Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T22:03:48.186Z Has data issue: false hasContentIssue false

Essential oils and essential oil compounds in animal production as antimicrobials and anthelmintics: an updated review

Published online by Cambridge University Press:  04 July 2023

Eduardo Henrique Custódio Matté
Affiliation:
Undergraduate Program in Biotechnology, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
Fernando Bittencourt Luciano*
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
Alberto Gonçalves Evangelista*
Affiliation:
Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
*
Author for correspondence: Fernando Bittencourt Luciano, E-mail: fernando.luciano@pucpr.br; Alberto Gonçalves Evangelista, E-mail: alberto.evangelista@pucpr.edu.br
Author for correspondence: Fernando Bittencourt Luciano, E-mail: fernando.luciano@pucpr.br; Alberto Gonçalves Evangelista, E-mail: alberto.evangelista@pucpr.edu.br

Abstract

Several countries have shown an increased prevalence of drug resistance in animal production due to the indiscriminate use of antibiotics and antiparasitics in human and veterinary medicine. This article aims to review existing methods using naturally occurring essential oils (EOs) and their isolated compounds (EOCs) as alternatives to antimicrobials and antiparasitic compounds in animal production and, consequently, to avoid resistance. The most-reported mechanism of action of EOs and EOCs was cell membrane damage, which leads to the leakage of cytoplasmic content, increased membrane permeability, inhibition of metabolic and genetic pathways, morphologic changes, antibiofilm effects, and damage to the genetic material of infections. In parasites, anticoccidial effects, reduced motility, growth inhibition, and morphologic changes have been reported. Although these compounds regularly show a similar effect to those promoted by traditional drugs, the elucidation of their mechanisms of action is still scarce. The use of EOs and EOCs can also positively influence crucial parameters in animal production, such as body weight gain, feed conversion rate, and cholesterol reduction, which also positively impact meat quality. The application of EOs and EOCs is enhanced by their association with other natural compounds or even by the association with synthetic chemicals, which has been found to cause synergism in their antimicrobial effect. By reducing the effective therapeutical/prophylactic dose, the chances of off-flavors – the most common issue in EO and EOC application – is greatly mitigated. However, there is very little work on the combination of EOs and EOCs in large in vivo studies. In addition, research must apply the correct methodology to properly understand the observed effects; for example, the use of only high concentrations may mask potential results obtained at lower dosages. Such corrections will also allow the elucidation of finer mechanisms and promote better biotechnologic use of EOs and EOCs. This manuscript presents several information gaps to be filled before the use of EOs and EOCs are fully applicable in animal production.

Type
Review Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelqader, A, Qarallah, B, Al-Ramamneh, D and Daş, G (2012) Anthelmintic effects of citrus peels ethanolic extracts against Ascaridia galli. Veterinary Parasitology 188, 7884. https://doi.org/10.1016/j.vetpar.2012.03.003.CrossRefGoogle ScholarPubMed
Ait Dra, L, Ait Sidi Brahim, M, Boualy, B, Aghraz, A, Barakate, M, Oubaassine, S, Markouk, M and Larhsini, M (2017) Chemical composition, antioxidant and evidence antimicrobial synergistic effects of Periploca laevigata essential oil with conventional antibiotics. Industrial Crops and Products 109, 746752. https://doi.org/10.1016/j.indcrop.2017.09.028.CrossRefGoogle Scholar
Akkari, H, Ezzine, O, Dhahri, S, B'chir, F, Rekik, M, Hajaji, S, Darghouth, MA, Jamâa, MLB and Gharbi, M (2015) Chemical composition, insecticidal and in vitro anthelmintic activities of Ruta chalepensis (Rutaceae) essential oil. Industrial Crops and Products 74, 745751. https://doi.org/10.1016/j.indcrop.2015.06.008.CrossRefGoogle Scholar
Alp, M, Midilli, M, Kocabaǧli, N, Yilmaz, H, Turan, N, Gargili, A and Acar, N (2012) The effects of dietary oregano essential oil on live performance, carcass yield, serum immunoglobulin G level, and oocyst count in broilers. Journal of Applied Poultry Research 21, 630636. https://doi.org/10.3382/japr.2012-00551.CrossRefGoogle Scholar
Ambrosio, CMS, de Alencar, SM, de Sousa, RLM, Moreno, AM and Da Gloria, EM (2017) Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products 97, 128136. https://doi.org/10.1016/j.indcrop.2016.11.045.CrossRefGoogle Scholar
Amiri, N, Afsharmanesh, M, Salarmoini, M, Meimandipour, A, Hosseini, SA and Ebrahimnejad, H (2020) Effects of nanoencapsulated cumin essential oil as an alternative to the antibiotic growth promoter in broiler diets. Journal of Applied Poultry Research 29, 875885. https://doi.org/10.1016/j.japr.2020.08.004.CrossRefGoogle Scholar
Asghari, M, Abdi-Benemar, H, Maheri-Sis, N, Salamatdoust-Nobar, R, Salem, AZM, Zamanloo, M and Anele, UY (2021) Effects of emulsified essential oils blend on performance, blood metabolites, oxidative status and intestinal microflora of suckling calves. Animal Feed Science and Technology 277, 114954. https://doi.org/10.1016/j.anifeedsci.2021.114954CrossRefGoogle Scholar
Azadbakht, M, Chabra, A, Akbarabadi, AS, Motazedian, MH, Monadi, T and Akbari, F (2019) Anti-parasitic activity of some medicinal plants essential oils on Giardia lamblia and Entamoeba histolytica, in vitro. Research Journal of Pharmacognosy 7, 4147. https://doi.org/10.22127/rjp.2019.168142.1462.Google Scholar
Bassolé, IHN, Lamien-Meda, A, Bayala, B, Tirogo, S, Franz, C, Novak, J, Nebié, RC and Dicko, MH (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15, 78257839. https://doi.org/10.3390/molecules15117825.CrossRefGoogle ScholarPubMed
Bazh, EKA and El-Bahy, NM (2013) In vitro and in vivo screening of anthelmintic activity of ginger and curcumin on Ascaridia galli. Parasitology Research 112, 36793686. https://doi.org/10.1007/s00436-013-3541-x.CrossRefGoogle ScholarPubMed
Behnia, M, Haghighi, A, Komeilizadeh, H, Seyyed Tabaei, SJ and Abadi, A (2008a) In vitro antiamoebic activity of Iranian Allium sativum in comparison with Metronidazole against Entamoeba histolytica. Iranian Journal of Parasitology 3, 3238.Google Scholar
Behnia, M, Haghighi, A, Komeylizadeh, H, Tabaei, SJS and Abadi, A (2008b) Inhibitory effects of Iranian Thymus vulgaris extracts on in vitro growth of Entamoeba histolytica. The Korean Journal of Parasitology 46, 153156. https://doi.org/10.3347/kjp.2008.46.3.153.CrossRefGoogle ScholarPubMed
Bischoff, KM, Wicklow, DT, Jordan, DB, De Rezende, ST, Liu, S, Hughes, SR and Rich, JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte acremonium zeae. Current Microbiology 58, 499503. https://doi.org/10.1007/s00284-008-9353-z.CrossRefGoogle ScholarPubMed
Bouyahya, A, Abrini, J, Dakka, N and Bakri, Y (2019) Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. Journal of Pharmaceutical Analysis 9, 301311. https://doi.org/10.1016/j.jpha.2019.03.001.CrossRefGoogle ScholarPubMed
Bozkurt, M, Ege, G, Aysul, N, Akşit, H, Tüzün, AE, Küçükyllmaz, K, Borum, AE, Uygun, M, Akşit, D, Aypak, S, Simşek, E, Seyrek, K, Koçer, B, Bintaş, E and Orojpour, A (2016) Effect of anticoccidial monensin with oregano essential oil on broilers experimentally challenged with mixed Eimeria spp. Poultry Science 95, 18581868. https://doi.org/10.3382/ps/pew077.CrossRefGoogle ScholarPubMed
Camurça-Vasconcelos, ALF, Bevilaqua, CML, Morais, SM, Maciel, MV, Costa, CTC, Macedo, ITF, Oliveira, LMB, Braga, RR, Silva, RA and Vieira, LS (2007) Anthelmintic activity of Croton zehntneri and Lippia sidoides essential oils. Veterinary Parasitology 148, 288294. https://doi.org/10.1016/j.vetpar.2007.06.012.CrossRefGoogle ScholarPubMed
Carvalho, CO, Chagas, ACS, Cotinguiba, F, Furlan, M, Brito, LG, Chaves, FCM, Stephan, MP, Bizzo, HR and Amarante, AFT (2012) The anthelmintic effect of plant extracts on Haemonchus contortus and Strongyloides venezuelensis. Veterinary Parasitology 183, 260268. https://doi.org/10.1016/j.vetpar.2011.07.051.CrossRefGoogle ScholarPubMed
Ceballos, L, Canton, C, Pruzzo, C, Sanabria, R, Moreno, L, Sanchis, J, Suarez, G, Ortiz, P, Fairweather, I, Lanusse, C, Alvarez, L and Valladares, MM (2019) The egg hatch test: a useful tool for albendazole resistance diagnosis in Fasciola hepatica. Veterinary Parasitology 271, 713. https://doi.org/10.1016/j.vetpar.2019.06.001.CrossRefGoogle Scholar
Charlier, J, Rinaldi, L, Musella, V, Ploeger, HW, Chartier, C, Vineer, HR, Hinney, B, von Samson-Himmelstjerna, G, Băcescu, B, Mickiewicz, M, Mateus, TL, Martinez-Valladares, M, Quealy, S, Azaizeh, H, Sekovska, B, Akkari, H, Petkevicius, S, Hektoen, L, Höglund, J, Morgan, ER, Bartley, DJ and Claerebout, E (2020) Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Preventive Veterinary Medicine 182, 105103. https://doi.org/10.1016/j.prevetmed.2020.105103.CrossRefGoogle Scholar
Churklam, W, Chaturongakul, S, Ngamwongsatit, B and Aunpad, R (2020) The mechanisms of action of carvacrol and its synergism with nisin against Listeria monocytogenes on sliced bologna sausage. Food Control 108, 106864. https://doi.org/10.1016/j.foodcont.2019.106864.CrossRefGoogle Scholar
Claerebout, E, De Wilde, N, Van Mael, E, Casaert, S, Velde, FV, Roeber, F, Veloz, PV, Levecke, B and Geldhof, P (2020) Anthelmintic resistance and common worm control practices in sheep farms in Flanders, Belgium. Veterinary Parasitology: Regional Studies and Reports 20, 100393. https://doi.org/10.1016/j.vprsr.2020.100393.Google ScholarPubMed
Clemente, I, Aznar, M, Silva, F and Nerín, C (2016) Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Science and Emerging Technologies 36, 2633. https://doi.org/10.1016/j.ifset.2016.05.013.CrossRefGoogle Scholar
Corrêa, JAF, Evangelista, AG, de Nazareth, TM and Luciano, FB (2019) Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 8, 100494. https://doi.org/10.1016/j.mtla.2019.100494.CrossRefGoogle Scholar
Cui, H, Zhang, C, Li, C and Lin, L (2019) Antibacterial mechanism of oregano essential oil. Industrial Crops and Products 139, 111498. https://doi.org/10.1016/j.indcrop.2019.111498.CrossRefGoogle Scholar
Dadgostar, P (2019) Antimicrobial resistance: implications and costs. Infection and Drug Resistance 12, 39033910. https://doi.org/10.2147/IDR.S234610.CrossRefGoogle ScholarPubMed
De Aquino Mesquita, M, E Silva Júnior, JB, Panassol, AM, De Oliveira, EF, Vasconcelos, ALCF, De Paula, HCB and Bevilaqua, CML (2013) Anthelmintic activity of Eucalyptus staigeriana encapsulated oil on sheep gastrointestinal nematodes. Parasitology Research 112, 31613165. https://doi.org/10.1007/s00436-013-3492-2.CrossRefGoogle ScholarPubMed
De Moraes, J, Almeida, AAC, Brito, MRM, Marques, THC, Lima, TC, De Sousa, DP, Nakano, E, Mendonça, RZ and Freitas, RM (2013) Anthelmintic activity of the natural compound (+)-limonene epoxide against Schistosoma mansoni. Planta Medica 79, 253258. https://doi.org/10.1055/s-0032-1328173.Google Scholar
de Oliveira Ferreira, F, Porto, RS and Rath, S (2019) Aerobic dissipation of avermectins and moxidectin in subtropical soils and dissipation of abamectin in a field study. Ecotoxicology and Environmental Safety 183, 109489. https://doi.org/10.1016/j.ecoenv.2019.109489.CrossRefGoogle Scholar
Dey, AR, Begum, N, Anisuzzaman, A and Alam, MZ (2020) Multiple anthelmintic resistance in gastrointestinal nematodes of small ruminants in Bangladesh. Parasitology International 77, 102105. https://doi.org/10.1016/j.parint.2020.102105.CrossRefGoogle ScholarPubMed
Dominguez-Uscanga, A, Aycart, DF, Li, K, Witola, WH and Andrade Laborde, JE (2021) Anti-protozoal activity of thymol and a thymol ester against Cryptosporidium parvum in cell culture. I nternational Journal for Parasitology: Drugs and Drug Resistance 15, 126133. https://doi.org/10.1016/j.ijpddr.2021.02.003.Google Scholar
Duan, M, Gu, J, Wang, X, Li, Y, Zhang, R, Hu, T and Zhou, B (2019) Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms. Ecotoxicology and Environmental Safety 180, 114122. https://doi.org/10.1016/j.ecoenv.2019.05.005.CrossRefGoogle ScholarPubMed
El-Badry, A. A. and Al Ali, K. H. (2010). Activity of Mentha Longifolia and Ocimum Basilicum against Entamoeba Histolytica and Giardia Duodenalis.Google Scholar
Evangelista, AG, Corrêa, JAF, Pinto, ACSM and Luciano, FB (2021) The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance–a review. Critical Reviews in Food Science and Nutrition, 62, 52675283. https://doi.org/10.1080/10408398.2021.1883548.CrossRefGoogle ScholarPubMed
Fabbri, J, Maggiore, MA, Pensel, PE, Denegri, GM and Elissondo, MC (2020) In vitro efficacy study of Cinnamomum zeylanicum essential oil and cinnamaldehyde against the larval stage of Echinococcus granulosus. Experimental Parasitology 214, 107904. https://doi.org/10.1016/j.exppara.2020.107904.CrossRefGoogle ScholarPubMed
Franz, C, Baser, K and Windisch, W (2010) Essential oils and aromatic plants in animal feeding - a European perspective. A review. Flavour and Fragrance Journal 25, 327340. https://doi.org/10.1002/ffj.1967.CrossRefGoogle Scholar
Gaínza, YA, Domingues, LF, Perez, OP, Rabelo, MD, López, ER and Chagas, ACdS (2015) Anthelmintic activity in vitro of Citrus sinensis and Melaleuca quinquenervia essential oil from Cuba on Haemonchus contortus. Industrial Crops and Products 76, 647652. https://doi.org/10.1016/j.indcrop.2015.07.056.CrossRefGoogle Scholar
Giamarellou, H (2016) Epidemiology of infections caused by polymyxin-resistant pathogens. International Journal of Antimicrobial Agents 48, 614621. https://doi.org/10.1016/j.ijantimicag.2016.09.025.CrossRefGoogle ScholarPubMed
Godinho, LS, Aleixo De Carvalho, LS, Barbosa De Castro, CC, Dias, MM, Pinto, PDF, Crotti, AEM, Pinto, PLS, De Moraes, J and Da Silva Filho, AA (2014) Anthelmintic activity of crude extract and essential oil of Tanacetum vulgare (Asteraceae) against adult worms of Schistosoma mansoni. Scientific World Journal 2014, 460342. https://doi.org/10.1155/2014/460342.CrossRefGoogle ScholarPubMed
Hammer, KA and Heel, KA (2012) Use of multiparameter flow cytometry to determine the effects of monoterpenoids and phenylpropanoids on membrane polarity and permeability in staphylococci and enterococci. International Journal of Antimicrobial Agents 40, 239245. https://doi.org/10.1016/j.ijantimicag.2012.05.015.CrossRefGoogle ScholarPubMed
Han, Y, Sun, Z and Chen, W (2019) Antimicrobial susceptibility and antibacterial mechanism of Limonene against Listeria monocytogenes. Molecules 25, 33. https://doi.org/10.3390/molecules25010033.CrossRefGoogle ScholarPubMed
He, J, Sun, F, Sun, D, Wang, Z, Jin, S, Pan, Z, Xu, Z, Chen, X and Jiao, X (2020) Multidrug resistance and prevalence of quinolone resistance genes of Salmonella enterica serotypes 4,[5],12:i:- in China. International Journal of Food Microbiology 330, 108692. https://doi.org/10.1016/j.ijfoodmicro.2020.108692.CrossRefGoogle ScholarPubMed
Hemaiswarya, S and Doble, M (2009) Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 16, 9971005. https://doi.org/10.1016/j.phymed.2009.04.006.CrossRefGoogle ScholarPubMed
Hernández-Coronado, AC, Silva-Vázquez, R, Rangel-Nava, ZE, Hernández-Martínez, CA, Kawas-Garza, JR, Hume, ME and Méndez-Zamora, G (2019) Mexican oregano essential oils given in drinking water on performance, carcass traits, and meat quality of broilers. Poultry Science 98, 30503058. https://doi.org/10.3382/ps/pez094.CrossRefGoogle ScholarPubMed
Hu, W, Li, C, Dai, J, Cui, H and Lin, L (2019) Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Industrial Crops and Products 130, 3441. https://doi.org/10.1016/j.indcrop.2018.12.078.CrossRefGoogle Scholar
Hussein, MMA, Abd El-Hack, ME, Mahgoub, SA, Saadeldin, IM and Swelum, AA (2019) Effects of clove (Syzygium aromaticum) oil on quail growth, carcass traits, blood components, meat quality, and intestinal microbiota. Poultry Science 98, 319329. https://doi.org/10.3382/ps/pey348.CrossRefGoogle ScholarPubMed
Janz, JAM, Morel, PCH, Wilkinson, BHP and Purchas, RW (2007) Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleoresins on pig performance and pork quality. Meat Science 75, 350355. https://doi.org/10.1016/j.meatsci.2006.06.027.CrossRefGoogle ScholarPubMed
Jeshari, M, Riasi, A, Mahdavi, AH, Khorvash, M and Ahmadi, F (2016) Effect of essential oils and distillation residues blends on growth performance and blood metabolites of Holstein calves weaned gradually or abruptly. Livestock Science 185, 117122. https://doi.org/10.1016/j.livsci.2015.12.011.CrossRefGoogle Scholar
Ji, J, Lu, C, Kang, Y, Wang, GX and Chen, P (2012) Screening of 42 medicinal plants for in vivo anthelmintic activity against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitology Research 111, 97104. https://doi.org/10.1007/s00436-011-2805-6.CrossRefGoogle ScholarPubMed
Jiang, XR, Awati, A, Agazzi, A, Vitari, F, Ferrari, A, Bento, H, Crestani, M, Domeneghini, C and Bontempo, V (2015) Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal: An International Journal of Animal Bioscience 9, 417426. https://doi.org/10.1017/S1751731114002444.CrossRefGoogle Scholar
Ju, J, Xie, Y, Guo, Y, Cheng, Y, Qian, H and Yao, W (2019) The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Critical Reviews in Food Science and Nutrition 59, 32813292. https://doi.org/10.1080/10408398.2018.1488159.CrossRefGoogle ScholarPubMed
Katiki, LM, Chagas, ACS, Bizzo, HR, Ferreira, JFS and Amarante, AFT (2011) Anthelmintic activity of Cymbopogon martinii, Cymbopogon schoenanthus and Mentha piperita essential oils evaluated in four different in vitro tests. Veterinary Parasitology 183, 103108. https://doi.org/10.1016/j.vetpar.2011.07.001.CrossRefGoogle ScholarPubMed
Khaleque, MA, Keya, CA, Hasan, KN, Hoque, MM, Inatsu, Y and Bari, ML (2016) Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT – Food Science and Technology 74, 219223. https://doi.org/10.1016/j.lwt.2016.07.042.CrossRefGoogle Scholar
Khamesipour, F, Razavi, SM, Hejazi, SH and Ghanadian, SM (2021) In vitro and in vivo anti-toxoplasma activity of Dracocephalum kotschyi essential oil. Food Science & Nutrition 9, 522531. https://doi.org/10.1002/fsn3.2021.CrossRefGoogle ScholarPubMed
Knezevic, P, Aleksic, V, Simin, N, Svircev, E, Petrovic, A and Mimica-Dukic, N (2016) Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. Journal of Ethnopharmacology 178, 125136. https://doi.org/10.1016/j.jep.2015.12.008.CrossRefGoogle ScholarPubMed
Kwiatkowski, P, Mnichowska-Polanowska, M, Pruss, A, Masiuk, H, Dzięcioł, M, Giedrys-Kalemba, S and Sienkiewicz, M (2017) The effect of fennel essential oil in combination with antibiotics on Staphylococcus aureus strains isolated from carriers. Burns: Journal of the International Society for Burn Injuries 43, 15441551. https://doi.org/10.1016/j.burns.2017.04.014.CrossRefGoogle ScholarPubMed
Lahmar, A, Bedoui, A, Mokdad-Bzeouich, I, Dhaouifi, Z, Kalboussi, Z, Cheraif, I, Ghedira, K and Chekir-Ghedira, L (2017) Reversal of resistance in bacteria underlies synergistic effect of essential oils with conventional antibiotics. Microbial Pathogenesis 106, 5059. https://doi.org/10.1016/j.micpath.2016.10.018.CrossRefGoogle ScholarPubMed
Lanz, R, Kuhnert, P and Boerlin, P (2003) Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Veterinary Microbiology 91, 7384. https://doi.org/10.1016/S0378-1135(02)00263-8.CrossRefGoogle ScholarPubMed
Le Devendec, L, Jouy, E, Paboeuf, F, de Boisséson, C, Lucas, P, Drider, D and Kempf, I (2018) Development of a pig infection model with colistin-resistant Escherichia coli. Veterinary Microbiology 226, 8188. https://doi.org/10.1016/j.vetmic.2018.10.011.CrossRefGoogle ScholarPubMed
Li, Y, Pei, X, Zhang, X, Wu, L, Liu, Y, Zhou, H, Ma, G, Chen, Q, Liang, H and Yang, D (2019) A surveillance of microbiological contamination on raw poultry meat at retail markets in China. Food Control 104, 99104. https://doi.org/10.1016/j.foodcont.2019.04.037.CrossRefGoogle Scholar
Lin, C-M, Preston, JF and Wei, C-I (2000) Antibacterial mechanism of allyl isothiocyanate†. Journal of Food Protection 63, 727734. https://doi.org/10.4315/0362-028X-63.6.727.CrossRefGoogle ScholarPubMed
Liu, X, Cai, J, Chen, H, Zhong, Q, Hou, Y, Chen, W and Chen, W (2020) Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microbial Pathogenesis 141, 103980. https://doi.org/10.1016/j.micpath.2020.103980.CrossRefGoogle ScholarPubMed
Liu, T, Kang, J and Liu, L (2021) Thymol as a critical component of Thymus vulgaris L. Essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. Lwt 136, 110354. https://doi.org/10.1016/j.lwt.2020.110354.CrossRefGoogle Scholar
Lopes, TS, Fontoura, PS, Oliveira, A, Rizzo, FA, Silveira, S and Streck, AF (2020) Use of plant extracts and essential oils in the control of bovine mastitis. Research in Veterinary Science 131, 186193. https://doi.org/10.1016/j.rvsc.2020.04.025.CrossRefGoogle ScholarPubMed
Lu, X, Li, C and Huang, Q (2019) Combining in vitro digestion model with cell culture model: assessment of encapsulation and delivery of curcumin in milled starch particle stabilized pickering emulsions. International Journal of Biological Macromolecules 139, 917924. https://doi.org/10.1016/j.ijbiomac.2019.08.078.CrossRefGoogle ScholarPubMed
Lu, L, Shu, C, Chen, L, Yang, Y, Ma, S, Zhu, K and Shi, B (2020) Insecticidal activity and mechanism of cinnamaldehyde in C. elegans. Fitoterapia 146, 104687. https://doi.org/10.1016/j.fitote.2020.104687.CrossRefGoogle ScholarPubMed
Macedo, ITF, Bevilaqua, CML, de Oliveira, LMB, Camurça-Vasconcelos, ALF, Vieira, LdS, Oliveira, FR, Queiroz-Junior, EM, Tomé, AdR and Nascimento, NRF (2010) Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes. Veterinary Parasitology 173, 9398. https://doi.org/10.1016/j.vetpar.2010.06.004.CrossRefGoogle ScholarPubMed
Machado, M, Dinis, AM, Salgueiro, L, Custódio, JBA, Cavaleiro, C and Sousa, MC (2011) Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Experimental Parasitology 127, 732739. https://doi.org/10.1016/j.exppara.2011.01.011.CrossRefGoogle ScholarPubMed
Mazzarrino, G, Paparella, A, Chaves-López, C, Faberi, A, Sergi, M, Sigismondi, C, Compagnone, D and Serio, A (2015) Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control 50, 794803. https://doi.org/10.1016/j.foodcont.2014.10.029.CrossRefGoogle Scholar
Miró, MV, e Silva, CR, Viviani, P, Luque, S, Lloberas, M, Costa-Júnior, LM, Lanusse, C, Virkel, G and Lifschitz, A (2020) Combination of bioactive phytochemicals and synthetic anthelmintics: in vivo and in vitro assessment of the albendazole-thymol association. Veterinary Parasitology 281, 109121. https://doi.org/10.1016/j.vetpar.2020.109121CrossRefGoogle ScholarPubMed
Mitić, ZS, Jovanović, B, Jovanović, S, Mihajilov-Krstev, T, Stojanović-Radić, ZZ, Cvetković, VJ, Mitrović, TL, Marin, PD, Zlatković, BK and Stojanović, GS (2018) Comparative study of the essential oils of four Pinus species: chemical composition, antimicrobial and insect larvicidal activity. Industrial Crops and Products 111, 5562. https://doi.org/10.1016/j.indcrop.2017.10.004.CrossRefGoogle Scholar
Mohebodini, H, Jazi, V, Ashayerizadeh, A, Toghyani, M and Tellez-Isaias, G (2021) Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poultry Science 100, 100922. https://doi.org/10.1016/j.psj.2020.12.020.CrossRefGoogle ScholarPubMed
Mohiti-Asli, M and Ghanaatparast-Rashti, M (2015) Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Preventive Veterinary Medicine 120, 195202. https://doi.org/10.1016/j.prevetmed.2015.03.014.CrossRefGoogle ScholarPubMed
Ni, Z-J, Wang, X, Shen, Y, Thakur, K, Han, J, Zhang, J-G, Hu, F and Wei, Z-J (2021) Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends in Food Science and Technology 110, 7889. https://doi.org/10.1016/j.tifs.2021.01.070.CrossRefGoogle Scholar
Oliveira, GL, Vieira, TM, Nunes, VF, Ruas, MdO, Duarted, ER, Moreira, DdL, Kaplan, MAC and Martins, ER (2014) Chemical composition and efficacy in the egg-hatching inhibition of essential oil of piper aduncum against Haemonchus contortus from sheep. Revista Brasileira de Farmacognosia 24, 288292. https://doi.org/10.1016/j.bjp.2014.07.004.CrossRefGoogle Scholar
Poirel, L, Madec, J-Y, Lupo, A, Schink, A-K, Kieffer, N, Nordmann, P and Schwarz, S (2018) Antimicrobial resistance in Escherichia coli. Microbiology Spectrum 6, 127. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017CrossRefGoogle ScholarPubMed
Qi, H, Wang, WX, Dai, JL and Zhu, L (2015) In vitro anthelmintic activity of Zanthoxylum simulans essential oil against Haemonchus contortus. Veterinary Parasitology 211, 223227. https://doi.org/10.1016/j.vetpar.2015.05.029.CrossRefGoogle ScholarPubMed
Quintilde ones Gutieacute rrez, Y., Verde Star, M. J., Rivas Morales, C., Or, , ay Caacute rdenas, A., Mercado Hernaacute ndez, R., Chaacute vez Montes, A. and Barroacute n Gonzaacute lez, M. P. (2013). In vitro study of antiamoebic activity of methanol extract of fruit of Pimpinella anisum on trophozoites of Entamoeba histolytica HM1-IMSS. African Journal of Biotechnology, 12, 20652068. https://doi.org/10.5897/ajb11.3403.CrossRefGoogle Scholar
Remmal, A, Achahbar, S, Bouddine, L, Chami, N and Chami, F (2011) In vitro destruction of Eimeria oocysts by essential oils. Veterinary Parasitology 182, 121126. https://doi.org/10.1016/j.vetpar.2011.06.002.CrossRefGoogle ScholarPubMed
Reyes-Jurado, F, Cervantes-Rincón, T, Bach, H, López-Malo, A and Palou, E (2019) Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Industrial Crops and Products 131, 9095. https://doi.org/10.1016/j.indcrop.2019.01.036.CrossRefGoogle Scholar
Ribeiro, WLC, Macedo, ITF, dos Santos, JML, de Oliveira, EF, Camurça-Vasconcelos, ALF, de Paula, HCB and Bevilaqua, CML (2013) Activity of chitosan-encapsulated Eucalyptus staigeriana essential oil on Haemonchus contortus. Experimental Parasitology 135, 2429. https://doi.org/10.1016/j.exppara.2013.05.014.CrossRefGoogle ScholarPubMed
Ryan, M (2019) Evaluating the economic benefits and costs of antimicrobial use in food-producing animals [WWW Document]. OECD Food, Agriculture and Fisheries Papers 132, 140. https://doi.org/10.1787/f859f644-enGoogle Scholar
Sharma, K, Guleria, S, Razdan, VK and Babu, V (2020) Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Industrial Crops and Products 154, 112569. https://doi.org/10.1016/j.indcrop.2020.112569.CrossRefGoogle Scholar
Shen, S, Zhang, T, Yuan, Y, Lin, S, Xu, J and Ye, H (2015) Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 47, 196202. https://doi.org/10.1016/j.foodcont.2014.07.003.CrossRefGoogle Scholar
Shen, Y, Ni, Z-J, Thakur, K, Zhang, J-G, Hu, F and Wei, Z-J (2021) Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. International Journal of Biological Macromolecules 181, 528539. https://doi.org/10.1016/j.ijbiomac.2021.03.133.CrossRefGoogle ScholarPubMed
Silva, CdS, de Figueiredo, HM, Stamford, TLM and da Silva, LHM (2019) Inhibition of Listeria monocytogenes by Melaleuca alternifolia (tea tree) essential oil in ground beef. International Journal of Food Microbiology 293, 7986. https://doi.org/10.1016/j.ijfoodmicro.2019.01.004.CrossRefGoogle ScholarPubMed
Silva, MAMP, Zehetmeyr, FK, Pereira, KM, Pacheco, BS, Freitag, RA, Pinto, NB, Machado, RH, Villarreal Villarreal, JP, de Oliveira Hubner, S, Aires Berne, ME and da Silva Nascente, P (2020) Ovicidal in vitro activity of the fixed oil of Helianthus annus L. and the essential oil of Cuminum cyminum L. against Fasciola hepatica (Linnaeus, 1758). Experimental Parasitology 218, 107984. https://doi.org/10.1016/j.exppara.2020.107984.CrossRefGoogle Scholar
Singh, TU, Kumar, D, Tandan, SK and Mishra, SK (2009) Inhibitory effect of essential oils of Allium sativum and Piper longum on spontaneous muscular activity of liver fluke, Fasciola gigantica. Experimental Parasitology 123, 302308. https://doi.org/10.1016/j.exppara.2009.08.002.CrossRefGoogle ScholarPubMed
Soulaimani, B, Nafis, A, Kasrati, A, Rochdi, A, Mezrioui, NE, Abbad, A and Hassani, L (2019) Chemical composition, antimicrobial activity and synergistic potential of essential oil from endemic Lavandula maroccana (Mill.). South African Journal of Botany 125, 202206. https://doi.org/10.1016/j.sajb.2019.07.030.CrossRefGoogle Scholar
Squires, JM, Foster, JG, Lindsay, DS, Caudell, DL and Zajac, AM (2010) Efficacy of an orange oil emulsion as an anthelmintic against Haemonchus contortus in gerbils (Meriones unguiculatus) and in sheep. Veterinary Parasitology 172, 9599. https://doi.org/10.1016/j.vetpar.2010.04.017.CrossRefGoogle ScholarPubMed
Squires, JM, Ferreira, JFS, Lindsay, DS and Zajac, AM (2011) Effects of artemisinin and Artemisia extracts on Haemonchus contortus in gerbils (Meriones unguiculatus). Veterinary Parasitology 175, 103108. https://doi.org/10.1016/j.vetpar.2010.09.011.CrossRefGoogle ScholarPubMed
Tanghort, M, Chefchaou, H, Mzabi, A, Moussa, H, Chami, N, Chami, F and Remmal, A (2019) Oocysticidal effect of sssential oils (EOs) and their major components on Cryptosporidium baileyi and Cryptosporidium galli. International Journal of Poultry Science 18, 475482. https://doi.org/10.3923/ijps.2019.475.482.CrossRefGoogle Scholar
Tavares-Dias, M (2018) Current knowledge on use of essential oils as alternative treatment against fish parasites. Aquatic Living Resources 31, 13. https://doi.org/10.1051/alr/2018001.CrossRefGoogle Scholar
Trailović, SM, Marjanović, DS, Nedeljković Trailović, J, Robertson, AP and Martin, RJ (2015) Interaction of carvacrol with the Ascaris suum nicotinic acetylcholine receptors and gamma-aminobutyric acid receptors, potential mechanism of antinematodal action. Parasitology Research 114, 30593068. https://doi.org/10.1007/s00436-015-4508-x.CrossRefGoogle ScholarPubMed
Tyagi, AK and Malik, A (2012) Bactericidal action of lemon grass oil vapors and negative air ions. Innovative Food Science and Emerging Technologies 13, 169177. https://doi.org/10.1016/j.ifset.2011.09.007.CrossRefGoogle Scholar
Ullah, R, Rehman, A, Zafeer, MF, Rehman, L, Khan, YA, Khan, MAH, Khan, SN, Khan, AU and Abidi, SMA (2017) Anthelmintic potential of thymoquinone and curcumin on Fasciola gigantic. PLoS One 12, e0171267. https://doi.org/10.1371/journal.pone.0171267.CrossRefGoogle Scholar
Wang, F, Wei, F, Song, C, Jiang, B, Tian, S, Yi, J, Yu, C, Song, Z, Sun, L, Bao, Y, Wu, Y, Huang, Y and Li, Y (2017) Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Industrial Crops and Products 109, 358366. https://doi.org/10.1016/j.indcrop.2017.08.058.CrossRefGoogle Scholar
Wang, X, Shen, Y, Thakur, K, Han, J, Zhang, J-G, Hu, F and Wei, Z-J (2020) Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules 25, 3955. https://doi.org/10.3390/molecules25173955.CrossRefGoogle ScholarPubMed
Williams, AR, Ramsay, A, Hansen, TVA, Ropiak, HM, Mejer, H, Nejsum, P, Mueller-Harvey, I and Thamsborg, SM (2015) Anthelmintic activity of trans-cinnamaldehyde and A-and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Scientific Reports 5, 14791. https://doi.org/10.1038/srep14791.CrossRefGoogle ScholarPubMed
Williams, AR, Soelberg, J and Jäger, AK (2016) Anthelmintic properties of traditional African and Caribbean medicinal plants: identification of extracts with potent activity against Ascaris suum in vitro. Parasite 23, 24. https://doi.org/10.1051/parasite/2016024.CrossRefGoogle ScholarPubMed
Williams, AR, Hansen, TVA, Krych, L, Ahmad, HFB, Nielsen, DS, Skovgaard, K and Thamsborg, SM (2017) Dietary cinnamaldehyde enhances acquisition of specific antibodies following helminth infection in pigs. Veterinary Immunology and Immunopathology 189, 4352. https://doi.org/10.1016/j.vetimm.2017.06.004.CrossRefGoogle ScholarPubMed
Woolsey, ID, Valente, AH, Williams, AR, Thamsborg, SM, Simonsen, HT and Enemark, HL (2019) Anti-protozoal activity of extracts from chicory (Cichorium intybus) against Cryptosporidium parvum in cell culture. Scientific Reports 9, 20414. https://doi.org/10.1038/s41598-019-56619-0.CrossRefGoogle ScholarPubMed
Xu, J-G, Liu, T, Hu, Q-P and Cao, X-M (2016) Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 21, 1194. https://doi.org/10.3390/molecules21091194.CrossRefGoogle ScholarPubMed
Yazgan, H, Ozogul, Y and Kuley, E (2019) Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. International Journal of Food Microbiology 306, 108266. https://doi.org/10.1016/j.ijfoodmicro.2019.108266.CrossRefGoogle ScholarPubMed
Zhang, J, Ye, K-P, Zhang, X, Pan, D-D, Sun, Y-Y and Cao, J-X (2017a) Antibacterial activity and mechanism of action of black pepper essential oil on meat-borne Escherichia coli. Frontiers in Microbiology 7, 2094. https://doi.org/10.3389/fmicb.2016.02094.CrossRefGoogle ScholarPubMed
Zhang, P, Shen, Z, Zhang, C, Song, L, Wang, B, Shang, J, Yue, X, Qu, Z, Li, X, Wu, L, Zheng, Y, Aditya, A, Wang, Y, Xu, S and Wu, C (2017b) Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008–2015. Veterinary Microbiology 203, 4955. https://doi.org/10.1016/j.vetmic.2017.02.008.CrossRefGoogle ScholarPubMed
Zhang, S, Abbas, M, Rehman, MU, Huang, Y, Zhou, R, Gong, S, Yang, H, Chen, S, Wang, M and Cheng, A (2020) Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environmental Pollution 266, 115260. https://doi.org/10.1016/j.envpol.2020.115260.CrossRefGoogle ScholarPubMed
Zhang, Y-P, Wang, X, Shen, Y, Thakur, K, Zhang, J-G, Hu, F and Wei, Z-J (2021) Preparation and characterization of bio-nanocomposites film of chitosan and montmorillonite incorporated with ginger essential oil and its application in chilled beef preservation. Antibiotics 10, 796. https://doi.org/10.3390/antibiotics10070796.CrossRefGoogle ScholarPubMed
Zhu, L, Dai, J, Yang, L and Qiu, J (2013a) Anthelmintic activity of Arisaema franchetianum and Arisaema lobatum essential oils against Haemonchus contortus. Journal of Ethnopharmacology 148, 311316. https://doi.org/10.1016/j.jep.2013.04.034.CrossRefGoogle ScholarPubMed
Zhu, L, Dai, JL, Yang, L and Qiu, J (2013b) In vitro ovicidal and larvicidal activity of the essential oil of Artemisia lancea against Haemonchus contortus (Strongylida). Veterinary Parasitology 195, 112117. https://doi.org/10.1016/j.vetpar.2012.12.050.CrossRefGoogle ScholarPubMed