Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T17:52:45.999Z Has data issue: false hasContentIssue false

Invertebrates from the Low Head Member (Polonez Cove Formation, Oligocene) at Vauréal Peak, King George Island, West Antarctica

Published online by Cambridge University Press:  04 January 2008

Fernanda Quaglio*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, Cidade Universitária, São Paulo, SP, Brazil
Luiz E. Anelli
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, Cidade Universitária, São Paulo, SP, Brazil
Paulo R. dos Santos
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, Cidade Universitária, São Paulo, SP, Brazil
José A. de J. Perinotto
Affiliation:
Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24-A, 1515, 13506-900, Rio Claro, SP, Brazil
Antonio C. Rocha-Campos
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080, Cidade Universitária, São Paulo, SP, Brazil

Abstract

Eight taxa of marine invertebrates, including two new bivalve species, are described from the Low Head Member of the Polonez Cove Formation (latest early Oligocene) cropping out in the Vauréal Peak area, King George Island, West Antarctica. The fossil assemblage includes representatives of Brachiopoda (genera Neothyris sp. and Liothyrella sp.), Bivalvia (Adamussium auristriatum sp. nov., ?Adamussium cf. A. alanbeui Jonkers, and Limatula (Antarctolima) ferraziana sp. nov.), Bryozoa, Polychaeta (serpulid tubes) and Echinodermata. Specimens occur in debris flows deposits of the Low Head Member, as part of a fan delta setting in a high energy, shallow marine environment. Liothyrella sp., Adamussium auristriatum sp. nov. and Limatula ferraziana sp. nov. are among the oldest records for these genera in King George Island. In spite of their restrict number and diversification, bivalves and brachiopods from this study display an overall dispersal pattern that roughly fits in the clockwise circulation of marine currents around Antarctica accomplished in two steps. The first followed the opening of the Tasmanian Gateway at the Eocene/Oligocene boundary, along the eastern margin of Antarctica, and the second took place in post-Palaeogene time, following the Drake Passage opening between Antarctic Peninsula and South America, along the western margin of Antarctica.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absher, T.M. & Feijó, A.R. 1998. Morphology and ecology of bivalve molluscs from Admiralty Bay, King George Island, Antarctica. Brazilian Archives of Biology and Technology, 41, 437446.CrossRefGoogle Scholar
Adie, R.J. 1962. The geology of Antarctica. Geophysical Monographs, 7, 2339.Google Scholar
Allen, J.A. 2004. The Recent species of the genera Limatula and Limea (Bivalvia, Limacea) present in the Atlantic, with particular reference to those in deep water. Journal of Natural History, 38, 25912653.CrossRefGoogle Scholar
Amler, M.R.W. 1999. Synoptical classification of fossil and Recent Bivalvia. Geologica et Palaeontologica, 33, 237248.Google Scholar
Anelli, L.E., Rocha-Campos, A.C., Dos Santos, P.R., Perinotto, J.A.D. & Quaglio, F. 2006. Early Miocene bivalves from the Cape Melville Formation, King George Island, West Antarctica. Alcheringa, 30, 111132.CrossRefGoogle Scholar
Barker, P.F. & Thomas, E. 2004. Origin, signature and paleoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews, 66, 143162.CrossRefGoogle Scholar
Barnes, D.K.A. & Clarke, A. 1995. Epibiotic communities on sublitoral macroinvertebrates at Signy Island, Antarctica. Journal of the Marine Biological Association of the United Kingdom, 75, 689703.CrossRefGoogle Scholar
Barnes, D.K.A., Hodgson, D.A., Convey, P., Allen, C.S. & Clarke, A. 2006. Incursion and excursion of Antarctic biota: past, present and future. Global Ecology and Biogeography, 15, 121142.CrossRefGoogle Scholar
Barton, C.M. 1965. The geology of South Shetland Islands. III. The stratigraphy of King George Island. British Antarctic Survey Scientific Reports, No. 44, 133.Google Scholar
Barucca, M., Olmo, E., Capriglione, T., Odierna, G. & Canapa, A. 2005. Taxonomic considerations on the Antarctic species Adamussium colbecki based on molecular data. In Luporini, P. & Morbidoni, M., eds. Proceedings of the Fifth PNRA Meeting on Antarctic Biology. Rome: Polarnet Technical Report, 2005/1, 5357.Google Scholar
Berkman, P.A., Cattaneo-Vietti, R., Chiantore, M. & Howard-Williams, C. 2004. Polar emergence and the influence of increased sea-ice extent on the Cenozoic biogeography of pectinid molluscs in Antarctic coastal areas. Deep-Sea Research II, 51, 18391855.CrossRefGoogle Scholar
Beu, A.G. & Dell, R.K. 1989. Mollusca. In Barret, P.J., ed. Antarctic Cenozoic history from the CIROS-1 drill-hole, McMurdo Sound. DSIR Bulletin, No. 245, 135141.Google Scholar
Beu, A.G. & Maxwell, P.A. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Paleontological Bulletin, 58, 518 pp.Google Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics, 281, 8397.CrossRefGoogle Scholar
Biernat, G., Birkenmajer, K. & Popiel-Barczyk, E. 1985. Tertiary brachiopods from the Moby Dick Group of King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica, 81, 109141.Google Scholar
Birkenmajer, K. 1982. Pliocene tillite-bearing succession of King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica, 74, 772.Google Scholar
Birkenmajer, K. 1994. Geology of Tertiary glaciogenic deposits and volcanics (Polonia Glacier Group and Chopin Ridge Group) at Lions Rump (SSSI No. 34), King George Island, West Antarctica. Bulletin of the Polish Academy of Sciences, Earth Sciences, 42, 207221.Google Scholar
Birkenmajer, K. 1995. Basal and intraformation unconformities in Lower Oligocene glaciogenic deposits (Polonez Cove Formation), King George Island, South Shetland Islands (West Antarctica). Studia Geologica Polonica, 107, 93123.Google Scholar
Birkenmajer, K. 2001. Mesozoic and Cenozoic stratigraphy units in parts of the South Shetland Islands and northern Antarctic Peninsula (as used by the Polish Antarctic programmes). Studia Geologica Polonica, 118, 188 pp.Google Scholar
Birkenmajer, K. 2003. Admiralty Bay, King George Island (South Shetland Island, West Antarctica): a geological monograph. Studia Geologica Polonica, 120, 73 pp.Google Scholar
Birkenmajer, K. & Gazdzicki, A. 1986. Oligocene age of the Pecten Conglomerate on King George Island, West Antarctica. Bulletin of the Polish Academy of Science, Earth Sciences, 34, 219226.Google Scholar
Birkenmajer, K., Soliani, E. Jr & Kawashita, K. 1989. Geochronology of Tertiary glaciations on King George Island, West Antarctica. Bulletin of the Polish Academy of Sciences, Earth Sciences, 37, 2748.Google Scholar
Bitner, M.A. 1996. Brachiopods from the Eocene La Meseta Formation of Seymour Island, Antarctic Peninsula. Palaeontologia Polonica, 55, 65100.Google Scholar
Bitner, M.A. 1997. Cenozoic brachiopod fauna of Antarctica. In Glowacki, P., ed. Polish Polar Studies, 24th Polar Symposium. Warszawa: Institue of Geophysics of the Polish Academy of Sciences, 2129.Google Scholar
Bitner, M.A. & Crame, J.A. 2002. Brachiopods from the Lower Miocene of King George Island, West Antarctica. Polish Polar Research, 23, 7584.Google Scholar
Bitner, M.A. & Pisera, A. 1984. Brachiopods from the “Pecten conglomerate” (Polonez Cove Formation, Pliocene) of King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica, 79, 121124.Google Scholar
Bitner, M.A. & Thomson, M.R.A. 1999. Rhynchonellid brachiopods from the Oligocene of King George Island, West Antarctica. Polish Polar Research, 20, 8388.Google Scholar
Blaszyk, J. 1987. Ostracods from the Oligocene Polonez Cove Formation of King George Island, West Antarctica. Palaeontologia Polonica, 49, 6381.Google Scholar
Blake, D.B. & Aronson, R.B. 1998. Eocene stelleroids (Echinodermata) at Seymour Island, Antarctica Peninsula. Journal of Paleontology, 72, 339353.CrossRefGoogle Scholar
Boardman, R.S., Cheetham, A.H. & Cook, P.L. 1983. Introduction to Bryozoa. In Boardman, R.S. et al. , eds. Treatise on Invertebrate Paleontology, Part G, Bryozoa (Revised). New York: Geological Society of America, 348.Google Scholar
Brett, C.E. & Baird, G.C. 1986. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios, 1, 207227.CrossRefGoogle Scholar
Brey, T., Dahm, C., Gorny, M., Klages, M., Stiller, M. & Arntz, W.E. 1996. Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Science, 8, 36.CrossRefGoogle Scholar
Briggs, J.C. 2003. Marine centres of origin as evolutionary engines. Journal of Biogeography, 30, 118.CrossRefGoogle Scholar
Buonaiuto, M.F. 1977. Revision of the Australian Tertiary species ascribed to Limatula Wood (Mollusca, Bivalvia). Transactions of the Royal Society of South Australia, 101(1), 2133.Google Scholar
Canapa, A., Barucca, M., Marinelli, A. & Olmo, E. 2000. Molecular data from the 16rRNA gene for the phylogeny of Pectinidae (Mollusca: Bivalvia). Journal of Molecular Evolution, 50, 9397.CrossRefGoogle Scholar
Cantone, G. 1995. Polychaeta “Sedentaria” of Terra Nova Bay (Ross Sea, Antarctica): Capitellidae to Serpulidae. Polar Biology, 15, 295302.CrossRefGoogle Scholar
Cape Roberts Science Team. 1998. Miocene strata in CPR-1, Cape Roberts Project, Antarctica. Terra Antartica, 5, 63124.Google Scholar
Chiantore, M., Cattaneo-Vietti, R., Povero, P. & Albertelli, G. 2000. The population structure and ecology of the Antarctic scallop Adamussium colbecki in Terra Nova Bay. In Faranda, F., Guglielmo, L. & Ianora, A., eds. Ross Sea ecology. Berlin: Springer, 563573.CrossRefGoogle Scholar
Cohen, B.L., Gawthrop, A. & Cavalier-Smith, T. 1998. Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philosophical Transactions of the Royal Society of London, B353, 20392061.CrossRefGoogle Scholar
Craig, R.S. 1999. A new Pliocene terebratulid brachiopod from the Roe Calcarenite, Eucla Basin of southern Australia. Records of the Western Australian Museum, 19, 267275.Google Scholar
Craig, R.S. 2000. The Cenozoic brachiopods of the Carnavon Basin, Western Australia. Palaeontology, 43, 111152.CrossRefGoogle Scholar
Crame, J.A. 1999. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Scientia Marina, 63, supl.1, 114.CrossRefGoogle Scholar
Dell, R.K. 1990. Antarctic Mollusca with special reference to the fauna of the Ross Sea. Bulletin of the Royal Society of New Zealand, 27, 1311.Google Scholar
Dell, R.K. & Fleming, C.A. 1975. Oligocene–Miocene bivalve Mollusca and other macrofossils from sites 270 and 272 (Ross Sea), Deep Sea Drilling Project Leg 28. Initial Report of the Deep Sea Drilling Project, 28, 693703.Google Scholar
Dingle, R.V. & Lavelle, M. 1998. Late-Cretaceous–Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Palaeoclimatology, Palaeoecology, 141, 215232.CrossRefGoogle Scholar
Dingle, R.V., Mcarthur, J.M. & Vroon, P. 1997. Oligocene and Pliocene interglacial events in the Antarctic Peninsula dated using strontium isotope stratigraphy. Journal of the Geological Society, London, 154, 257264.CrossRefGoogle Scholar
Dmitrenko, O.B. 2004. Paleoclimatic environment of the Paleogene Southern Ocean by nannofossils. Oceanology, 44, 121133.Google Scholar
Durham, J.W., Fell, H.B., Fischer, A.G., Kier, P.M., Melville, R.V., Pawson, D.L. & Wagner, C.D. 1966. Systematic descriptions. In Moore, R.C., ed. Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. New York: Geological Society of America, 297672.Google Scholar
Exon, N.F., Kennett, J.P., Malone, M.J., Brinkhuis, H., Chaproniere, G.C.H., Ennyu, A., Fothergill, P., Fuller, M.D., Grauert, M., Hill, P.J., Janecek, T.R., Kelly, D.C., Latimer, J.C., Nees, S., Ninnemann, U.S., Nuernberg, D., Pekar, S.F., Pellaton, C.C., Pfuhl, H.A., Robert, C.M., Roessig, K.L., Roehl, U., Schellenberg, S.A., Shevenell, A.E., Stickley, C.E., Suzuki, N., Touchard, Y., Wei, W. & White, T.S. 2001. The Tasmanian Gateway: Cenozoic climatic and oceanographic development, sites 1168–1172. Proceedings of the Ocean Drilling Program, Initial Reports, 189, 98 pp.Google Scholar
Eyles, N. & Eyles, C.H. 1992. Glacial depositional systems. In Walker, R.G. & James, N.P., eds. Facies models: responses to sea level change. St. Johns, Newfoundland: Geological Association of Canada, 73100.Google Scholar
Fleming, C.A. 1978. The bivalve mollusc genus Limatula: a list of described species and a review of living and fossil species in the Southwest Pacific. Journal of the Royal Society of New Zealand, 8(1), 1791.CrossRefGoogle Scholar
Foster, M.W. 1974. Recent Antarctic and Subantarctic brachiopods. Antarctic Research Series, 21, 1189.Google Scholar
Foster, M.W. 1989. Brachiopods from the extreme South Pacific and adjacent waters. Journal of Paleontology, 63, 268301.CrossRefGoogle Scholar
Frassinetti, D.C. 1998. Moluscos del Plioceno Superior marino de Isla Guafo, sur de Chile. Parte 1, Bivalvia. Museo Nacional de Historia Natural, Boletin (Santiago), 46, 5579.CrossRefGoogle Scholar
Gazdzicka, E. & Gazdzicki, A. 1985. Oligocene coccoliths of the Pecten conglomerate, West Antarctica. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 12, 727735.Google Scholar
Gazdzicki, A. & Pugaczewska, H. 1984. Biota of the “Pecten conglomerate” (Polonez Cove Formation, Pliocene) of King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica, 79, 59120.Google Scholar
Habe, T. 1977. Notes on Antarctolima (n. gen.) hodgsoni (Smith, 1907). Venus, 36, 105107.Google Scholar
Hedley, C. 1916. Mollusca. Australasian Antarctic Expedition 1911–1914, Scientific Reports C, Zoology and Botany, 4, 180.Google Scholar
Howell, B.F. 1962. Worms. In Moore, R.C., ed. Treatise on Invertebrate Paleontology, Part W, Miscelanea. New York: Geological Society of America, 144177.Google Scholar
Ihering, H. Von. 1907. Les Mollusques fossiles du Tertiaire et du Crétacé Superior de l'Argentine. Anales del Museo Nacional de Buenos Aires, 14 (III, IV), 611 pp.Google Scholar
Jesionek-Szymanska, W. 1984. Echinoid remains from “Pecten conglomerate” (Polonez Cove Formation, Pliocene) of King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica, 79, 125130.Google Scholar
Jesionek-Szymanska, W. 1987. Echinoids from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. Palaeontologia Polonica, 49, 163168.Google Scholar
Jonkers, H.A. 1998. Stratigraphy of Antarctic late Cenozoic pectinid-bearing deposits. Antarctic Science, 10, 161170.CrossRefGoogle Scholar
Jonkers, H.A. 2003. Late Cenozoic–Recent Pectinidae (Mollusca: Bivalvia) of the Southern Ocean and neighbouring regions. Monographs of Marine Mollusca, 5, 1125.Google Scholar
Jonkers, H.A. & Taviani, M. 1998. Lower Miocene macrofossils from CRP-1 drillhole, Cape Roberts (Victoria Land Basin), Antarctica. Terra Antartica, 5, 493498.Google Scholar
Kidwell, S.M., Fürsich, F.T. & Aigner, T. 1986. Conceptual framework for the analysis and classification of fossil concentrations. Palaios, 1, 228238.CrossRefGoogle Scholar
Krause, R.A. Jr 2004. An assessment of morphological fidelity in the sub-fossil record of a terebratulide brachiopod. Palaios, 19, 460476.2.0.CO;2>CrossRefGoogle Scholar
Lazarus, D. & Caulet, J.P. 1993. Cenozoic Southern Ocean reconstructions from sedimentologic, radiolarian, and other microfossil data. Antarctic Research Series, 60, 145174.CrossRefGoogle Scholar
Lee, D.E. & Smirnova, T.N. 2006. Terebratuloidea. In Seldon, P., ed. Treatise on Invertebrate Paleontology, Part H (Revised). Boulder, CO: The Geological Society of America, 20542081.Google Scholar
MacKinnon, D.I. & Lee, D.E. 2006. Terebratelloidea. In Seldon, P., ed. Treatise on Invertebrate Paleontology, Part H (Revised). Boulder, CO: The Geological Society of America & The University of Kansas, 22292244.Google Scholar
Meyer, D.L. & Oji, T. 1993. Eocene crinoids from Seymour Island, Antarctica Peninsula: paleobiogeographic and paleoecological implications. Journal of Paleontology, 67, 250257.CrossRefGoogle Scholar
Narchi, W., Domaneschi, O. & Passos, F.D. 2002. Bivalves antárticos e subantárticos coletados durante as expedições científicas brasileiras à Antártica I a IX (1982–1991). Revista Brasileira de Zoologia, 19, 645675.CrossRefGoogle Scholar
Neall, V.E. 1970. Notes on the ecology and paleoecology of Neothyris, an endemic New Zealand brachiopod. New Zealand Journal of Marine & Freshwater Research, 4, 117125.CrossRefGoogle Scholar
Neall, V.E. 1972. Systematics of the endemic New Zealand brachiopod Neothyris. Journal of the Royal Society of New Zealand, 2(2), 229247.CrossRefGoogle Scholar
Newell, N.D. 1969. Order Arcoida Stoliczka, 1871. In Moore, R.C., ed. Treatise on Invertebrate Paleontology, Part N, Mollusca. Lawrence, KS: Geological Society of America, 248270.Google Scholar
Nicol, D. 1966. Descriptions, ecology and geographic distribution of some Antarctic pelecypods. Bulletin of American Paleontology, 51, 1102.Google Scholar
Nigro, M. 1993. Nearshore population characteristics of the circumpolar Antarctic scallop Adamussium colbecki (Smith, 1902) at Terra Nova Bay (Ross Sea). Antarctic Science, 5, 377378.CrossRefGoogle Scholar
Owen, E.F. 1980. Tertiary and Cretaceous brachiopods from Seymour, Cockburn and James Ross Islands, Antarctica. Bulletin of the British Museum of Natural History, 33, 123145.Google Scholar
Page, T.J. & Linse, K. 2002. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biology, 25, 818826.CrossRefGoogle Scholar
Peck, L.S. 1996. Metabolism and feeding in the Antarctic brachiopod Liothyrella uva: a low energy lifestyle species with restricted metabolic scope. Proceedings of the Royal Society of London, B263, 223228.Google Scholar
Peck, L.S. & Robinson, K. 1994. Pelagic larval development in the brooding Antarctic brachiopod Liothyrella uva. Marine Biology, 120, 279286.CrossRefGoogle Scholar
Peck, L.S., Brockington, S. & Brey, T. 1997. Growth and metabolism in the Antarctic brachiopod Liothyrella uva. Philosophical Transactions of the Royal Society of London, B352, 851858.CrossRefGoogle Scholar
Pfuhl, H.A. & McCave, I.N. 2005. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth and Planetary Science Letters, 235, 715728.CrossRefGoogle Scholar
Porebski, S.J. & Gradzinski, R. 1987. Depositional history of the Polonez Cove Formation (Oligocene), King George Island, West Antactica: a record of continental glaciation, shallow-marine sedimentation and contemporaneous volcanism. Studia Geologica Polonica, 97, 762.Google Scholar
Porebski, S.J. & Gradzinski, R. 1990. Lava-fed Gylbert-type delta in the Polonez Cove Formation (Lower Oligocene), King George Island, West Antarctica. Special Publications, International Association of Sedimentologists, 10, 335351.Google Scholar
Pugaczewska, H. 1984. Tertiary Bivalvia and Scaphopoda from glaciomarine deposits at Magda Nunatak, King George Island (South Shetland Islands, Antarctica). Studia Geologica Polonica, 79, 5358.Google Scholar
Ramos, A. & San Martín, G. 1999. On the finding of a mass occurrence of Serpula narconensis Baird, 1885 (Polychaeta, Serpulidae) in South Georgia (Antarctica). Polar Biology, 22, 379383.CrossRefGoogle Scholar
Santos, P.R.D., Rocha-Campos, A.C., Tompette, R., Uhlein, A., Gipp, M. & Simões, J.C. 1990. Review of Tertiary Glaciation in King George Island, West Antarctica: Preliminary results. Pesquisa Antártica Brasileira, 2, 8799.CrossRefGoogle Scholar
Schweitzer, C.E., Feldmann, R.M., Marenssi, S. & Waugh, D.A. 2005. Remarkably preserved annelid worms from the La Meseta Formation (Eocene), Seymour Island, Antarctica. Paleontology, 48, 113.CrossRefGoogle Scholar
Smellie, J.L., Pankhurst, R.J., Thomson, M.R.A. & Davies, R.E.S. 1984. The geology of the South Shetland Islands. VI. Stratigraphy, geochemistry and evolution. British Antarctic Survey Scientific Reports, No. 87, 185.Google Scholar
Speyer, S.E. & Brett, C.E. 1991. Taphofacies controls. Background and episodic processes in fossil assemblage preservation. In Allison, P.A. & Briggs, D.E.G., eds. Taphonomy: releasing the data locked in the fossil record. New York: Plenum Press, 501545.CrossRefGoogle Scholar
Stanley, S.M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir, 125, 1296.CrossRefGoogle Scholar
Stilwell, J.D. 1997. Tectonic and palaeobiogeographic significance of the Chatham Islands, South Pacific, Late Cretaceous fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 36, 97119.CrossRefGoogle Scholar
Stilwell, J.D., Harwood, D.M. & Whitehead, J.M. 2002. Mid-Tertiary macroinvertebrate-rich clasts from the Battye Glacier Formation, Prince Charles Mountains, East Antarctica. Antarctic Science, 14, 6973.CrossRefGoogle Scholar
Taviani, M. & Beu, A.G. 2001. Paleogene macrofossils from CRP-3 drillhole, Victoria Land Basin, Antarctica. Terra Antartica, 8, 112.Google Scholar
Taviani, M., Beu, A.G. & Lombardo, C. 1998. Pleistocene macrofossils from CRP-1 drillhole, Victoria Land Basin, Antarctica. Terra Antartica, 5, 485491.Google Scholar
Troedson, A.L. & Riding, J.B. 2002. Upper Oligocene to lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: stratigraphy, facies analysis and implications for the glacial history of the Antarctic Peninsula. Journal of Sedimentary Research, B72, 510523.CrossRefGoogle Scholar
Troedson, A.L. & Smellie, J.L. 2002. The Polonez Cove Formation of King George Island, Antarctica: stratigraphy, facies and implications for mid-Cenozoic cryosphere development. Sedimentology, 49, 277301.CrossRefGoogle Scholar
Williams, A., Brunton, C.H.C., Carlson, S.J., Baker, P.G., Carter, J.L., Curry, G.B., Dagys, A.S., Gourvennec, R., Hong-Fei, H., Yu-Gan, J., Johnson, J.G., Lee, D.E., Mackinnon, D.I., Racheboeuf, P.R., Smirnova, T.N. & Dong-Li, S. 2006. Brachiopoda. In Seldon, P., ed. Treatise on Invertebrate Paleontology, Part H. Rhynchonelliformea (Revised). Lawrence, KS: The Geological Society of America, 16892320.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 1994. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle Scholar
Zinsmeister, E.J. 1979. Biogeographic significance of the Late Mesozoic and Early Tertiary molluscan faunas of Seymour Island (Antarctic Peninsula) to the final breakup of Gondwanaland. In Gray, J. & Boucot, A., eds. Historical biogeography, Plate Tectonics and the changing environment. Proceedings of the 37th Annual Biology Colloquium and Selected Papers. Corvallis, OR: Oregon State University Press, 349355.Google Scholar
Zinsmeister, W.J. 1982. Late Cretaceous–Early Tertiary molluscan biogeography of the southern circum-Pacific. Journal of Paleontology, 569, 84102.Google Scholar