Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T17:41:48.718Z Has data issue: false hasContentIssue false

Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system (Papuk Nature Park, Croatia)

Published online by Cambridge University Press:  03 May 2012

Maria Špoljar*
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
Tvrtko Dražina
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
Jasmina Šargač
Affiliation:
Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
Koraljka Kralj Borojević
Affiliation:
Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
Petar Žutinić
Affiliation:
Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
*
*Corresponding author: mspoljar@zg.biol.pmf.hr
Get access

Abstract

In order to determine the influence of lentic habitats and macrophyte stands on the plankton development and seston flux, an investigation of zooplankton was carried out in the karst Jankovac flow-through system (Papuk Nature Park, Croatia). The system was characterized by low abundance (1–116 ind.L1) and high diversity of identified zooplankton. Eighty-six taxa were recorded, comprising 57 rotifers, 15 cladocerans, 8 copepods and 6 members of other groups of organisms. The spatial oscillations of environmental parameters and biocoenosis assemblage revealed statistically significant differences between lotic and lentic habitats, as well as between vegetated and non-vegetated stations. These differences mainly respond to higher concentration of food resources and zooplankton/zooseston abundance and biomass in lentic, especially vegetated, habitats. This is also proved by results of principal component analysis (PCA), which suggested that the main drivers of development of the planktonic community were the food resources and the avoidance of flow velocity. Accordingly, shoreline areas with submerged macrophyte stands of Hippuris vulgaris L. were the most productive parts, represented by highest zooplankton abundance, biomass and biodiversity. Flow velocity significantly affected crustaceans assemblage, so that higher abundances of the larger cladocerans and copepods were achieved in vegetated stations with low flow velocity, while rotifers showed to be rheotolerance organisms. On the other hand, the longitudinal discontinuum of the stream channel by two man-made reservoirs could offer new habitats to enrich seston with organic particles and bioseston. The results of our study pronounce the need for further monitoring of this hydrosystem, especially considering biodiversity and microhabitats conservation.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbulut, N.E., 2004. The determination of relationship between zooplankton and abiotic factors using canonical correspondence analysis (CCA) in the Ova Stream (Ankara/Turkey). Acta Hydrochim. Hydrobiol., 32, 434441.CrossRefGoogle Scholar
APHA, 1985. Standard Methods for the Examination of Water and Waste (12th edn,), American Public Health Association, New York, 1268 p.
Baranyi, C., Hein, T., Holarek, C., Keckeis, S. and Schiemer, F., 2002. Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biol., 47, 473482.CrossRefGoogle Scholar
Basu, B.K. and Pick, F.R., 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr., 41, 15721577.Google Scholar
Basu, B.K., Kalff, J. and Pinel-Alloul, B., 2000. The influence of macrophyte beds on plankton  communities and their export from fluvial lakes in the St. Lawrence River. Freshwater Biol., 45, 373382.CrossRefGoogle Scholar
Bednarek, A.T. and Hart, D.D., 2005. Modifying dam operations to restore rivers: ecological  responses to Tennessee River dam mitigation. Ecol. Appl., 15, 9971008.CrossRefGoogle Scholar
Beklioglu, M. and Jeppesen, E., 1999. Behavioural response of plant-associated Eurycercus lamellatus (Ö.F. Müller) to different food sources and fish cues. Aquat. Ecol., 33, 167173.CrossRefGoogle Scholar
Bogdan, K.G. and Gilbert, J.J., 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia, 72, 331340.CrossRefGoogle ScholarPubMed
Breitig, G. and von Tümpling, W., 1982. Ausgewaehlte Methoden der Wasseruntersuchung, Band II. Biologische, mikrobiologische und toxikologische Methoden, VEB Gustav Fischer Verlag, Jena, 579 p.Google Scholar
Bukvić, I., Kerovec, M., Plenkovic, A. and Mrakovcic, M., 1998. Impact of silver and bighead carp (Cyprinidae) on plankton and water quality in fish ponds. Biologia, Bratislava, 53, 145157.Google Scholar
Burger, D.F., Hogg, I.D. and Green, J.D., 2002. Distribution and abundance of zooplankton in  the Waikato River, New Zeland. Hydrobiologia, 479, 3138.CrossRefGoogle Scholar
Burks, R.L., Jeppesen, E. and Lodge, D.M., 2001a. Littoral zone structures as Daphnia refugia  against fish predators. Limnol. Oceanogr., 46, 230237.CrossRefGoogle Scholar
Burks, R.L., Jeppesen, E. and Lodge, D.M., 2001b. Pelagic prey and benthic predators: impact of odonate predation on Daphnia. J. N. Am. Benthol. Soc., 20, 615628.CrossRefGoogle Scholar
Castro, B.B., Antunes, S.C., Pereira, R., Soares, A.M.V.M. and Gonçalves, F., 2005. Rotifer community structure in three shallow lakes: seasonal fluctuations and explanatory factors. Hydrobiologia, 543, 221232.CrossRefGoogle Scholar
Cazzanelli, M., Warming, T.P. and Christoffersen, K.S., 2008. Emergent and floating-leaved  macrophytes as refuge for zooplankton in a eutrophic temperate lake without  submerged vegetation. Hydrobiologia, 605, 113122.CrossRefGoogle Scholar
Descy, J.P., 1993. Phytoplankton composition and dynamics in the river Meuse (Belgium). Arch. Hydrobiol. Suppl., 78, 225245.Google Scholar
Duggan, I.C., Green, J.D., Thompson, K. and Shiel, R.J., 2001. The influence of macrophytes on the spatial distribution of littoral rotifers. Freshwater Biol., 46, 777786.CrossRefGoogle Scholar
Dumont, H.J., van de Velde, I. and Dumont, S., 1975. The dry weight in a selection of  Cladocera, Copepoda and rotifera from the plankton, periphyton and benthos of  continental waters. Oecologia, 19, 7592.CrossRefGoogle Scholar
Einsle, U., 1993. Crustacea, Copepoda, Calanoida und Cyclopoida, Gustav Fischer Verlag, Berlin, 208 p.Google Scholar
El-Shabrawy, G.M. and Dumont, H.J., 2003. Spatial and seasonal variation of the zooplankton  in the coastal zone and main khors of Lake Nasser (Egypt). Hydrobiologia, 491, 119132.CrossRefGoogle Scholar
Eriksson, A.I., 2002. Can predation by net-spinning caddis larvae (Trichoptera: Hydropsyche  siltalai) cause longitudinal changes in zooplankton species composition in lake-outlet  streams? Arch. Hydrobiol., 153, 231244.CrossRefGoogle Scholar
Estlander, S., Nurminen, L., Olin, M., Vinni, M. and Horppila, J., 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for  crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia, 620, 109120.CrossRefGoogle Scholar
Fitzmaurice, P., 1979. Selective predation on Cladocera by brown trout Salmo trutta L. J. Fish. Biol., 15, 521525.CrossRefGoogle Scholar
Gliwicz, Z.M. and Rykowska, A., 1992. “Shore avoidance” in zooplankton: a predator-induced behaviour or predator-induced mortality? J. Plankton Res., 14, 13311342.CrossRefGoogle Scholar
González-Sagrario, M.A., Balseiro, E., Ituarte, R. and Spivak, E., 2009. Macrophytes as refuge or risky area for zooplankton: a balance set by littoral predacious macroinvertebrates. Freshwater Biol., 54, 10421053.CrossRefGoogle Scholar
Habdija, I., Primc-Habdija, B., Matoničkin, R., Kučinić, M., Radanović, I., Miliša, M., and Mihaljević, Z., 2004. Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in Karst running water. Biologia, 59, 577593.Google Scholar
Hart, D.D. and Finelli, C.M., 1999. Physical-biological coupling in streams: The pervasive effects of flow on benthic organisms. Annu. Rev. Ecol. Syst., 30, 36395.CrossRefGoogle Scholar
Höll, K., 1986. Wasser Untersuchung, Beurteilung, Aufbereitung, Chemie, Bakteriologie, Virologie, Biologie (7th edn.), Walter de Gruyter Verlag, Berlin, 393 p.Google Scholar
Holst, H., Zimmermann, H., Kausch, H. and Koste, W., 1998. Temporal and spatial dynamics of planktonic rotifers in the Elbe Estuary during spring. Estuar. Coast. Shelf Sci., 47, 261273.CrossRefGoogle Scholar
Horppila, J. and Nurminen, L., 2005. Effects of different macrophyte growth forms on  sediment and P resuspension in a shallow lake. Hydrobiologia, 545, 167175.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J.P., Sondergaard, M., Lauridsen, T., Pedersen, J.P. and Jensen, L., 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151164.CrossRefGoogle Scholar
Jersabek, C.D., Brancelj, A., Stoch, F. and Schabetsberger, R., 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia, 453/454, 309324.CrossRefGoogle Scholar
Kalff, J., 2002. Limnology: Inland Water Ecosystems, Prentice Hall, Upper Saddle River, New Jersey, 592 p.Google Scholar
Kuczyńska-Kippen, N., 2003. The distribution of rotifers (Rotifera) within a single Myriophyllum bed. Hydrobiologia, 506, 327331.CrossRefGoogle Scholar
Kuczyńska-Kippen, N., 2005. On body size and habitat selection in rotifers in a macrophyte-dominatedlake Budzyńskie, Poland. Aquat. Ecol., 39, 447454.Google Scholar
Kuczyńska-Kippen, N. and Nagengast, B., 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia, 559, 203212.CrossRefGoogle Scholar
Lair, N., 1980. The rotifer fauna of the River Loire (France), at the level of the nuclear power plants. Hydrobiologia, 73, 153160.CrossRefGoogle Scholar
Lair, N. and Reyes-Marchant, P., 1997. The potamoplankton of the Middle Loire and the role  of the “moving littoral” in downstream transfer of algae and rotifers. Hydrobiologia, 356, 3352.CrossRefGoogle Scholar
Lau, S.S.S. and Lane, S.N., 2002. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Res., 36, 35933601.CrossRefGoogle Scholar
Lauridsen, T. and Lodge, D.M., 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr., 4, 794798.CrossRefGoogle Scholar
Malard, F., Turquin, M.J. and Magniez, G., 1997. Filter effect of karstic spring ecotones on the population structure of the hypogean amphipod Niphargus virei. In: Gilbert, J., Mathieu, J. and Fournier, F. (eds.), Groundwater/Surface Water Ecotones: Biological and Hydrological Interactions and Management Options, Cambridge University Press, Cambridge, 4050.Google Scholar
Malley, D.F., Lawrence, S.G., MacIver, M.A. and Findlay, W.J., 1989. Range of variation in estimates of dry weight for planktonic Crustacea and Rotifera from temperate North American lakes. Can. Tech. Rep. Fish. and Aquat. Sci., 1666, 149.Google Scholar
Margaritora, F., 1983. Cladoceri (Crustacea: Cladocera). Guide per il Reconoscimiento delle Specie Animali delle Acque Interne 22, Consiglio Nazionale delle Ricerche, Roma, 167 p.Google Scholar
Meerhoff, M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W. and Jeppesen, E., 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biol., 51, 13201330.CrossRefGoogle Scholar
Meerhoff, M., Iglesias, C., De Mello, F.T., Clemente, J.M., Jensen, E., Lauridsen, T.L. and Jeppesen, E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biol., 52, 10091021.CrossRefGoogle Scholar
Mrakovčić, M., Mihaljević, Z., Mustafić, P., Zanella, D., Ćaleta, M. and Marčić, Z., 2008. Ichthyofauna and macroinvertebrates in major stream of Papuk. Nature Park. Internal report, in Croatian, 80 p.
Nikolić, T. and Topić, J. 2005. Red Book of Vaskular Flora of Croatia. Ministry of Culture, The State Institute for Nature Protection, Zagreb, 693 p.Google Scholar
Nusch, E.A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol., 14, 1436.Google Scholar
Obertegger, U., Borsato, A. and Flaim, G., 2010. Rotifer-crustacean interactions in a  pseudokarstic lake: influence of hydrology. Aquat. Ecol., 44, 121130.CrossRefGoogle Scholar
Obertegger, U., Flaim, G., Braioni, M.G., Sommaruga, R., Corradini, F. and Borsato, A., 2007. Water residence time as a driving force of zooplankton structure and succession. Aquat. Sci., 69, 575583.CrossRefGoogle Scholar
Rennella, A.M. and Quiros, R., 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia, 556, 181191.CrossRefGoogle Scholar
Reynolds, C.S., Carling, P.A. and Beven, K.J., 1991. Flow in river channels: new insights into hydraulic retention. Arch. Hydrobiol., 121, 171179.Google Scholar
Sandlund, O.T., 1982. The drift of zooplankton and microzoobenthos in the river Strandaelva,  western Norway. Hydrobiologia, 94, 3348.CrossRefGoogle Scholar
Schabetsberger, R., Brozek, S., Entachter, K., Jersabek, C. and Goldschmid, A., 1996. Effects of temperature and body weight on gastric evacuation rates of Alpine newt (Triturus alpestris) larvae. Herpetol. J., 6, 7581.Google Scholar
Schabetsberger, R., Grill, S., Hauser, G. and Wukits, P., 2006. Zooplankton successions in neighboring lakes with contrasting impacts of amphibian and fish predators. Int. Rev. Hydrobiol., 91, 197221.CrossRefGoogle Scholar
Schiemer, F., Keckeis, H., Reckendorfer, W. and Winkler, G., 2001. The “inshore retention concept” and its significance for large rivers. Arch. Hydrobiol. Suppl., 135, 509516.Google Scholar
Sertić Perić, M., Miliša, M., Primc-Habdija, B. and Habdija, I., 2011. Seasonal and fine-scale spatial patterns of drift and seston in a tufa-depositing barrage hydrosystem. Fund. Appl. Limnol., 178, 131145.CrossRefGoogle Scholar
Sluss, T.D., Cobbs, G.A. and Thorp, J.H., 2008. Impact of turbulence on riverine zooplankton: a Mesocosm experiment. Freshwater Biol., 53, 19992010.CrossRefGoogle Scholar
Špoljar, M., Habdija, I. and Primc-Habdija, B., 2007a. Transport of seston in the karstic  hydrosystem of the Plitvice Lakes (Croatia). Hydrobiologia, 579, 199209.CrossRefGoogle Scholar
Špoljar, M., Primc-Habdija, B. and Habdija, I., 2007b. The Influence of the lotic and lentic  stretches on the zooseston flux through the Plitvice Lakes (Croatia). Ann. Limnol. ‐ Int. J. Lim., 43, 2940.CrossRefGoogle Scholar
Špoljar, M., Dražina, T., Ostojić, A., Kralj Borojević, K., Šargač, J., Štafa, D. and Meseljević, M., 2008. Travertine biocenosys of Jankovac Waterfall, Papuk Nature Park. Internal report, in Croatian, 73 p.
Špoljar, M., Dražina, T., Ostojić, A., Miliša, M., Gligora Udovič, M. and Štafa, D., 2012. Bryophyte communities and seston in a karst stream (Jankovac Stream, Papuk Nature Park, Croatia). Ann. Limnol. ‐ Int. J. Lim., 48, 125138.CrossRefGoogle Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Krajcar-Bronić, I. and Sliepčević, A., 1985. Calcite deposition processes in karst waters with special emphasis on the Plitvice lakes, Yugoslavia. Carsus Jugosl., 11, 101204.Google Scholar
Stemberger, R.S. and Gilbert, J.J., 1985. Body size, food concentration and population growth  in planktonic rotifers. Ecology, 66, 11511159.CrossRefGoogle Scholar
Suren, A.M., 1991. Bryophytes as invertebrate habitat in two new Zeland alpine streams. Freshwater Biol., 26, 399418.CrossRefGoogle Scholar
Vadebouncoeur, Y., 1994. Longitudinal dynamics of seston concentration and composition in  a lake outlet stream. J. N. Am. Benthol.Soc., 13, 181189.CrossRefGoogle Scholar
Van de Meutter, F., Cottenie, K. and De Meester, L., 2008. Exploring differences in macroinvertebrate communities from emergent, floating-leaved and submersed vegetation in shallow ponds. Fund. Appl. Limnol., 173, 4757.CrossRefGoogle Scholar
Voigt, M. and Koste, W., 1978. Die Rädertiere Mitteleuropas, Gebrüder Borntraeger., Berlin, Stuttgart, 673 p.Google Scholar
Walz, N. and Welker, M., 1998. Plankton development in a rapidly flushed lake in the river Spree system (Neuendorfer See, Northeast Germany). J. Plankton Res., 20, 20712087.CrossRefGoogle Scholar
Węglenska, T. and Ejsmont-Karabin, J., 1994. The short and long term variability of the  zooplankton structure in the Zagrzyński reservoir. Arch. Hydrobiol., 40, 117126.Google Scholar
Welker, M. and Walz, N., 1998. Can mussels control the plankton in rivers? – A planktological  approach applying a Lagrangian sampling strategy. Limnol. Oceanogr., 43, 753762.CrossRefGoogle Scholar
Winder, M., Bürgi, H.R. and Spaak, P., 2003. Mechanisms regulating zooplankton populations in a high-mountain lake. Freshwater Biol., 48, 795809.CrossRefGoogle Scholar
Zimmermann-Timm, H., Holst, H. and Kausch, H., 2007. Spatial dynamics of rotifers in a  large lowland river, the Elbe, Germany: how important are retentive shoreline habitats  for the plankton community? Hydrobiologia, 593, 4958.CrossRefGoogle Scholar