Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T05:01:18.810Z Has data issue: false hasContentIssue false

Morphological diversities and ecozones of Ethiopian horse populations

Published online by Cambridge University Press:  18 June 2012

E. Kefena*
Affiliation:
Ethiopian Institute of Agricultural Research, Holetta Agricultural Research Center, Addis Ababa, Ethiopia
T. Dessie
Affiliation:
International Livestock Research Institute, Addis Ababa, Ethiopia
J.L. Han
Affiliation:
CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources (JLLFGR), Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, P.R. China
M.Y. Kurtu
Affiliation:
Haramaya University, Dire Dawa, Ethiopia
S. Rosenbom
Affiliation:
Research Center in Biodiversity and Genetic Resources (CIBIO), University of Porto, Campus Agrario de vairao, Rua Padre Armando, Quintas 7, Porto, Portugal
A. Beja-Pereira
Affiliation:
Research Center in Biodiversity and Genetic Resources (CIBIO), University of Porto, Campus Agrario de vairao, Rua Padre Armando, Quintas 7, Porto, Portugal
*
Correspondence to: Kefena Effa, Ethiopian Institute of Agricultural Research, Holetta Agricultural Research Center, Addis Ababa, Addis Ababa, Ethiopia. email: kefenaol@yahoo.com
Get access

Summary

Using standard survey approaches, we carried out a nationwide survey to morphologically characterize and identify ecozones of Ethiopian horse populations. Accordingly, we explored one new feral horse population previously unreported and seven other distinct horse populations. A total of 17 selected morphological variables were recorded on 503 horses (293 stallions and 210 mares) that belong to five out of eight identified horse populations. Pair-wise multiple mean comparisons (PMMC) using one-way analysis of variance and multivariate analyses were performed separately for each sex and least-squares means was used in the case of aggregated sexes. Results of PMMC showed that there were significant differences (P < 0.05) between the means for most of the variables recorded. Principal component analysis showed that height at wither, height at back, height at rump, body length, back length and barrel length jointly account for about 80 percent of the variations. All squared Mahalanobis distance between populations were significant (P < 0.01). The greatest phenotypic divergence was observed between Bale and Selale horse populations and the least phenotypic divergence was between Horro and Kafa populations. Canonical discriminant function analysis showed that 77.05 percent of individuals were correctly categorized into their respective populations. Moreover, cluster analysis based on squared Mahalanobis distances grouped the five measured Ethiopian horse populations into three major breed groups and five distinct horse populations.

Résumé

Nous avons réalisé une enquête sur l'ensemble du territoire pour caractériser morphologiquement les populations de chevaux éthiopiens et pour en identifier les écozones en utilisant des méthodes d'enquêtes standardisées. Par conséquent, nous avons étudié une nouvelle population marronisée de chevaux qui n'avait pas été déclarée auparavant et sept autres populations distinctes. Au total, nous avons enregistré 17 variables morphologiques sélectionnées de 503 chevaux (293 étalons et 210 juments) qui appartiennent à cinq des huit populations identifiées. Des comparaisons multiples moyennes par paires en utilisant des analyses de variance simple et des analyses multivariables ont été réalisées séparément pour chaque sexe tandis que la moyenne des moindres carrés a été utilisée pour l'étude des deux sexes agrégés. Les résultats des comparaisons ont indiqué des différences significatives (P < 0.05) entre les moyennes pour la plupart des variables enregistrées. L'analyse en composantes principales a montré que la hauteur au garrot, au dos et à la croupe, et la longueur du tronc, du dos et du ventre expliquaient ensemble environ 80 pourcent des variations. Toutes les distances carrées de Mahalanobis entre les populations étaient considérables (P < 0.01). La divergence phénotypique la plus importante a été observée entre les populations de chevaux Bale et Selale et la plus faible entre les populations Horro et Kafa. L'analyse canonique discriminante a indiqué que 77.05 pourcent des animaux avaient été classés correctement dans les populations respectives. De plus, l'analyse typologique basée sur les distances de Mahalanobis a regroupé les cinq populations mesurées de chevaux éthiopiens dans trois groupes principaux de races et dans trois populations distinctes de chevaux.

Resumen

Utilizando un enfoque de encuestas estándar, se llevó a cabo una encuesta a nivel nacional para caracterizar morfológicamente e identificar las ecozonas de las poblaciones equinas caballares de Etiopía. Como consecuencia, se ha estudiado una nueva población de caballos asilvestrados no investigada con anterioridad y otras siete poblaciones de caballos diferentes. Se estudió un total de diecisiete variables morfológicas en 503 caballos (293 sementales y 210 yeguas), pertenecientes a cinco de las ocho poblaciones equinas caballares identificadas. Las comparaciones múltiples entre medias por pares (PMMC por sus siglas en inglés), utilizando un modelo lineal y análisis multivariantes, se realizaron por separado para cada sexo y los mínimos cuadrados medios se utilizaron en el caso de los sexos agregados. Los resultados del PMMC mostraron que existían diferencias significativas (P < 0.05) entre las medias de la mayoría de las variables estudiadas. El análisis de los componentes principales mostró que la altura a la cruz, la altura al dorso, la altura a la grupa, longitud corporal, la longitud dorsal y la longitud ventral en conjunto representaban alrededor del 80 percent de las variaciones. Todas las distancias de Mahalanobis al cuadrado entre las poblaciones fueron significativas (P < 0.01). Las mayores diferencias fenotípicas fueron observadas entre las poblaciones equinas caballares de Bale y Selale y las menores entre las poblaciones Horro y Kafa. La función del análisis canónico discriminante mostró que el 77.05 percent de los individuos fueron clasificados correctamente dentro de sus respectivas poblaciones. Por otra parte, el análisis de agrupamiento, basado en las distancias de Mahalanobis al cuadrado, agrupó las cinco poblaciones equinas caballares estudiadas de Etiopía en tres grandes grupos y en cinco poblaciones de caballos diferentes.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bowling, A.T. & Ruvinsky, A. 2000. Genetic aspects of domestication, breeds and their origins. In Bowling, A.T. & Ruvinsky, A. eds. The genetics of the horse, pp. 2548, Wallingford, UK, CABI Publishing.Google Scholar
Brooks, S.A., Makvandi-Nejad, S., Chu, E., Allen, J.J., Streeter, C., Gu, E., McCleery, B., Murphy, B.A., Bellone, R. & Sutter, N.B. 2010. Morphological variation in the horse: defining complex traits of body size and shape. Anim. Genet., 41: 159165.CrossRefGoogle ScholarPubMed
CSA. 2009. Central Statistical Authority of Ethiopia. Statistical Report on Farm Management Practices, Livestock and Farm Implements. Part II. Addis Ababa, Ethiopia, CSA.Google Scholar
Diamond, J. 2002. Evolution, consequences and future of plant and animal domestication. Nature, 418: 700707.Google ScholarPubMed
Epstein, H. 1971. The origins of the domesticated animals of Africa. New York, USA, African Publishing Corporation.Google Scholar
FAO/UNEP. 2000. World watch list for domestic animal diversity. 3rd edition, edited by Scherf, B.D., Rome. (also available at http://www.fao.org/docrep/009/x8750e/x8750e00.htm).Google Scholar
FAO. 2007. The state of the world's animal genetic resources for food and agriculture. Rome, Italy.Google Scholar
FAO. 2010. Intergovernmental technical working group on animal genetic resources for food and agriculture, Rome, 24–26 November 2010, pp. 187.Google Scholar
Goodall, D.M. 1973. Horses of the world. New York, USA, MACMILLAN Publishing Co., Inc.Google Scholar
Gubitz, T., Thorpe, R.S. & Malhotra, A. 2000. Phylogeographic and natural selection in the Tenerife gecko Tarentoal delalandii: testing historical and adaptive hypothesis. Mol. Ecol., 9: 12131221.CrossRefGoogle Scholar
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat., 6: 6570.Google Scholar
Kefena, E., Beja-Pereira, A., Han, J.L., Haile, A., Mohammed, Y.K. & Dessie, T. 2011. Eco-geographical structuring and morphological diversities in Ethiopian donkey populations. Livestock Sci., 141: 232241.CrossRefGoogle Scholar
Khadka, R. 2010. Global horse population with respect to breeds and risk status. European Masters in Animal Genetics and Breeding (Erasmus Mundus), Uppsala, Sweden: 77 pp. (M.Sc. thesis)Google Scholar
Mahalanobis, P.C. 1936. On the generalized distance in statistics. Proc. Nat. Inst. India, 2: 49.55.Google Scholar
Manly, B.F.J. 1986. Multivariate statistical methods. London, UK, Chapman and Hall.Google Scholar
Oulehla, J. 1996. Zuechterische Standards in der Lipizzanerpferde-Population. Brno-Piber, Habilitationsarbeit.Google Scholar
Pinto, L.F.B., Almeida, F.Q.de. Quirino, C.R., Azevedo, P.C.N.de. Cabral, G.C., Santos, E.M., Corassa, A. 2008. Evaluation of the sexual dimorphism in Mangalarga Marchador horses using discriminant analysis. Livestock Sci., 119(1): 161166.CrossRefGoogle Scholar
Pretorius, S.M., Marle-Köster, E.V. & Mostert, B.E. 2004. Description of the Friesian Horse population of South Africa and Namibia. South Afr. J. Anim. Sci., 34: 149157.Google Scholar
Rastija, T., Baban, M., Antunovic, Z. & Mandic, I. 2004. A comparison and development of morphometeric characteristics of stallions and mares on the Lipizzaner stud of Dakovo. Acta Agric. Slovenica, 1: 95200.Google Scholar
SAS. 2004. Statistical Analysis System Institute, SAS guide for personal computers. NC, USA, SAS Institute, Kary.Google Scholar
SPSS. 2006. Statistical package for social sciences, SPSS 15 for windows, user's guide. Chicago IL, SPSS Inc.Google Scholar
Storz, J.F. 2002. Contrasting patterns of divergence in quantitative traits and neutral DNA markers: analysis of clinical variation. Molecular Ecology, 11: 25372551.CrossRefGoogle Scholar
Vila, C., Leonard, A.J., Gotherstrom, A., Marklund, S., Sandberg, K., Lide, K., Wayne, R.K. & Ellegren, H. 2001. Widespread origins of domestic horse lineages. Science, 291: 474477.Google ScholarPubMed
Zechner, P., Zohman, F., Solkner, J., Bodo, I., Habe, F., Marti, E. & Brem, G. 2001. Morphological description of the Lipizzan horse population. Livestock Prod. Sci., 69: 163177.CrossRefGoogle Scholar

Websites

FAO (Food and Agricultural Organization of the United Nations). Domestic Animal Diversity-Information System (DAD-IS) (available at http://www.dad.fao.org/).Google Scholar
Breeds of Livestock. Horse Breeds 1995. Oklahoma State University, Stillwater, Oklahoma (available at http://www.ansi.okstate.edu/breeds/horses/).Google Scholar