Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T00:18:39.079Z Has data issue: false hasContentIssue false

One hundred years of aeronautics in East London

Published online by Cambridge University Press:  03 February 2016

Extract

This paper celebrates the centenary of Queen Mary College’s involvement in aeronautics, a celebration with a unique distinction since it was this College’s immediate forebear which was the first British higher education institution to begin teaching and research in this subject. Thus the emphasis is on the early years from 1907 until the 1950s, a period ripe for recording before it recedes beyond living memory, but also the period during which the degree course in aeronautical engineering became firmly established and its parent Department acquired its reputation for research. Section 2.0 gives a brief history of the College’s origins in the East London College. Subsequent sections deal with the foundation of the aeronautical laboratory there, from which the aeronautical department grew, and the activities of the two men who led these developments, A.P. Thurston and N.A.V. Tonnstein who changed his name to Piercy.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2008 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pritchard, J.L., Albert Peter Thurston, MBE, DSc, MIMechE, MIEE, Fellow, 1881-1964, JRAeS, 1965, 69, pp 7579.Google Scholar
2. Young, A.D., Dr A P Thurston, A review of his contributions to aeronautics, Trans Newcomen Society, 196566, 38, pp 107126.Google Scholar
3. Anon, A.P. Mr., Thurston’s third lecture, Aeronautics at the East London College, The Aero, 1909, 1, (7), p 110.Google Scholar
4. Lanchester, F.W., Aerodynamics, 1907, Constable, London.Google Scholar
5. Lanchester, F.W., Aerodonetics, 1908, Constable, London.Google Scholar
6. Wright, W., Angle of incidence, Aeronaut J, 1901, 5, pp 4749.Google Scholar
7. Gollin, A., No Longer an Island: Britain and the Wright Brothers, 1902-1909, 1984, Heinemann, London, UK.Google Scholar
8. Driver, H., The Birth of Military Aviation: Britain, 1903-1914, 1997, Royal Historical Society/Boydell Press, Suffolk, UK.Google Scholar
9. Thurston, A.P., The problem of flight, Engineering, 1909, 87, p 661.Google Scholar
10. Maxim, H.S., Artificial and Natural Flight, 1908, Whittaker, London, UK.Google Scholar
11. Langley, S.P., Experiments in Aerodynamics, 1891, Smithsonian Institution, Washington, DC, USA.Google Scholar
12. Lanchester, F.W., The Wright and Voisin types of flying machines: a comparison, Aeronaut J, 1909, 13, pp 412.Google Scholar
13. Thurston, A.P., Some points in connection with the Lanchester theory of flight, Engineering, 1909, 88, p 214.Google Scholar
14. Thurston, A.P., Automatic speed control for flying machines, Aeronaut J, 1909, 13, pp 103110.Google Scholar
15. Thurston, A.P., Streamline flow over inclined planes and bodies, Aeronaut J, 1910, 14, pp 152153.Google Scholar
16. Thurston, A.P., The flow of air about aeroplanes, cars and like bodies, Aeronautics, 1910, 3, pp 5254.Google Scholar
17. Lilienthal, O., Der Vogelflug als Grundlage der Fliegerkunst, 1889, Gaertners Verlagsbuchhandlung, Berlin. (Birdflight as the Basis of Aviation (Trans. Isenthal, A. W.), 1911, Longmans Green & Co, London).Google Scholar
18. Duchemin, N.-V., Recherches Expérimentales sur les Lois de la Résistance des Fluides, 1842, Bachelier, Paris, France.Google Scholar
19. Eiffel, G., Recherches Expérimentales sur la Résistance de L’Air Exécutées à la Tour Eiffel, 1909, Librairie Aeronautique, Paris, France.Google Scholar
20. Phillips, H.F., Blades for deflecting air, 1884, Patent Specification No 13768, HMSO, London, UK.Google Scholar
21. Phillips, H.F., Flying machines, 1891, Patent Specification No 13311, HMSO, London, UK.Google Scholar
22. Joëssel, J.-É. Rapport sur des expériences relatives à des gouvernails à plusieurs lames paralleles, faites dans la rade de Cherbourg, sur le remorqueur la Navette en octobre 1868, Mémorial du Génie Maritime, 1re livraison de l’année 1870, pp 127.Google Scholar
23. Rateau, A., Recherches aérodynamiques, L’Aérophile, 1909, 17, (15), pp 338340.Google Scholar
24. Thurston, A.P., Calculations relating to the design of flying machines, Aeronaut J, 1910, 14, pp 2227.Google Scholar
25. Thurston, A.P., Calculs relatifs à l’établissement d’une machine volante, L’Aeronaute, 1910, 43 Année, pp 8991, 9799.Google Scholar
26. Thurston, A.P., Members’ machines. No. I: Sir Hiram Maxim’s biplane, Aeronaut J, 1910, 14, p 75.Google Scholar
27. Gibbs-Smith, C.H., Aviation, an Historical Survey, 1970, HMSO, London.Google Scholar
28. Thurston, A.P., Members’ machines. No. IV: The Cody biplane, Aeronaut J, 1911, 15, pp 2427.Google Scholar
29. Thurston, A.P., Plan shapes of flying machines and gliders for maximum automatic stability and control, Aeronaut J, 1910, 14, pp 114115.Google Scholar
30. Ackroyd, J.A.D., The United Kingdom’s contributions to the development of aeronautics; Part 1. From antiquity to the era of the Wrights, Aeronaut J, 2000, 104, (1031), pp 930.Google Scholar
31. Thurston, A.P., The stability of aeroplanes, Engineering, 1911, 91, pp 642644.Google Scholar
32. Thurston, A.P., The stability of aeroplanes. An investigation of the air pressure on aeroplane surfaces, Scient Amer Suppl No 1876, 1911, pp 396397.Google Scholar
33. Thurston, A.P., The distribution of pressure on inclined aerocurves, Engineering, 1912, 94, pp 405407.Google Scholar
34. Kutta, M.W., Über eine mit den Grundlagen des Flugsproblems in Beziehung stehende zweidimensionale Strömung, Sitzungsberichte der königlich Bayerischen Akademie der Wissenschaften, 1910, 40, pp 158.Google Scholar
35. Ackroyd, J.A.D., Axcell, B.P. and Ruban, A.I., Early Developments of Modern Aerodynamics, 2001, Butterworth-Heinemann, Oxford/AIAA, Reston, VA, USA.Google Scholar
36. Bairstow, L. and Jones, B.M., Experiments on model wings, 1912, ACA, R & M No 60.Google Scholar
37. Thurston, A.P., A Text Book of Elementary Aeronautics or the Science and Practice of Aerial Machines, 1911, Whittaker, London.Google Scholar
38. Anon, . Review of elementary aeronautics, The Aero, 1911, 5, (98), p 61.Google Scholar
39. Thurston, A.P., Report presented to the Laboratory Committee of the Aeronautical Society on the wind tunnel erected at East London College, Aeronaut J, 1911, 15, pp 6569.Google Scholar
40. MOrris, J.T. and Thurston, A.P., The aerodynamic resistance of bars, struts and wires – I, Aeronaut J, 1911, 15, pp 6979.Google Scholar
41. Thurston, A.P., The aerodynamic resistance of bars, struts and wires (Parts II – IV), Aeronaut J, 1912, 16, pp 116131, 176183, 184188.Google Scholar
42. Thurston, A. P., Whirling-table at East London College, Engineering, 1912, 94, pp 627628.Google Scholar
43. Thurston, A. P., Aeronautical research at home, Aeronaut J, 1913, 17, pp 140157.Google Scholar
44. Thurston, A. P., Air friction, Engineering, 1913, 95, pp 107109.Google Scholar
45. Zahm, A. F., Atmospheric friction of even surfaces, Phil Mag Ser 6, 1904, 8, pp 5866.Google Scholar
46. Rayleigh, Lord, Note as to the application of the principle of dynamic similarity, 1910, ACA, R & M No 15 (Part 2).Google Scholar
47. Thurston, A.P., The measurement of airspeed, Aeronaut J, 1914, 18, pp 245271.Google Scholar
48. Thurston, A.P., The measurement of air speed, Flight, 1914, 6, pp 498499, 521522.Google Scholar
49. King, L.V., On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry, Phil Trans Roy Soc A, 1914, 214, pp 375432.Google Scholar
50. Fage, A., A description of a hot-wire anemometer which is sensitive over a large range of wind speed, 1918, ACA, R & M No 556.Google Scholar
51. Thurston, A.P., The resistance of bars, struts, and wires in a current of air, Engineering, 1914, 97, pp 139141.Google Scholar
52. Thurston, A.P., Note on the distributions of pressure around cylindrical rods and bodies when exposed to uniform air-currents, Engineering, 1914, 98, p 257.Google Scholar
53. Eiffel, A.G., Sur la résistance des sphères dans l’air en mouvement, Comptes Rendus, 1912, 155, pp 15971599.Google Scholar
54. Thurston, A.P. and Tonnstein, N., The horizontal wind tunnel at East London College, Aeronaut J, 1914, 18, pp 302307.Google Scholar
55. Bairstow, L., Hyde, J.H. and Booth, H., The new four-foot wind channel: with a description of the weighing mechanism employed in the determination of forces and moments, 1913, ACA, R & M No 68.Google Scholar
56. Thurston, A. P. and Tonnstein, N., The resistance of inclined struts in a uniform air current, Aeronaut J, 1915, 19, pp 712.Google Scholar
57. Anon, . Aerofoils arranged in tandem, Flight, 1914, 20, pp 11341136.Google Scholar
58. Page, F. H., The Handley Page wing, Aeronaut J, 1921, 25, pp 263289.Google Scholar
59. Thurston, A. P., Metal construction of aircraft, Aeronaut J, 1919, 23, pp 473518.Google Scholar
60. Thurston, A. P., Juvenile lecture on the aeroplane, Aeronaut J, 1918, 22, pp 5460.Google Scholar
61. Piercy, A., The structure and mode of life of a form of hormidium flaccidum, A. Braun, Ann Bot, 1917, 31, pp 513537.Google Scholar
62. Lees, C. H., On the effect of the form of the transverse section on the frictional resistance to the motion of an elongated body parallel to its length through a fluid, Proc Roy Soc A, 1915, 92, pp 144157.Google Scholar
63. Piercy, N.A.V., On the flow in the rear of an aerofoil at small angles of incidence, 1918, ACA, R & M No 578.Google Scholar
64. Piercy, N.A.V., On the flow in the rear of a triplane at small angles of incidence, 1919, ACA, R & M No 634.Google Scholar
65. Rayleigh, , LORD. On the irregular flight of a tennis-ball, Messenger of Mathematics, 1877, 7, pp 1416.Google Scholar
66. Piercy, N.A.V. and Mines, R., On the immersed venturi, with special reference to its use on aircraft for purposes of power transmission, 1919, ACA, R & M No 664.Google Scholar
67. Piercy, N.A.V., On the vortex pair quickly formed by some aerofoils, JRAeS, 1923, 27, pp 488500.Google Scholar
68. Robertson, J.M., Hydrodynamics in Theory and Application, 1965, Prentice-Hall, Englewood Cliffs, NJ, USA.Google Scholar
69. Prandtl, L., Tragflügeltheorie, I, II Mitteilungen, Nach der kgl Gesellschaft der Wiss zu Göttingen, Math-Phys Klasse, 1918, pp 451477; 1919, pp 107137, 1918, 1919, Weidmannsche-Buchhandlung, Berlin, Germany.Google Scholar
70. Prandtl, L., Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg von 8 bis 13 August 1904, pp 489491, 1905, Teubner, Leipzig, Germany.Google Scholar
71. Piercy, N.A.V., Note on the experimental aspect of one of the assumptions of Prandtl’s aerofoil theory, JRAeS, 1923, 27, pp 501511.Google Scholar
72. Taylor, G. I., Skin friction on a flat surface, 1918, ACA, R & M No 604.Google Scholar
73. Glauert, H., Aerofoil theory, 1921, ARC, R & M No 723.Google Scholar
74. Prandtl, L., Applications of modern hydrodynamics to aeronautics, 1921, NACA, TR 116.Google Scholar
75. Bairstow, L., Skin friction, JRAeS, 1925, 29, pp 323.Google Scholar
76. Blasius, P.R.H., Grenzschichten in Flüssigkeiten mit kleiner Reibung, Zeit für Mathematik und Physik, 1908, 56, p 137.Google Scholar
77. Piercy, N.A.V. and Richardson, E.G., On the flow of air adjacent to the surface of an aerofoil, 1928, ARC, R & M No 1224.Google Scholar
78. Taylor, G.I., Stability of a viscous liquid contained between two rotating cylinders, Phil Trans Roy Soc A, 1923, 223, pp 289343.Google Scholar
79. Piercy, N.A.V. and Richardson, E.G., The variation of velocity amplitude close to the surface of a cylinder moving through a viscous fluid, Phil Mag Ser 7, 1928, 6, pp 970977.Google Scholar
80. Piercy, N.A.V. and Richardson, E.G., The turbulence in front of a body moving through a viscous fluid, Phil Mag Ser 7, 1930, 9, pp 10381041.Google Scholar
81. Richardson, E. G., Flow of air adjacent to the surface of a rotating cylinder in a stream, 1930, ARC, R & M No 1368.Google Scholar
82. Winny, H. F., Graphical solutions for inviscid flow, 1932, ARC, R & M No 1473.Google Scholar
83. Bairstow, L. and Berry, A., Two-dimensional solutions of Poisson’s and Laplace’s Equations, Proc Roy Soc A, 1919, 95, pp 457475.Google Scholar
84. Winny, H.F., Vortex system behind a sphere moving through viscous fluid, 1932, ARC, R & M No 1531.Google Scholar
85. Winny, H.F., Rotary oscillations of a long circular cylinder in viscous flow, Phil Mag Ser 7, 1932, 14, pp 10261032.Google Scholar
86. Piercy, N.A.V., The present position in aeronautics (The Howard Lectures): I The scientific outlook, II Safety in the air, III (Untitled), J Roy Soc Arts, 193031, 79, pp 911925, 929941, 945956.Google Scholar
87. Piercy, N.A.V., The theory of air flow, Aircr Engng, 1933, 5, pp 1416.Google Scholar
88. Piercy, N.A.V., Hooper, M.S. and Winny, H.F., Viscous flow through pipes with cores, Phil Mag Ser 7, 1933, 15, pp 647676.Google Scholar
89. Piercy, N.A.V. and Winny, H.F., The convection of heat from isolated plates and cylinders in an inviscid stream, Phil Mag Ser 7, 1933, 16, pp 390408.Google Scholar
90. Piercy, N.A.V. and Winny, H.F., Abstract: Convection of heat from isolated plates and cylinders in an inviscid stream, 1932, ARC, R & M No 1540.Google Scholar
91. Piercy, N.A.V. and Winny, H.F., The skin friction of flat plates to Oseen’s approximation, Proc Roy Soc A, 1933, 140, pp 543561.Google Scholar
92. Bairstow, L., Cave, B.M. and Lang, E.D., The resistance of a cylinder moving in a viscous fluid, Phil Trans Roy Soc A, 1923, 223, pp 383432.Google Scholar
93. Piercy, N.A.V., Aerodynamics, 1937, English Universities Press, London, UK.Google Scholar
94. Fage, A., Frictional drag of flat plates below the critical Reynolds number, 1933, ARC, R & M No 1580.Google Scholar
95. Marshall, D., Further experiments on the relation between skin friction and heat transmission, 1925, ARC, R & M No 1004.Google Scholar
96. Hansen, M., Die Geschwindigkeitsverteilung in der Grenzschicht an der längsangeströmten ebenen Platte, ZAMM, 1928, 8, pp 185199.Google Scholar
97. Piercy, N.A.V. and Schmidt, R.J., Use of Oseen’s approximation in problems of heat transfer, Phil Mag Ser 7, 1934, 17, pp 423432.Google Scholar
98. Piercy, N.A.V. and Preston, J.H., A simple solution of the flat plate problem of skin friction and heat transfer, Phil Mag Ser 7, 1936, 21, pp 9951005.Google Scholar
99. Piercy, N.A.V., Preston, J.H. and Whitehead, L.G., The approximate prediction of skin friction and lift, Phil Mag Ser 7, 1938, 26, pp 791815.Google Scholar
100. Fage, A., The flow of air and of an inviscid fluid around an elliptic cylinder and an aerofoil of infinite span, especially in the region of the forward stagnation point, 1927, ARC, R & M No 1097.Google Scholar
101. Bairstow, L., Applied Aerodynamics, 1939, Longmans, Green and Co, London.Google Scholar
102. Glauert, H., The Elements of Aerofoil and Airscrew Theory, 1926, Cambridge University Press.Google Scholar
103. Piercy, N.A.V., Aircraft efficiencies, Proc IMechE, 1938, 136, pp 319364.Google Scholar
104. Anon, . The Design and Development of the Avro Lancaster, 1991, Royal Aeronautical Society, Manchester Branch.Google Scholar
105. Zhukovskii, N.E., Über die Konturen der Tragflächen der Drachenflieger, Zeit für Flugtechnik und Motorluftschiffahrt, 1910, 1, pp 281284.Google Scholar
106. Kármán, T. Von and Trefftz, E., Potentialströmung um gegebene Tragflächenquerschnitte, Zeit für Flugtechnik und Motorluftschiffahrt, 1918, 9, pp 111116.Google Scholar
107. Piercy, N.A.V., Piper, R.W. and Preston, J.H., A new family of wing profiles, Phil Mag Ser 7, 1937, 24, pp 425444.Google Scholar
108. Piper, R.W., Extensions of the new family of wing profiles, Phil Mag Ser 7, 1937, 24, pp 11141126.Google Scholar
109. Piercy, N.A.V., Piper, R.W. and Whitehead, L.G., The new transformed wing section, Aircr Engng, 1938, 10, pp 339343.Google Scholar
110. Williams, D.H., Bell, A.H. and Raymer, W.G., Experiments on two Piercy Aerofoils in the Compressed Air Tunnel, 1939, ARC, R &M No 2459.Google Scholar
111. Jones, R. and Williams, D., The profile drag of aerofoils at high Reynolds numbers in the Compressed Air Tunnel, 1937, ARC, R & M No 1804.Google Scholar
112. Preston, J.H., Sweeting, N.E. and Cox, D.K., The experimental determination of the two-dimensional interference on a large chord Piercy 12/40 Aerofoil in a closed tunnel fitted with a flexible roof and floor, 1944, ARC, R & M No 2007.Google Scholar
113. Preston, J.H., Sweeting, N.E. and Cox, D.K., The experimental deter mination of the boundary layer and wake characteristics of a Piercy 12/40 Aerofoil, with particular reference to the trailing edge region, 1945, ARC, R & M No 2013.Google Scholar
114. Hilton, W.F., An experimental analysis of the forces on eighteen aerofoils at high speed, 1946, ARC, R & M No 2058.Google Scholar
115. Glauert, H., The effect of compressibility on the lift of an aerofoil, 1927, ARC, R & M No 1135. (See also Proc Roy Soc A, 1928, 118, pp 113119).Google Scholar
116. Beavan, J.A. and Bumstead, N., Tests on yawed aerofoils in the 20 × 8-in. high speed tunnel, 1947, ARC, R & M No 2458.Google Scholar
117. Relf, E.F., Recent aerodynamic developments (34th Wilbur Wright Memorial Lecture), JRAeS, 1946, 50, pp 424449.Google Scholar
118. Goldstein, S., Low-drag and suction airfoils (The Eleventh Wright Brothers Lecture), J Aero Sci, 1948, 15, (4), pp 189220.Google Scholar
119. Lighthill, M.J., A new method of two-dimensional aerodynamic design, 1945, ARC, R & M No 2112.Google Scholar
120. Andrews, C.F. and Morgan, E.B., Supermarine Aircraft since 1914, 1981, Putnam, London.Google Scholar
121. Fozard, J.W. (Ed). Sydney Camm and the Hurricane, 1991, Airlife, Shrewsbury.Google Scholar
122. Ackroyd, J.A.D., The United Kingdom’s contributions to the development of aeronautics; Part 3. The development of the streamlined monoplane (the 1920s-1940s), Aeronaut J, 2002, 106, (1059), pp 217268.Google Scholar
123. Sharp, C.M. and Bowyer, M.J.F., Mosquito, 1967, Faber and Faber, London.Google Scholar
124. Anon, . Professor Norman Augustus Victor Piercy, Proc IMechE, 1954, 168, pp 3435.Google Scholar
125. Anon, . Prof N.A.V. Piercy, The Times, 4 February 1953, p 8.Google Scholar
126. Thetford, O.G. and Riding, E.J., Aircraft of the Fighting Powers 7, 1946, Harborough, Leicester.Google Scholar
127. Jackson, A.J., De Havilland Aircraft since 1909 (2nd Ed), 1978, Putnam, London, UK.Google Scholar
128. Piercy, N.A.V., A Complete Course in Elementary Aerodynamics with Experiments and Examples, 1944, English Universities Press, London, UK.Google Scholar
129. Whitehead, L.G., Minimum velocity aerofoils, 1942, ARC, R & M No 2161.Google Scholar
130. Piercy, N.A.V. and Whitehead, L.G., A new series of aerofoil families, 1941, ARC, Ae 1890 (Unpublished).Google Scholar
131. Piercy, N.A.V., Whitehead, L.G. and Garrard, W.C., The design of aerofoils for laminar flow and high speeds, 1941, ARC, Ae 1889 (Unpublished).Google Scholar
132. Goldstein, S., Note on 5523 (Ae. 1889) The design of aerofoils for laminar flow and high speeds by Piercy, N.A.V., Whitehead, L.G. and Garrard, W.C., 1941, ARC, Ae 1889 (Unpublished).Google Scholar
133. Piercy, N.A.V. and Whitehead, L.G., Boundary layer calculations relating to aerofoils, 1943, ARC, Ae 2246 (Unpublished).Google Scholar
134. Piercy, N.A.V. and Whitehead, L.G., Second report on laminar flow aerofoils, 1943, ARC, Ae 2266 (Unpublished).Google Scholar
135. Piercy, N.A.V. and Whitehead, L.G., Boundary layer calculations, Aircr Engng, 1949, 21, pp 1719.Google Scholar
136. Piercy, N.A.V., Whitehead, L.G. and Tyler, R.A., The laminar boundary layer, Aircr Engng, 1948, 20, pp 354359.Google Scholar
137. Falkner, V.M. and Skan, S.W., Some approximate solutions of the boundary-layer equations, 1930, ARC, R & M No 1314.Google Scholar
138. Howarth, L., On the solution of the laminar boundary-layer equations, Proc Roy Soc A, 1938, 164, pp 547579.Google Scholar
139. Whitehead, L.G., An integral relationship for boundary layer flow, Aircr Engng, 1949, 21, pp 1416.Google Scholar
140. Kármán, T. von., Über laminare und turbulente Reibung, ZAMM, 1921, 1, pp 233252.Google Scholar
141. Pohlhausen, K., Zur näherungsweisen Integration der Differentialgleichung der laminaren Reibungsschicht, ZAMM, 1921, 1, pp 252268.Google Scholar
142. Hartree, D. R., The solution of the equations of the laminar boundary layer for Schubauer’s observed pressure distribution for an elliptic cylinder, 1939, ARC, R & M No 2427.Google Scholar
143. Rosenhead, L. (Ed) Laminar Boundary Layers, 1963, Oxford University Press.Google Scholar
144. Görtler, H., Eine neue Reihenentwicklung für laminare Grenzschichten, ZAMM, 1952, 32, pp 270271.Google Scholar
145. Whitehead, L.G., Two-dimensional wind-tunnel interference, 1950, ARC, R & M No 2802.Google Scholar
146. Whitehead, L.G., WU, L.Y. and Waters, M.H.L., Contracting ducts of finite length, Aero Quart, 1951, 2, pp 254271.Google Scholar
147. Piercy, N.A.V., Richardson, E.G. and Winny, H.F., On the convection of heat from a wire moving through air close to a cooling surface, Proc Phys Soc B, 1956, 69, (7), pp 731742.Google Scholar
148. Young, A.D. Queen Mary College, University of London, Aircr Engng, 1961, 33, pp 270273.Google Scholar
149. Young, A.D., British universities and aeronautical research (The Fourth Lanchester Memorial Lecture), JRAeS, 1961, 65, pp 153170.Google Scholar
150. Nahum, A., The Royal Aircraft Establishment from 1945 to Concorde, Ch 2, Cold War, Hot Science (Bud, R. and Gummett, P. (Eds)), 1999, Harwood Academic Publishers, Amsterdam, Netherlands.Google Scholar