Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T12:58:38.473Z Has data issue: false hasContentIssue false

Genetic variation for carcass quality traits in cultured sea bass (Dicentrarchus labrax)

Published online by Cambridge University Press:  08 April 2009

Eric Saillant
Affiliation:
IFREMER, Laboratoire de Recherche en Pisciculture marine, chemin de Maguelonne, 34250 Palavas-les-Flots, France Ecloserie marine de Gravelines, voie des Enrochements, 59820 Gravelines, France
Mathilde Dupont-Nivet
Affiliation:
INRA, UMR 1313, Génétique Animale et Biologie Intégrative, 78350 Jouy-en-Josas, France
Marie Sabourault
Affiliation:
IFREMER, Laboratoire de Recherche en Pisciculture marine, chemin de Maguelonne, 34250 Palavas-les-Flots, France
Pierrick Haffray
Affiliation:
SYSAAF, Section aquacole, Station SCRIBE, Campus de Beaulieu, 35042 Rennes, France
Stanislas Laureau
Affiliation:
Ecloserie marine de Gravelines, voie des Enrochements, 59820 Gravelines, France
Marie-Odile Vidal
Affiliation:
IFREMER, Laboratoire de Recherche en Pisciculture marine, chemin de Maguelonne, 34250 Palavas-les-Flots, France
Béatrice Chatain
Affiliation:
IFREMER, Laboratoire de Recherche en Pisciculture marine, chemin de Maguelonne, 34250 Palavas-les-Flots, France
Get access

Abstract

Genetic parameters for carcass quality traits were estimated in 27 families of sea bass (3 dams × 9 sires factorial mating design), raised mixed in the same tanks starting before hatching. Offspring parentage was determined a posteriori using 6 microsatellite loci. Carcass quality traits were recorded at 818 days post fertilization (mean standard length: 32.6 ± 3.1 cm). Genetic parameters were estimated from the sire half sib variance and covariance components. Heritability of body weight (BW) and carcass processing traits (standardized to body weight) percent head weight (Head%), percent viscera weight (Viscera%) and percent visceral fat weight (VisceFat%) were relatively high ranging from 0.48 ± 0.15 (Viscera%) to (Head%); the estimate of heritability for fillet yield (Fillet%) was lower (0.25 ± 0.10) but was significantly greater than zero. Body weight was positively correlated to Fillet%, Viscera%, and VisceFat%, and negatively correlated to Head%. These results indicate that these carcass processing traits can be modified by directional selection and that selection for greater BW would lead to an increase of Fillet%, Viscera% and VisceFat% and a decrease of Head%.

Muscle lipid content (MuscleLipid%) was determined using two indirect methods: measurements with a Torry Fish Fatmeter® (TorryLipid) and determination of the percentage of dry matter content (MuscleDry%) via desiccation. Both measures were highly correlated to chemical measurements of MuscleLipid%. Regression analysis indicated a superior predictive value of TorryLipid suggesting that MuscleLipid% may be evaluated via rapid, non lethal measurements with a Torry Fish Fatmeter. Heritability estimates of TorryLipid and MuscleDry% differed significantly from zero (TorryLipid: 0.28 ± 0.12, MuscleDry%: 0.36 ± 0.14) indicating that MuscleLipid% could be lowered by directional selection. TorryLipid and MuscleDry% were weakly correlated to body weight and carcass processing traits suggesting that simultaneous improvement of MuscleLipid% and other carcass quality traits may require definition of multi-trait selection indices.

Type
Brief Report
Copyright
© EDP Sciences, IFREMER, IRD, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, U.B., Thomassen, M.S., Bencze Rora, A.M., 1997, Texture properties of farmed rainbow trout (Oncorhynchus mykiss): effects of diet, muscle fat content and time of storage on ice. J. Sci. Food Agric. 74, 347353. 3.0.CO;2-F>CrossRef
Barnabé G., 1976, Contribution à la connaissance de la biologie du loup Dicentrarchus labrax (L.) (poisson Serranidae). Thèse Doctorat d'Etat. Sci. Univ. USTL Montpellier.
Becker W.A., 1984, Manual of quantitative genetics. Academic Enterprises, Pullman, Washington.
Blanc, J.M., Poisson, H., 2006, Genetic variation of body size and pyloric caeca number in juvenile brown trout, Salmo trutta L. Aquac. Res. 37, 637642. CrossRef
Bosworth, B.G., Silverstein, J.T., Wolters, W.R., Li, M.H., Robinson, E.H., 2007, Family, strain, gender, and dietary protein effects on production and processing traits of Norris and NWAC103 strains of channel catfish. N. Am. J. Aquac. 69, 106115. CrossRef
Carrillo M., Zanuy S., Blázquez M., Ramos J., Piferrer F., Donaldson E.M., 1993, Sex control and ploidy manipulation in sea bass. In: Carrillo M., Dahle L., Morales J., Sorgeloos P., Svennevig N., Wyban J. (Eds.) Proc. World Aquaculture `93 Symposium, Torremolinos, Spain, European Aquaculture Society, EAS Spec. Publ. 19.
Chatain B, 1994a, Estimation et amélioration des performances zootechniques de l'élevage larvaire de Dicentrarchus labrax et de Sparus auratus. Thèse Doctorat d'Etat. Univ. Aix Marseille 1.
Chatain, B., 1994b, Abnormal swimbladder development and lordosis in sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). Aquaculture 119, 371379. CrossRef
Douirin, C., Haffray, P., Vallet, J.L., Fauconneau, B., 1998, Determination of the lipid content of rainbow trout (Oncorhynchus mykiss) filets with the Torry Fish Fat Meter ®. Sci. Aliments 18, 527535.
Dupont-Nivet M., Vandeputte M., Vergnet A., Merdy O., Haffray P., Chavanne H., Chatain B., 2008, Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture 275, 81–87.
Estoup, A., Gharbi, K., SanCristobal, M., Chevalet, C., Haffray, P., Guyomard, R., 1998, Parentage assignment using microsatellites in turbot (Scophthalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatchery populations. Can. J. Fish. Aquat. Sci. 55, 715725. CrossRef
Falconer D.S., Mackay T.F.C., 1989, Introduction to quantitative genetics. 4th edn., Harlow, Pearson Education Ltd.
Folch, J., Lees, M., Sloane-Stanley, G.H., 1957, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226, 497509.
Garcia de Leon, F.J., Dallas, J.F., Chatain, B., Canonne, M., Versini, J.J., Bonhomme, F., 1995, Development and use of microsatellite markers in sea bass, Dicentrarchus labrax (Linnaeus, 1758) (Perciformes: Serranidae). Mol. Mar. Biol. Biotech. 4, 6268.
Garcia de Leon, F.J., Canonne, M., Quillet, E., Bonhomme, F., Chatain, B., 1998, The application of microsatellites markers to breeding programmes in the sea bass Dicentrarchus labrax. Aquaculture 159, 303316. CrossRef
Gjedrem, T., 2000, Genetic improvement of cold-water fish species. Aquac. Res. 31, 2534. CrossRef
Gjerde, B., Schaeffer, L.R., 1989, Body traits in rainbow trout II. Estimates of heritabilities and of phenotypic and genetic correlations. Aquaculture 80, 2544.
Groeneveld, E., Kovac, M., 1990, A generalized computing procedure for setting up and solving mixed linear models. J. Dairy Sci. 73, 513531. CrossRef
Herbinger, C.M., Doyle, R.W., Pitman, E.R., Paquet, D., Mesa, K.A., Morris, D.B., Wright, J.M., Cook, D., 1995, DNA fingerprint based analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout. Aquaculture 137, 245256. CrossRef
Kause, A., Ritola, O., Paananen, T., Mäntysaari, E., Eskelinen, U., 2002, Coupling body weight and its composition: a quantitative genetic analysis in rainbow trout. Aquaculture 211, 6579. CrossRef
Kause, A., Paananen, T., Ritola, O., Koskinen, H., 2007a, Direct and indirect selection of visceral lipid weight, fillet weight, and fillet percentage in a rainbow trout breeding program. J. Anim. Sci. 85, 32183227. CrossRef
Kause, A., Tobin, D., Mäntysaari, E.A., Martin, S.A.M., Houlihan, D.F., Kiessling, A., Rungruangsak-Torrissen, K., Ritola, O., Ruohonen, K., 2007b, Genetic potential for simultaneous selection of growth and body composition in rainbow trout (Oncorhynchus mykiss) depends on the dietary protein and lipid content: Phenotypic and genetic correlations on two diets. Aquaculture 271, 162172. CrossRef
Kocour M., Mauger S., Rodina M., Gela D., Linhart O., Vandeputte M., 2007, Heritability estimates for processing and quality traits in common carp (Cyprinus carpio L.) using a molecular pedigree. Aquaculture 270, 43–50.
Lie O., 2001, Flesh quality – the role of nutrition. Aquac. Res. 32(suppl. 1), 341–348.
Neira, R., Lhorente, J.P., Araneda, C., Diaz, N., Bustos, E., Alert, A., 2004, Studies on carcass quality traits in two populations of Coho salmon (Oncorhynchus kisutch): phenotypic and genetic parameters. Aquaculture 241, 117131. CrossRef
Neumaier, A., Groeneveld, B., 1998, Restricted Maximum Likelihood Estimation of Covariances in Sparse Linear Models. Genet. Sel. Evol. 30, 326. CrossRef
Peruzzi S., Chatain B., Saillant E., Haffray P., Menu B., Falguière J.C., 2004, Production of meiotic gynogenetic and triploid sea bass, Dicentrarchus labrax L. 1. Performances, maturation and carcass quality. Aquaculture 230, 41–64.
Powell, J., White, I., Guy, G., Brotherstone, S., 2008, Genetic parameters of production in Atlantic salmon (Salmo salar). Aquaculture 274, 225231. CrossRef
Quillet, E., Le Guillou, S., Aubin, J., Fauconneau, B., 2005, Two-way selection for muscle lipid content in pan-size rainbow trout (Oncorhynchus mykiss). Aquaculture 245, 4961. CrossRef
Rutten J.M., Bovenhuis H., Komen H., 2004, Modelling fillet traits based on body measurements in three Nile tilapia strains (Oreochromis niloticus L.). Aquaculture 231, 113–122.
Rutten J.M., Bovenhuis H., Komen H., 2005, Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture 246, 125–132.
Saillant, E., Chatain, B., Fostier, A., Fauvel, C., 2001a, Parental influence on early development in the European sea bass (Dicentrarchus labrax). J. Fish Biol. 58, 15851600. CrossRef
Saillant, E., Fostier, A., Menu, B., Haffray, P., Chatain, B., 2001b, Sexual growth dimorphism in the European sea bass (Dicentrarchus labrax). Aquaculture 202, 371387. CrossRef
Saillant E., Fostier A., Haffray P., Menu B., Thimonier J., Laureau S., Chatain B., 2002, Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 292, 494–505.
Saillant, E., Chatain, B., Menu, B., Fauvel, C., Vidal, M.O., Fostier, A., 2003, Sexual differentiation and juvenile intersexuality in the European sea bass (Dicentrarchus labrax). J. Zool. 260, 5363. CrossRef
Saillant E., Dupont-Nivet M., Haffray P., Chatain B., 2006, Estimates of heritability and genotype-environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139–147.
Tobin, D., Kause, A., Mantysaari, E.A., Martin, S.A.M., Houlihan, D.F., Dobly, A., Kiessling, A., Rungruangsak-Torrissen, K., Ritola, O., Ruohonen, K., 2006, Fat or lean? The quantitative genetic basis for selection strategies of muscle and body composition traits in breeding schemes of rainbow trout (Oncorhynchus mykiss). Aquaculture 261, 510521. CrossRef
Vandeputte, M., Dupont-Nivet, M., Chatain, B., Chevassus, B., 2001, Setting up a strain-testing design for the sea bass, Dicentrarchus labrax: a simulation study. Aquaculture 202, 329342. CrossRef
Vogt, A., Gormley, T.R., Downey, G., Somers, J., 2002, A Comparison of Selected Rapid Methods for Fat Measurement in Fresh Herring (Clupea harengus). J. Food Compos. Anal. 15, 205215. CrossRef