Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T07:46:49.474Z Has data issue: false hasContentIssue false

Dynamics of livestock production systems, drivers of change and prospects for animal genetic resources

Published online by Cambridge University Press:  01 August 2011

C. Seré
Affiliation:
International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
A. van der Zijpp
Affiliation:
Animal Production Systems Group, Department of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
G. Persley
Affiliation:
International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
E. Rege
Affiliation:
International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
Get access

Summary

This overview analyses the key drivers of change in the global livestock sector and assesses how they are influencing current trends and future prospects in the world's diverse livestock production systems and market chains; and what are their consequent impacts on the management of animal genetic resources for food and agriculture. The trends are occurring in both developing and industrialized countries, but the responses are different. In the developing world, the trends are affecting the ability of livestock to contribute to improving livelihoods and reducing poverty as well as the use of natural resources. In the industrialized world, the narrowing animal genetic resource base in industrial livestock production systems raises the need to maintain a broader range of animal genetic resources to be able to deal with future uncertainties, such as climate change and zoonotic diseases.

This chapter discusses:

• What are the global drivers of change for livestock systems? Economic development and globalization; changing market demands and the “livestock revolution”; environmental impacts including climate change; and science and technology trends.

• How are the livestock production systems responding to the global drivers of change? Trends in the three main livestock production systems (industrial, crop-livestock and pastoral systems); the range and rate of changes occurring in different systems and how these affect animal genetic resources. The implications are that breeds cannot adapt in time to meet new circumstances. Hence new strategies and interventions are necessary to improve the management of animal genetic resources in situations where these genetic resources are most at risk.

• What are the implications for animal genetic resources diversity and for future prospects of their use? - Industrial livestock production systems are expected to have a limited demand for biodiversity, while crop-livestock and pastoral systems will rely on biodiversity to produce genotypes of improved productivity under changing environmental and socio-economic conditions. All systems will rely on biodiversity, albeit to varying degrees, to cope with expected climate change.

• What immediate steps are possible to improve animal genetic resources characterization, use and conservation? Appropriate institutional and policy frameworks are required to improve animal genetic resources management and these issues are being addressed at national and intergovernmental levels, in a process led by FAO to promote greater international collaboration on animal genetic resources. Based on an analysis of the current situation, the continuing loss of indigenous breeds and new developments in science and technology, there are several complementary actions that can begin to improve the management of animal genetic resources and maintain future options in an uncertain world.

These are summarized here as:

a. “Keep it on the hoof” - Encouraging the continuing sustainable use of traditional breeds and in situ conservation by providing market-driven incentives, public policy and This paper has benefited from inputs from several reviewers and other contributors, and we thank all for their thoughtful insights. We acknowledge the contributions of our colleagues at FAO, particularly Irene Hoffmann, Dafydd Pilling and Henning Steinfeld, and at the International Livestock Research Institute (ILRI): Ade Freeman, Mario Herrero, Olivier Hanotte, Steve Kemp, Sandy McClintock, Sara McClintock, Margaret MacDonald-Levy, Susan MacMillan, Grace Ndungu, An Notenbaert, Mwai Okeyo and Robin Reid. other support to enable livestock keepers to maintain genetic diversity in their livestock populations.

b. “Move it or lose it” - Enabling access to and the safe movement of animal genetic resources within and between countries, regions and continents is a key factor in use, development and conservation of animal genetic resources globally.

c. “Match breeds to environments” - Understanding the match between livestock populations, breeds and genes with the physical, biological and economic landscape. This “landscape livestock genomics” approach offers the means to predict the genotypes most appropriate to a given environment and, in the longer term, to understand the genetic basis of adaptation of the genotype to the environment.

d. “Put some in the bank” — New technologies make ex situ, in vitro conservation of animal genetic resources feasible for critical situations and are a way to provide long-term insurance against future shocks.

The multiple values, functions and consequences of livestock production systems and their rapid rate of change lead to divergent interests within and between countries. Conversely, the uncertainty about the implications of rapid, multifaceted global change for each livestock production system and the resulting future changes in the required genetic make-up of animal genetic resources make collective action to tackle conservation of animal genetic resources a long-term, global public good. Conserving animal genetic resources will not by itself solve these problems, but it is an important first step towards maintaining future options.

Advances in science and the technology, in areas such as reproductive technology, genomics and spatial analysis, as well as progress in conceptualization of global public good production for the future management of animal genetic resources, should enable the international community to address both the short- and long-term challenges in innovative ways.

Résumé

Ce résumé analyse les facteurs clés qui ont subi des changements dans le secteur élevage et propose une évaluation de l'influence qu'ils ont eu sur la situation actuelle et les prospectives futures dans les différents systèmes d'élevage et de marché au niveau mondial. On analyse également les impacts sur la gestion des ressources génétiques animales pour l'alimentation et l'agriculture. Cette tendance se retrouve aussi bien dans les pays industrialisés que dans ceux en développement, mais les réponses sont différentes. Dans les pays en développement ces tendances ont une influence directe sur la capacité que présente l'élevage à contribuer à l'amélioration de la qualité de vie et à la réduction de la pauvreté, ainsi qu'à l'utilisation des ressources naturelles. Dans le monde industrialisé la proximité de la base des ressources génétiques animales avec les systèmes de production d'élevage au niveau industriel ont porté au besoin de conserver une plus grande gamme des ressources génétiques animales pour faire face aux incertitudes futures telles que le changement climatique et les zoonoses.

Dans l'article on discute de:

• Quels sont les principaux facteurs de changement dans les systèmes d'élevage?

• Comment répondent les systèmes de production d'élevage aux facteurs de changement au niveau mondial?

• Quelles sont les implications sur la diversité des ressources génétiques animales et pour les prospectives d'utilisation futures?

• Quels sont les démarches immédiates qui permettront une amélioration de la caractérisation des ressources génétiques animales, leur utilisation et conservation?

D'après une récente analyse de la situation actuelle, de la perte continue de races indigènes et du nouveau développement de la science et de la technologie, il existe différentes actions complémentaires qui pourraient aider à améliorer la gestion des ressources génétiques animales et conserver des options pour le futur dans un monde plein d'incertitude. Ces actions peuvent se résumés comme il suit:

• Encourager l'utilisation durable des races traditionnelles.

• Permettre l'accès et la vente de ressources génétiques animales dans et entre pays.

• Compréhension du rapport entre élevage, races et gènes avec le milieu physique, biologique et économique.

• La formation de stock comme assurance future.

L'incertitude sur les implications des changements rapides sur chacun des systèmes de production animale et les changements futurs que cela entraîne en terme de demande de ressources génétiques animales, requière d'une action collective pour faire face à la conservation des ressources génétiques animales en tant que bien public. La conservation des ressources génétiques animales en soi ne résoudra pas les problèmes mais il s'agit d'un pas important pour conserver les options futures.

Resumen

Este resumen analiza los factores clave que han cambiado en el sector ganadero y hace una evaluación de cómo han influenciado la corriente actual y las prospectivas futuras en los distintos sistemas de producción ganadera y mercados en el mundo. También se analizan los consiguientes impactos sobre la gestión de los recursos zoogenéticos para la alimentación y la agricultura. La tendencia se da tanto en países industrializados como en vía de desarrollo pero las respuestas son distintas. En los países en vía de desarrollo estas tendencias están afectando la capacidad ganadera para contribuir a la mejora de la calidad de la vida y reducción de la pobreza, así como la utilización de los recursos naturales. En el mundo industrializado la proximidad de la base de recursos zoogenéticos con los sistemas de producción ganadera industrial plantean la necesidad de mantener un mayor rango de recursos zoogenéticos para hacer frente a las incertidumbres futuras, tales como el cambio climático y las zoonosis.

En este capitulo se discute:

• Cúales son los principales factores de cambio en los sistemas ganaderos?

• Cómo responden los sistemas de producción ganadera a los factores de cambio a nivel mundial?

• Cúales son las implicaciones para la diversidad de recursos zoogenéticos y para las prospectivas futuras de su utilización?

• Cúales son los pasos inmediatos que puedan permitir la mejora de la caracterización de los recursos zoogenéticos, su utilización y conservación?

Sobre la base de un reciente análisis de la situación actual, la pérdida de razas indígenas y el nuevo desarrollo de la ciencia y la tecnología, existen distintas acciones complementarias que pueden empezar a ayudar a mejorar la gestión de los recursos zoogenéticos y mantener opciones futuras en un mundo lleno de incertidumbres.

Tales acciones se resumen así:

• Fomentar la continua utilización sostenible de razas tradicionales.

• Permitir el acceso y movimiento para venta de recursos zoogenéticos dentro y entre paises.

• Conocer la relación entre poblaciones ganaderas, razas y genes con el entorno físico, biológico y económico.

• Conservar stocks para hacer frente a incertidumbres futuras.

La incertidumbre sobre las implicaciones de cambios rápidos, multifacéticos y globales para cada sistema de producción ganadera y los consiguientes cambios futuros en la demanda de recursos zoogenéticos requieren una acción colectiva para hacer frente a la conservación de recursos zoogenéticos a largo plazo como bien publico mundial. La conservación de los recursos zoogenéticos por sí sola no resolverá los problemas pero es un paso importante para mantener las opciones futuras.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of references

FAO. 2004. Working files produced by Environmental Research Group, Oxford, UK, unpublished.Google Scholar
FAO. 2006. Livestock's long shadow -environmental issues and options, by Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & de Haan, C.. Rome.Google Scholar
FAO. 2007. FAOSTAT statistical database. Rome (available at http://faostat.fao.org).Google Scholar
IAASTD. 2007. International Assessment of Agriculture Science and Technology for Development. World Bank, Washington, DC (in press).Google Scholar
IMF (International Monetary Fund). 2007. World economic outlook database. Washington, DC.Google Scholar
Reardon, T. & Timmer, P.C. 2005. Transformation of markets for agricultural output in developing countries since 1950: how has thinking changed? In Evenson, R., Pingali, P. & Schultz, T.P., eds. Handbook of agricultural economics, Vol. 3A. Amsterdam, Elsevier.Google Scholar
Reardon, T., Henson, S. & Berdegué, J. 2007. Proactive fast-tracking' diffusion of supermarkets in developing countries: implications for market institutions and trade. Journal of Economic Geography, 7: 399432.Google Scholar
United Nations. 2007. Common database. New York, USA.Google Scholar
World Bank. 2006. World development indicators. Washington, DC.Google Scholar
De Fraiture, C., Wichelns, D., Rockstrom, J., Kemp-Benedict, E., Eriyagama, N., Gordon, L., Hanjra, M.A., Hoogenveen, J., Huber-Lee, A. & Karlberg, L. 2007. Looking ahead to 2050: scenarios of alternative investment approaches. Water for food, water for life. In: A comprehensive assessment of water in agriculture. London, Earthscan, and Colombo, International Water Management Institute, pp. 9145.Google Scholar
Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C. 1999. Livestock to 2020: the next food revolution, Food, Agriculture, and the Environment Discussion Paper 28. Washington DC, International food Policy Research Institute.Google Scholar
Fisher, P., Hedeler, C., Wolstencroft, K., Hulme, H., Noyes, H., Kemp, S., Stevens, R.T. & Brass, A. 2007. A systematic strategy for large-scale analysis of genotype-phenotype correlations: identification of candidate genes involved in African trypanosomiasis. Nucleic Acids Research (in press).Google Scholar
Gibson, J., Gamage, S., Hanotte, O., Iñiguez, L., Maillard, J.C., Rischkowsky, B., Semambo, D. & Toll, J. 2006. Options and strategies for the conservation of farm animal genetic resources. Report of an international workshop, 7-10 November 2005, Montpellier, France. Rome, CGIAR System-wide Genetic Resources Programme (SGRP)/Bioversity International, pp. 53.Google Scholar
ILRI (International Livestock Research Institute). 2002. Livestock, a pathway out of poverty: ILRI 's strategy to 2010. Nairobi.Google Scholar
ILRI/FAO. 2006. The future of livestock in developing countries to 2030, Workshop Report on Future of Livestock in Developing Countries, 13-15 February 2006. Nairobi, ILRI.Google Scholar
Kierstein, S., Noyes, H., Niessens, J., Nakamura, Y., Pritchard, C., Gibson, J., Kemp, S. & Brass, A. 2006. Gene expression profiling in a mouse model for African trypanosomiasis. Genes Immun., 7: 667679.Google Scholar
Lockhart, D.J. & Winzeler, E.A. 2000. Genomics, gene expression and DNA arrays. Nature, 405: 827836.CrossRefGoogle ScholarPubMed
MacKenzie, A.A. ed. 2005. Biotechnology applications in animal heath and production. Scientific and Technical Review, 24(1), April 2005.Google Scholar
Pittroff, W., Cartwright, T.C. & Kothmann, M.M. 2002. Perspectives for livestock on grazinglands. Archivos Latinoamericanos de Produccion Animal, 10(2): 133143.Google Scholar