrarchus labrax, Moronidae. raised under different lighting conditions. Ichthyophysiol. Acta 16, 5970. Google Scholar
Azzaydi, M., Madrid, J.A., Sánchez-Vázquez, F.J., Martínez, F.J., 1998, Effect of feeding strategies (automatic, ad libitum demand feeding and time-restricted demand-feeding) on feeding rhythms and growth in European sea bass (Dicentrarchus labrax L.). Aquaculture 163, 285296. CrossRefGoogle Scholar
Azzaydi, M., Martínez, F.J., Zamora, S., Sánchez-Vázquez, F.J., Madrid, J.A., 1999, Effect of meal size modulation on growth performance and feeding rhythms in European sea bass (Dicentrarchus labrax L.). Aquaculture 170, 253266. CrossRefGoogle Scholar
Baardvik, B.M., Jobling, M.S., 1990, Effect of size-sorting on biomass gain and individual growth rates in Arctic charr, Salvelinus alpinus L. Aquaculture 90, 1116. CrossRefGoogle Scholar
Barki, A., Haepaz, S., Hulata, G., Karpus, I., 2000, Effects of larger fish and size grading on growth and size variation in fingerling silver perch. Aquac. Int. 8, 391401. CrossRefGoogle Scholar
Bégout-Anras, M.L., 1995, Demand-feeding behaviour of sea bass kept in ponds: diel and seasonal patterns, and influences of environmental factors. Aquac. Int. 3, 186195. CrossRefGoogle Scholar
Benhaïm, D., Skúlason, S., Hansen, B.R., 2003, Behavioural variation in juvenile Arctic charr in relation to body size. J. Fish Biol. 62, 13261338. CrossRefGoogle Scholar
Boujard, T., Dugy, X., Genner, D., Gosset, C., Grig, G., 1992, Description of a modular, low cost, eater meter for the study of feeding behavior and food preferences in fish. Physiol. Behav. 52, 11011106. CrossRefGoogle Scholar
Boujard, T., Jourdan, M., Kentouri, M., Divanach, P., 1996, Diel feeding activity and the effect of time-restricted self-feeding on growth and feed conversion in European sea bass. Aquaculture 139, 117127. CrossRefGoogle Scholar
Brännäs, E., Alanärä, A., 1993, Monitoring the feeding activity of individual fish with a demand feeding system. J. Fish Biol. 42, 209215. CrossRefGoogle Scholar
Campéas, A., Brun-Bellut, J., Baras, E., Kestemont, P., Gardeur, J.N., 2009, Growth heterogeneity in rearing sea bass (Dicentrarchus labrax): test of hypothesis with an iterative energetic model. Animal 3, 12991307. CrossRefGoogle Scholar
Carmichael, G.J., 1994, Effects of size-grading on variation and growth in channel catfish reared at similar densities. J. World Aquac. Soc. 25, 724. CrossRefGoogle Scholar
Coeurdacier, J.L., Pepin, J.F., Fauvel, C., Legall, P., Bourmaud, A.F., Romestand, B., 1997, Alterations in total protein, IgM and specific antibody activity of male and female sea bass (Dicentrarchus labrax L., 1758) sera following injection with killed Vibrio anguillarum. Fish Shellfish Immunol. 7, 151160. CrossRefGoogle Scholar
Covès, D., Beauchaud, M., Attia, J., Dutto, G., Bouchut, C., Bégout, M.L., 2006, Long-term monitoring of individual fish triggering activity on a self-feeding system: An example using European sea bass (Dicentrarchus labrax). Aquaculture 253, 385392. CrossRefGoogle Scholar
Covès, D., Gasset, E., Lemarié, G., Dutto, G., 1998, A simple way of avoiding feed wastage in European seabass, Dicentrarchus labrax, under self-feeding conditions. Aquat. Living Resour. 11, 395401. CrossRefGoogle Scholar
Cutts, C.J., Metcalfe, N.B., Taylor, A.C., 1998, Aggression and growth depression in juvenile Atlantic salmon: the consequences of individual variation in standard metabolic rate. J. Fish Biol. 52, 10261037. CrossRefGoogle Scholar
Dagnélie P., 1975, Théorie et méthodes statistiques. Applications agronomiques. Vol. II. Les méthodes de l’inférence statistique. Les Presses agronomiques, Gembloux.
Di-Poï, C., Attia, J., Bouchut, C., Dutto, G., Covès, D., Beauchaud, M., 2007, Behavioral and neurophysiological responses of European sea bass groups reared under food constraint. Physiol. Behav. 90, 559566. CrossRefGoogle ScholarPubMed
Di-Poï, C., Beauchaud, M., Bouchut, C., Dutto, G., Covès, D., Attia, J., 2008, Effects of high food demand fish removal in groups of juvenile sea bass (Dicentrarchus labrax). Can. J. Zool. 86, 10151023. CrossRefGoogle Scholar
Dosdat, A., Person-Le, Ruyet J., Covès, D., Dutto, G., Gasset, E., Le Roux, A., Lemarié, G., 2003, Effect of chronic exposure to ammonia on growth, food utilisation and metabolism of the European sea bass (Dicentrarchus labrax). Aquat. Living Resour. 16, 509520. CrossRefGoogle Scholar
Dou, S.Z., Masuda, R., Tanaka, M., Tsukamoto, K., 2004, Size hierarchies affecting the social interactions and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 233, 237249. CrossRefGoogle Scholar
Drews, C., 1993 The concept and definition of dominance in animal behaviour. Behaviour 125, 283311. CrossRefGoogle Scholar
Goldan, O., Popper, D., Karplus, I., 1997, Management of size variation in juvenile gilthead sea bream (Sparus aurata). I: Particle size and frequency of feeding dry and live food. Aquaculture 152, 181190. Google Scholar
Grant J.W.A., 1997 Territoriality. In: Godin, J.G.J. (Ed.), Behavioural Ecology of Teleost Fishes. Oxford Univ. Press, Oxford, pp. 81–103.
Griffiths, S.W., Armstrong, J.D., 2002, Kin-biased territory overlap and food sharing among Atlantic salmon juveniles. J. Anim. Ecol. 71, 480486. CrossRefGoogle Scholar
Gunnes, K., 1976, Effect of size grading young Atlantic salmon (Salmo salar) on subsequent growth. Aquaculture 9, 381386. CrossRefGoogle Scholar
Harrenstien, L.A., Tornquist, S.J., Miller-Morgan, T.J., Fodness, B.G., Clifford, K.E., 2005, Evaluation of a point-of-care blood analyzer and determination of reference ranges for blood parameters in rockfish. J. Am. Vet. Med. Assoc. 226, 255265. CrossRefGoogle ScholarPubMed
Huntingford, F.A., Metcalfe, N.B., Thorpe, J.E., 1993, Social status and feeding in Atlantic salmon Salmo salar parr: the effect of visual exposure to a dominant. Ethology 94, 201206. CrossRefGoogle Scholar
Huntingford, F.A., Metcalfe, N.B., Thorpe, J.E., Graham, W.D., Adams, C.E., 1990, Social dominance and body size in Atlantic parr, Salmo salar L. J. Fish Biol. 36, 877881. CrossRefGoogle Scholar
Jobling, M., 1985, Physiological and social constraints on growth of fish with special reference to Arctic charr, Salvelinus alpinus L. Aquaculture 44, 8390. CrossRefGoogle Scholar
Jobling, M., Baardvick, B.M., 1994, The influence of environmental manipulations on inter- and intra-inidivdual variation in food acquisition and growth performance of Arctic charr, Salvelinus alpinus. J. Fish Biol. 44, 10691087. CrossRefGoogle Scholar
Jobling, M., Jorgensen, E.H., Arnesen, A.M., Ringo, E., 1993, Feeding, growth and environmental requirements of arctic charr: a review of aquaculture potential. Aquac. Int. 1, 2046. CrossRefGoogle Scholar
Jobling, M., Wandsvik, A., 1983, Effect of social interactions on growth rates and conversion efficiency of Arctic charr, Salvelinus alpinus L. J. Fish Biol. 22, 577584. CrossRefGoogle Scholar
Jørgensen, E.H., Jobling, M., 1990, Feeding modes in Arctic charr, Salvelinus alpinus L.: The importance of bottom feeding for the maintenance of growth. Aquaculture 86, 379385. CrossRefGoogle Scholar
Kamstra, A., 1993, The effect of size grading on individual growth in eel, Anguilla anguilla, measured by individual marking. Aquaculture 112, 6777. CrossRefGoogle Scholar
Karplus, I., Popper, D., Goldan, O., 2000, The effect of food competition and relative size of group members on growth of juvenile gilthead sea bream, Sparus aurata. Fish Physiol. Biochem. 22, 119123. CrossRefGoogle Scholar
Kestemont, P., Jourdan, S., Houbart, M., Mélard, C., Paspatis, M., Fontaine, P., Cuvier, A., Kentouri, M., Baras, E., 2003, Size heterogeneity, cannibalism and competition in cultured predatory fish larvae: biotic and abiotic influences. Aquaculture 227, 333356. CrossRefGoogle Scholar
Koebele, B.P., 1985, Growth and the size hierarchy effect: an experimental assessment of three proposed mechanisms; activity differences, disproportional food acquisition, physiological stress. Environ. Biol. Fishes 12, 181188. CrossRefGoogle Scholar
Lambert, Y., Dutil, J.-D., 2001, Food intake and growth of adult Atlantic cod (Gadus morhua L.) reared under different conditions of stocking density, feeding frequency and size-grading. Aquaculture 192, 233247. CrossRefGoogle Scholar
Lee E.M., 1988, Commercial cod farming operations, Newfoundland. Can. Ind. Rep. Fish. Aquat. Sci. 201.
Liao, I.C., Chang, E.Y., 2002, Timing and factors affecting cannibalism in red drum, Sciaenops ocellatus, larvae in captivity. Environ. Biol. Fishes 63, 229233. CrossRefGoogle Scholar
Magnuson, J.J., 1962, An analysis of aggressive behavior, growth, and competition for food and space in medaka (Oryzias latipes Pisces, Cyprinodontidae). Can. J. Zool. 40, 313363. CrossRefGoogle Scholar
McCarthy, I.D., Carter, C.G., Houlihan, D.F., 1992, The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 41, 257263. CrossRefGoogle Scholar
McDonald, M.E., Tikkanen, C.A., Axler, R.P., Larsen, C.P., Host, G., 1996, Fish simulation culture model (FIS-C): A bioenergetics based model for aquacultural wasteload application. Aquac. Eng. 15, 243259. CrossRefGoogle Scholar
Mgaya, Y.D., Mercer, J.P., 1995, The effects of size grading and stocking density on growth performance of juvenile abalone, Haliotis tuberculata Linnaeus. Aquaculture 136, 297312. CrossRefGoogle Scholar
Millot, S., Bégout, M.-L., 2009, Individual fish rhythm directs group feeding: a case study with sea bass juveniles (Dicentrarchus labrax) under self-demand feeding conditions. Aquat. Living Resour. 22, 363370. CrossRefGoogle Scholar
Millot, S., Bégout, M.-L., Chatain, B., 2009, Exploration behaviour and flight response toward a stimulus in three sea bass strains (Dicentrarchus labrax L.). Appl. Anim. Behav. 119, 108114. CrossRefGoogle Scholar
Millot, S., Bégout, M.-L., Person-Le Ruyet, J., Breuil, G., Di-Poï, C., Fievet, J., Pineau, P., Roué, M., Sévère, A., 2008, Feed demand behavior in sea bass juveniles: effects on individual specific growth rate variation and health (inter-individual and intergroup variation). Aquaculture 274, 8795. CrossRefGoogle Scholar
Millot, S., Péan, S., Chatain, B., Bégout, M.L., 2011, Self-feeding behavior changes induced by a first and a second generation of domestication or selection for growth in the European sea bass, Dicentrarchus labrax. Aquat. Living Resour. 24, 5361. CrossRefGoogle Scholar
Millot, S., Péan, S., Leguay, D., Vergnet, A., Chatain, B., Bégout, M.L., 2010, Evaluation of behavioral changes induced by a first step of domestication or selection for growth in the European sea bass (Dicentrarchus labrax): A self-feeding approach under repeated acute stress. Aquaculture 306, 211217. CrossRefGoogle Scholar
Muller-Feuga, A., 1998, Growth as a function of rationing: a model applicable to fish and microalgae. J. Exp. Mar. Biol. Ecol. 236, 113. CrossRefGoogle Scholar
Øverli, Ø., Winberg, S., Damsård, B., Jobling, M., 1998, Food intake and spontaneous swimming activity in Arctic char (Salvelinus alpinus): role of brain serotonergic activity and social interactions. Can. J. Zool. 76, 13661370. CrossRefGoogle Scholar
Overton, J.L., Steenfeldt, S.J., Pedersen, P.B., 2010, The effects of grading on the growth and survival of juvenile Dover sole (Solea solea L.). Aquac. Res. 42, 3139. CrossRefGoogle Scholar
Pickering A.D., 1981, Introduction: The concept of biological stress. In: Stress and Fish. Academic Press, London and New York, pp. 1–9.
Rubenstein, D.I., 1981, Individual variation and competition in the Everglades pygmy sunfish. J. Anim. Ecol. 50, 337350. CrossRefGoogle Scholar
Rubio, V.C., Sánchez-Vázquez, F.J., Madrid, J.A., 2003, Nocturnal feeding reduces sea bass (Dicentrarchus labrax L.) pellet-catching ability. Aquaculture 220, 697705. CrossRefGoogle Scholar
Rubio, V.C., Vivas, M., Sanchez-Mut, A., Sanchez-Vazquez, F.J., Coves, D., Dutto, G., Madrid, J.A., 2004, Self-feeding of European sea bass (Dicentrarchus labrax, L.) under laboratory and farming conditions using a string sensor. Aquaculture 233, 393403. CrossRefGoogle Scholar
Sánchez-Vázquez, F.J., Azzaydi, M., Martinez, F.J., Zamora, S., Madrid, J.A., 1998, Annual rhythms of demand-feeding activity in sea bass: evidence of a seasonal phase inversion of the diel feeding pattern. Chronobiol. Int. 15, 607622. CrossRefGoogle ScholarPubMed
Sánchez-Vázquez, F.J., Madrid, J.A., Zamora, S., 1995, Circadian rhythms of feeding activity in sea bass, Dicentrarchus labrax L.: dual phasing capacity of diel demand-feeding pattern. J. Biol. Rhythms 10, 256266. CrossRefGoogle ScholarPubMed
Sánchez-Vázquez, F.J., Martinez, M., Zamora, S., Madrid, J.A., 1994, Design and performance of an accurate demand feeder for the study of feeding behaviour in sea bass, Dicentrarchus labrax L. . Physiol. Behav. 56, 789794. CrossRefGoogle ScholarPubMed
Sloman, K.A., Armstrong, J.D., 2002, Physiological effects of dominance hierarchies: laboratory artefacts or natural phenomena? J. Fish Biol. 61, 123. CrossRefGoogle Scholar
Smith, M.E., Fuiman, L.A., 2003, Causes of growth depensation in red drum, Sciaenops ocellatus, larvae. Environ. Biol. Fishes 66, 4960. CrossRefGoogle Scholar
Stefánsson, M.Ö., Imsland, A.K., Jenssen, M.D., Jonassen, T.M., Stefansson, S.O., Fitzgerald, R., 2000, The effect of different initial size distributions on the growth of Atlantic halibut. J. Fish Biol. 56, 826836. CrossRefGoogle Scholar
Strand, H.K., Øiestad, V., 1997, Growth and the effect of grading, of turbot in a shallow raceway system. Aquac. Int. 5, 397406. CrossRefGoogle Scholar
Sunde, L.M., Imsland, A.K., Folkvord, A., Stefansson, S.O., 1998, Effects of size grading on growth and survival of juvenile turbot at two temperatures. Aquac. Int. 6, 1932. CrossRefGoogle Scholar
Volkoff, H., Peter, R.E., 2006, Feeding behavior of fish and its control. Zebrafish 3, 131140. CrossRefGoogle Scholar
Wallace, J.C., Kolbeinshavn, A.G., 1988, The effect of size grading on subsequent growth in fingerling Arctic charr, Salvelinus alpinus. Aquaculture 73, 97100. CrossRefGoogle Scholar
Ward, A.J.W., Webster, M.M., Hart, P.J.B., 2006, Intraspecific food competition in fishes. Fish Fish. 7, 231261. CrossRefGoogle Scholar
Yamagishi, H., Maruyama, T., Mashiko, K., 1974, Social relation in a small experimental population of Odontobutis obscurus (Temminck et Schlegel) as related to individual growth and food intake. Oecologia 17, 187202. CrossRefGoogle Scholar
Zar J.H., 1984, Biostatistical analysis, 2nd editors, Prentice Hall, Englewood Cliffs.