Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T16:52:27.706Z Has data issue: false hasContentIssue false

Different modes of food restriction and compensatory growth in double-muscled Belgian Blue bulls: animal performance, carcass and meat characteristics

Published online by Cambridge University Press:  18 August 2016

J. L. Hornick
Affiliation:
Department of Animal Nutrition, B43
C. van Eenaeme
Affiliation:
Department of Animal Nutrition, B43
A. Clinquart
Affiliation:
Department of Food Science (Meat Technology), B43 bis; Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, 4000 Liège, Belgium
O. Gerard
Affiliation:
Department of Animal Nutrition, B43
L. Istasse
Affiliation:
Department of Animal Nutrition, B43
Get access

Abstract

Fifty double-muscled Belgian Blue bulls were divided into five groups. The first group (control, CG) was given, on an ad libitum basis, a fattening diet based on sugar-beet pulp. In G2 and G3, fattening was interrupted 103 and 187 days, respectively after the beginning of the experiment, by approximately a 2-month period of food restriction during which the animals received a maintenance ration. The last two groups, namely G4 and G5, received for about 4 months a limited amount of the restriction diet to support growth of 0·5 and 0 kg/day, respectively, before being fattened as CG. The average daily gain was 1·48 kg/day in CG v. 1·33, 1·30, 1·43 and 1·61 kg/day during the period of ad libitum feeding in G2, G3, G4 and G5. Higher nitrogen (N) balance during compensatory growth in G2, G4 and G5 (78·8, 81·0 and 74·6 v. 53·3 g N per day in CG, P < 0·001) resulted mainly from a higher efficiency of N retention. In G3, however, compensatory growth was characterized by lower N digestibility and efficiency of N retention. Muscle proportion in the carcass was higher in G3 while fat plus connective tissue proportion was lower (P < 0·05). Muscle pH values in CG were lower than in the other groups (P < 0·01) but ether extract values were higher. The intramuscular fat of G2 and G3 was characterized by higher proportions of polyunsaturated fatty acids.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberle, E. D., Reeves, E. S., Judge, M. D., Hunsley, R. E. and Perry, T. W. 1981. Palatability and muscle characteristics of cattle with controlled weight gain: time on high energy diet. Journal of Animal Science 52: 757763.CrossRefGoogle Scholar
Association of Official Analytical Chemists. 1975. Official methods of analysis, 12th edition. Association of Official Analytical Chemists, Arlington, VA.Google Scholar
Baker, R. D., Young, N. E. and Laws, J. 1992. The effect of diet in winter on the body composition of young steers and subsequent performance during the grazing season. Animal Production 54: 211219.Google Scholar
Blum, J. W., Schnyder, W., Kunz, P. L., Blom, A. K., Bickel, H. and Schüren, A. 1985. Reduced and compensatory growth: endocrine and metabolic changes during food restriction and refeeding in steers. Journal of Nutrition 115: 417424.Google Scholar
Boccard, R., Buchter, L., Casteels, E., Cosentino, E., Dransfield, E., Hood, D. E., Joseph, R. L., Macdougall, D. B., Rhodes, D. N., Schon, I., Tinbergen, B. J. and Touraille, C. 1981. Procedures for measuring meat quality characteristics in beef production experiments. Report of a working group in the Commission of the European Communities (CEC) Beef Production Research Programme. Livestock Production Science 8: 385397.CrossRefGoogle Scholar
Carstens, G. E., Johson, D. E., Ellenberger, M. A. and Tatum, J. D. 1991. Physical and chemical components of the empty body during compensatory growth in beef steers. Journal of Animal Science 69: 32513264.CrossRefGoogle ScholarPubMed
Clinquart, A. 1996. Influence de la vitesse de croissance chez des taurillons Blanc Bleu Belge de type mixte. In Variations des performances zootechniques, des caractéristiques de la carcasse et des constituants plasmatiques chez le taurillon Blanc Bleu Belge: influence de la conformation, de la vitesse de croissance et d’un complément de matière grasse. pp. 101150. Presses de la Faculté de Médecine Vétérinaire de l’Université de Liège, Liège.Google Scholar
Clinquart, A., Eenaeme, C. van, Vooren, T. van, Hoof, J. van and Istasse, L. 1994. Carcass characteristics and meat quality of dual purpose type bulls as influenced by two growth patterns during the growing period. Proceedings of the 40th international congress of meat science and technology, Den Haag.Google Scholar
Coleman, S. W. and Evans, B. C. 1986. Effects of nutrition, age and size on compensatory growth in two breeds of steers. Journal of Animal Science 63: 19681982.Google Scholar
Eenaeme, C. van, Clinquart, A., Baldwin, P., Hornick, J. L. and Istasse, L. 1992. Compensatory growth, muscle protein turnover and hormonal status in Belgian Blue bulls. Mededelingen Faculteit Landbouwwetenschappen Universiteit Gent 57: 1963-1971.Google Scholar
Eenaeme, C. van, Evrard, M., Hornick, J. L., Baldwin, P., Diez, M. and Istasse, L. 1998. Nitrogen balance and myofibrillar protein turnover in double muscled Belgian Blue bulls in relation to compensatory growth after different periods of restricted feeding. Canadian Journal of Animal Science 78: 549559.CrossRefGoogle Scholar
Fiems, L. O., Campeneere, S. de, Bogaerts, D. F., Cottyn, B. G. and Boucqué, Ch. V. 1998. The influence of dietary energy and protein levels on performance, carcass and meat quality of Belgian White-blue double-muscled finishing bulls. Animal Science 66: 319327.Google Scholar
Geay, Y. and Robelin, J. 1979. Variation of meat production capacity in cattle due to genotype and level of reeding: genotype-nutrition interaction. Livestock Production Science 6: 263276.CrossRefGoogle Scholar
Hornick, J. L. 1998. Performances, metabolism and hormonal status in Belgian Blue bulls during compensatory growth, p. 93. Presses de la Faculté de Médecine Vétérinaire de l’Université de Liège, Liège.Google Scholar
Hornick, J. L., Eenaeme, C. van, Clinquart, A., Diez, M. and Istasse, L. 1998a. Different periods of feed restriction before compensatory growth in Belgian blue bulls. I. Animal performances, nitrogen balance, meat characteristics and fat composition. Journal of Animal Science 76: 249259.CrossRefGoogle ScholarPubMed
Hornick, J. L., Raskin, P., Clinquart, A., Dufrasne, I., Eenaeme|C. van and Istasse, L. 1998b. Compensatory growth in Belgian Blue bulls previously grazed at two stocking rates: animal performance and meat characteristics. Animal Science 67: 427434.CrossRefGoogle Scholar
Leat, W. M. F. 1983. The pools of tissue constituents and products: adipose tissue and structural lipids. In Dynamic biochemistry of animal productio. (ed. Riis, P. M.), pp. 109136. Elsevier, Oxford.Google Scholar
Martin, S. and Torréele, G. 1962. L’appréciation de la qualité des carcasses bovines par la découpe du segment tricostal 7-8-9. Annales de Zootechnie 11: 217224.Google Scholar
Minet, V., Eenaeme, C. van, Raskin, P., Dufrasne, I., Clinquart, A., Hornick, J. L., Diez, M., Mayombo, A. P., Baldwin, P., Bienfait, J. M. and Istasse, L. 1996. Fiche technique. In Stratégies d’engraissement du taurillon Blanc Bleu belge culard. Performances, qualité des carcasses et de la viande, approche métabolique et bilan économique, pp. 108117. Ministère des Classes Moyennes et de l’Agriculture, Administration Recherche et Développement, Service Recherche, Bruxelles, Belgium.Google Scholar
Minitab Incorporated. 1995. Minitab reference manual. Data Tech. Industries, Valley Forge, USA.Google Scholar
Rompala, R. E., Jones, S. D. M., Buchanan-Smith, J. G. and Bayley, H. S. 1985. Feedlot performance and composition of gain in late-maturing steers exhibiting normal and compensatory growth. Journal of Animal Science 61: 637646.CrossRefGoogle Scholar
Ter Meulen, V. U., Nordbeck, H. and Molnár, S. 1975. Untersuchungen zur Morphologie und Physiologie des Perirenalen Fettgewebes beim Kalb und der Einfluss der Umgebungstemperatur auf seine Funktion. 2. Mitteilung Methodik und Versuchsergebnisse. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 35: 144163.Google Scholar
Wilson, P. N. and Osbourn, D. F. 1960. Compensatory growth after undernutrition in mammals and birds. Biological Reviews 35: 324363.CrossRefGoogle ScholarPubMed
Wright, I. A. and Rüssel, A. J. F. 1991. Changes in the body composition of beef cattle during compensatory growth. Animal Production 52: 105113.Google Scholar
Yambayamba, E. S. K., Price, M. A. and Jones, S. D. M. 1996. Compensatory growth of carcass tissues and visceral organs in beef heifers. Livestock Production Science 46: 1932.CrossRefGoogle Scholar