Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T19:51:41.078Z Has data issue: false hasContentIssue false

Annual cycles of pressure, temperature, absolute humidity and precipitable water from the radiosoundings performed at Dome C, Antarctica, over the 2005–2009 period

Published online by Cambridge University Press:  03 July 2012

Claudio Tomasi*
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, I-40129 Bologna, Italy
Boyan H. Petkov
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, I-40129 Bologna, Italy International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34014 Trieste, Italy
Elena Benedetti
Affiliation:
Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, I-40129 Bologna, Italy

Abstract

A four-year set of vertical profiles of pressure, temperature and relative humidity derived from 1113 radiosoundings performed at Dome C (Antarctica) at 12h00 UT of each day, from late March 2005 to the end of March 2009, was examined by following a complex procedure for removing the most important lag errors and dry biases from the temperature and moisture data. The analysis provides evidence of annual cycles over the four years, characterizing the pressure and temperature conditions at the surface and at the various troposphere and low stratosphere levels, with maxima in summer and wide minima in winter for both parameters. Specific studies of the thermal parameters characterizing the ground layer and the tropopause region are also presented to describe their annual average variations. The analysis of moisture parameters indicates that absolute humidity varies regularly with season within the low troposphere, presenting well marked peaks in the summer months. Consequently, precipitable water was found to vary regularly during the year, from values of 0.2–0.4 mm in the winter to more than 0.6 mm in summer. The main year-to-year variations characterizing the monthly mean vertical profiles of pressure, temperature and moisture parameters are also described.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aristidi, E., Agabi, K., Azouit, M., Fossat, E., Vernin, J., Travouillon, T., Lawrence, J.S., Meyer, C., Storey, J.W.V., Halter, B., Roth, W.L.Walden, V. 2005. An analysis of temperatures and wind speeds above Dome C, Antarctica. Astronomy & Astrophysics, 430, 739746.CrossRefGoogle Scholar
Bolton, D. 1980. The computation of equivalent potential temperature. Monthly Weather Review, 108, 10461053.2.0.CO;2>CrossRefGoogle Scholar
Cady-Pereira, K.E., Shephard, M.W., Turner, D.D., Mlawer, E.J., Clough, S.A.Wagner, T.J. 2008. Improved daytime column-integrated precipitable water from Vaisala radiosonde humidity sensors. Journal of Atmospheric and Oceanic Technology, 25, 873883.CrossRefGoogle Scholar
Dalrymple, P. 1966. A physical climatology of the Antarctic Plateau. Antarctic Research Series, 9, 195231.Google Scholar
Dubin, M., Sissenwine, N.Teweles, S. 1966. U.S. standard atmosphere supplements, 1966. Washington, DC: US Government Printing Office, 289 pp.CrossRefGoogle Scholar
Genthon, C., Town, M.S., Six, D., Favier, V., Argentini, S.Pellegrini, A. 2010. Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. Journal of Geophysical Research, 10.1029/2005JD012741.CrossRefGoogle Scholar
Gettelman, A., Walden, V.P., Miloshevich, L.M., Roth, W.L.Halter, B. 2006. Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. Journal of Geophysical Research, 10.1029/2005JD006636.CrossRefGoogle Scholar
Goff, J.A.Gratch, S. 1946. Low-pressure properties of water from -160 to 212 F. Transactions of the American Society of Heating and Ventilating Engineers, 52, 95122.Google Scholar
Hirasawa, N., Nakamura, H.Yamanouchi, T. 2000. Abrupt changes in meteorological conditions observed at an inland Antarctic station in association with wintertime blocking formation. Geophysical Research Letters, 27, 19111914.CrossRefGoogle Scholar
Hudson, S.R., Town, M.S., Walden, V.P.Warren, S.G. 2004. Temperature, humidity, and pressure response of radiosondes at low temperatures. Journal of Atmospheric and Oceanic Technology, 21, 825836.2.0.CO;2>CrossRefGoogle Scholar
Hyland, R.W.Wexler, A. 1983. Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. Transactions of the American Society of Heating and Ventilating Engineers, 89, 500519.Google Scholar
Kenyon, S.L.Storey, J.W.V. 2006. A review of optical sky brightness and extinction at Dome C, Antarctica. Publications of the Astronomical Society of the Pacific, 118, 489502.CrossRefGoogle Scholar
Kuhn, M., Kundla, L.S.Streschein, L.A. 1977. The radiation budget at Plateau Station, Antarctica, 1966–1967. Antarctic Research Series, 25, 4173.CrossRefGoogle Scholar
List, R.J. 1966. Smithsonian meteorological tables, 6th edition. Washington, DC: Smithsonian Institution, 350364.Google Scholar
Lomb, N.R. 1976. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 447462.CrossRefGoogle Scholar
Luers, J.K. 1997. Temperature error of the Vaisala RS90 radiosonde. Journal of Atmospheric and Oceanic Technology, 14, 15201532.2.0.CO;2>CrossRefGoogle Scholar
Luers, J.K.Eskridge, R.E. 1995. Temperature corrections for the VIZ and Vaisala radiosondes. Journal of Applied Meteorology, 34, 12411253.2.0.CO;2>CrossRefGoogle Scholar
Mahesh, A., Walden, V.P.Warren, S.G. 1997. Radiosonde temperature measurements in strong inversions: correction for thermal lag based on an experiment at the South Pole. Journal of Atmospheric and Oceanic Technology, 14, 4553.2.0.CO;2>CrossRefGoogle Scholar
Miloshevich, L.M., Paukkunen, A., Vömel, H.Oltmans, S.J. 2004. Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. Journal of Atmospheric and Oceanic Technology, 21, 13051327.2.0.CO;2>CrossRefGoogle Scholar
Miloshevich, L.M., Vömel, H., Whiteman, D.N.Leblanc, T. 2009. Accuracy assessment and corrections of Vaisala RS92 radiosonde water vapor measurements. Journal of Geophysical Research, 10.1029/2008JD011565.CrossRefGoogle Scholar
Miloshevich, L.M., Vömel, H., Paukkunen, A., Heymsfield, A.J.Oltmans, S.J. 2001. Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. Journal of Atmospheric and Oceanic Technology, 18, 135156.2.0.CO;2>CrossRefGoogle Scholar
Miloshevich, L.M., Vömel, H., Whiteman, D.N., Lesht, B.M., Schmidlin, F.J.Russo, F. 2006. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. Journal of Geophysical Research , 10.1029/2005JD006083.CrossRefGoogle Scholar
Murphy, D.M.Koop, T. 2005. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131, 15391565.CrossRefGoogle Scholar
Randel, W.J.Wu, F. 2010. The Polar summer tropopause inversion layer. Journal of the Atmospheric Sciences, 67, 25722581.CrossRefGoogle Scholar
Ricaud, P., Gabard, B., Derrien, S., Chaboureau, J.-P., Rose, T., Mombauer, A.Czekala, H. 2010. HAMSTRAD-Tropo, a 183-GHz radiometer dedicated to sound tropospheric water vapor over Concordia Station, Antarctica. IEEE Transactions on Geoscience & Remote Sensing, 48, 13651380.CrossRefGoogle Scholar
Rowe, P., Miloshevich, L.M., Turner, D.D.Walden, V.P. 2008. Quantification of a dry bias in radiosonde humidity profiles over Antarctica. Journal of Atmospheric and Oceanic Technology, 25, 15291541.CrossRefGoogle Scholar
Scargle, J.D. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis on unevenly spaced data. The Astrophysical Journal, 263, 835853.CrossRefGoogle Scholar
Tomasi, C., Petkov, B., Benedetti, E., Valenziano, L.Vitale, V. 2011a. Analysis of a 4 year radiosonde dataset at Dome C for characterizing temperature and moisture conditions of the Antarctic atmosphere. Journal of Geophysical Research , 10.1029/2011JD015803.CrossRefGoogle Scholar
Tomasi, C., Petkov, B., Dinelli, B.M., Castelli, E., Arnone, E.Papandrea, E. 2011b. Monthly mean vertical profiles of pressure, temperature and water vapour volume mixing ratio in the polar stratosphere and low mesosphere from a multi-year set of MIPAS-ENVISAT limb-scanning measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 22372271.CrossRefGoogle Scholar
Tomasi, C., Cacciari, A., Vitale, V., Lupi, A., Lanconelli, C., Pellegrini, A.Grigioni, P. 2004. Mean vertical profiles of temperature and absolute humidity from a twelve-year radiosounding dataset at Terra Nova Bay (Antarctica). Atmospheric Research, 71, 139169.CrossRefGoogle Scholar
Tomasi, C., Petkov, B., Stone, R.S., Benedetti, E., Vitale, V., Lupi, A., Mazzola, M., Lanconelli, C., Herber, A.von Hoyningen-Huene, W. 2010. Characterizing polar atmospheres and their effect on Rayleigh-scattering optical depth. Journal of Geophysical Research , 10.10129/2009JD012852.CrossRefGoogle Scholar
Tomasi, C., Petkov, B., Benedetti, E., Vitale, V., Pellegrini, A., Dargaud, G., De Silvestri, L., Grigioni, P., Fossat, E., Roth, W.L.Valenziano, L. 2006. Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. Journal of Geophysical Research , 10.1029/2005JD006976.CrossRefGoogle Scholar
Tomikawa, Y., Nishimura, Y.Yamanouchi, T. 2009. Characteristics of tropopause and tropospheric inversion layer in the polar region. Scientific Online Letters on the Atmosphere, 5, 141144.Google Scholar
Town, M.S., Walden, V.P.Warren, S.G. 2005. Spectral and broadband longwave downwelling radiative fluxes, cloud radiative forcing and fractional cloud cover over the South Pole. Journal of Climate, 18, 42354252.CrossRefGoogle Scholar
Town, M.S., Walden, V.P.Warren, S.G. 2007. Cloud cover over the South Pole from visual observations, satellite retrievals, and surface-based infrared radiation measurements. Journal of Climate, 20, 544559.CrossRefGoogle Scholar
Walden, V.P., Warren, S.G.Murcray, F.J. 1998. Measurements of the downward longwave radiation spectrum over the Antarctic Plateau and comparisons with a line-by-line radiative transfer model for clear skies. Journal of Geophysical Research, 103, 38253846.CrossRefGoogle Scholar
Walden, V.P., Roth, W.L., Stone, R.S.Halter, B. 2006. Radiometric validation of the Atmospheric Infrared Sounder over the Antarctic Plateau. Journal of Geophysical Research , 10.1029/2005JD006357.CrossRefGoogle Scholar
Walden, V.P., Town, M.S., Halter, B.Storey, J.W.V. 2005. First measurements of the infrared sky brightness at Dome C, Antarctica. Publications of the Astronomical Society of the Pacific, 117, 300308.CrossRefGoogle Scholar
Wang, J., Cole, H.L., Carlson, D.J., Miller, E.R., Beierle, K., Paukkunen, A.Laine, T.K. 2002. Corrections of humidity measurement errors from the Vaisala RS80 radiosonde - application to TOGA COARE data. Journal of Atmospheric and Oceanic Technology, 19, 9811002.2.0.CO;2>CrossRefGoogle Scholar
WMO. 1957. Meteorology - a three dimensional science. World Meteorological Organization Bulletin, 6, 134138.Google Scholar