We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This cross-disciplinary volume provides an overview of how complexity theory and the tools of statistical mechanics can be applied to linguistic problems to help reveal language groups, and to model the evolution and competition of languages in space and time. Illustrated with a series of case studies and worked examples, it presents an interdisciplinary framework to enable researchers from the mathematical, physical and social sciences to collaborate on linguistic problems. It demonstrates the complexity of linguistic databases and provides a mathematical toolkit for analyzing and extracting useful information from them - helping to conceptualize empirical facts better than a mere ethnographic view. Providing an important bridge to facilitate collaboration between linguists and mathematical modelers, this book will stimulate new ideas and avenues for research, and will form a valuable resource for advanced students and academics working across complex systems, sociolinguistics, and language dynamics.
At the intersection between statistical physics and rigorous econometric analysis, this powerful new framework sheds light on how innovation and competition shape the growth and decline of companies and industries. Analyzing various sources of data including a unique micro level database which collects historic data on the sales of more than 3,000 firms and 50,000 products in 20 countries, the authors introduce and test a model of innovation and proportional growth, which relies on minimal assumptions and accounts for the empirically observed regularities. Through a combination of extensive stochastic simulations and statistical tests, the authors investigate to what extent their simple assumptions are falsified by empirically observable facts. Physicists looking for application of their mathematical and modelling skills to relevant economic problems as well as economists interested in the explorative analysis of extensive data sets and in a physics-orientated way of thinking will find this book a key reference.
Econophysics has been used to study a range of economic and financial systems. This book uses the econophysical perspective to focus on the income distributive dynamics of economic systems. It focuses on the empirical characterization and dynamics of income distribution and its related quantities from the epistemological and practical perspectives of contemporary physics. Several income distribution functions are presented which fit income data and results obtained by statistical physicists on the income distribution problem. The book discusses two separate research traditions: the statistical physics approach, and the approach based on non-linear trade cycle models of macroeconomic dynamics. Several models of distributive dynamics based on the latter approach are presented, connecting the studies by physicists on distributive dynamics with the recent literature by economists on income inequality. As econophysics is such an interdisciplinary field, this book will be of interest to physicists, economists, statisticians and applied mathematicians.
The birth and death of firms is one of the main features of the business cycle. Yet mainstream DGSE macroeconomic models mostly ignore this phenomenon, thereby excluding any potential impact of economic policy on the probability of the birth and death of firms. Those DGSE models that do allow for this phenomenon do so at the cost of drastic simplifications, which effectively rule out causal links between the strategic interaction of industrial firms and the macroeconomy. This innovative new book develops a bottom-up, agent-based framework that shows how strategic interactions at the level of oligopolistic firms, and even at the level of individuals, affect entire industrial sectors and the equilibrium of the macroeconomy. It will appeal to academic researchers and graduate students working in computational economics, agent-based modelling and econophysics, as well as mainstream economists interested in learning more about alternatives to DGSE models in macroeconomics.
Quantum mechanics is traditionally associated with microscopic systems; however, quantum concepts have also been successfully applied to a diverse range of macroscopic systems both within and outside of physics. This book describes how complex systems from a variety of fields can be modelled using quantum mechanical principles; from biology and ecology, to sociology and decision-making. The mathematical basis of these models is covered in detail, furnishing a self-contained and consistent approach. This book provides unique insight into the dynamics of these macroscopic systems and opens new interdisciplinary research frontiers. It will be an essential resource for students and researchers in applied mathematics or theoretical physics who are interested in applying quantum mechanics to dynamical systems in the social, biological or ecological sciences.
An introduction to how the mathematical tools from quantum field theory can be applied to economics and finance, providing a wide range of quantum mathematical techniques for designing financial instruments. The ideas of Lagrangians, Hamiltonians, state spaces, operators and Feynman path integrals are demonstrated to be the mathematical underpinning of quantum field theory, and which are employed to formulate a comprehensive mathematical theory of asset pricing as well as of interest rates, which are validated by empirical evidence. Numerical algorithms and simulations are applied to the study of asset pricing models as well as of nonlinear interest rates. A range of economic and financial topics are shown to have quantum mechanical formulations, including options, coupon bonds, nonlinear interest rates, risky bonds and the microeconomic action functional. This is an invaluable resource for experts in quantitative finance and in mathematics who have no specialist knowledge of quantum field theory.
In contrast to mainstream economics, complexity theory conceives the economy as a complex system of heterogeneous interacting agents characterised by limited information and bounded rationality. Agent Based Models (ABMs) are the analytical and computational tools developed by the proponents of this emerging methodology. Aimed at students and scholars of contemporary economics, this book includes a comprehensive toolkit for agent-based computational economics, now quickly becoming the new way to study evolving economic systems. Leading scholars in the field explain how ABMs can be applied fruitfully to many real-world economic examples and represent a great advancement over mainstream approaches. The essays discuss the methodological bases of agent-based approaches and demonstrate step-by-step how to build, simulate and analyse ABMs and how to validate their outputs empirically using the data. They also present a wide set of applications of these models to key economic topics, including the business cycle, labour markets, and economic growth.
The widespread availability of high-quality, high-frequency data has revolutionised the study of financial markets. By describing not only asset prices, but also market participants' actions and interactions, this wealth of information offers a new window into the inner workings of the financial ecosystem. In this original text, the authors discuss empirical facts of financial markets and introduce a wide range of models, from the micro-scale mechanics of individual order arrivals to the emergent, macro-scale issues of market stability. Throughout this journey, data is king. All discussions are firmly rooted in the empirical behaviour of real stocks, and all models are calibrated and evaluated using recent data from Nasdaq. By confronting theory with empirical facts, this book for practitioners, researchers and advanced students provides a fresh, new, and often surprising perspective on topics as diverse as optimal trading, price impact, the fragile nature of liquidity, and even the reasons why people trade at all.
One of the major problems of macroeconomic theory is the way in which the people exchange goods in decentralized market economies. There are major disagreements among macroeconomists regarding tools to influence required outcomes. Since the mainstream efficient market theory fails to provide an internal coherent framework, there is a need for an alternative theory. The book provides an innovative approach for the analysis of agent based models, populated by the heterogeneous and interacting agents in the field of financial fragility. The text is divided in two parts; the first presents analytical developments of stochastic aggregation and macro-dynamics inference methods. The second part introduces macroeconomic models of financial fragility for complex systems populated by heterogeneous and interacting agents. The concepts of financial fragility and macroeconomic dynamics are explained in detail in separate chapters. The statistical physics approach is applied to explain theories of macroeconomic modelling and inference.
A limit order book is essentially a file on a computer that contains all orders sent to the market, along with their characteristics such as the sign of the order, price, quantity and a timestamp. The majority of organized electronic markets rely on limit order books to store the list of interests of market participants on their central computer. A limit order book contains all the information available on a specific market and it reflects the way the market moves under the influence of its participants. This book discusses several models of limit order books. It begins by discussing the data to assess their empirical properties, and then moves on to mathematical models in order to reproduce the observed properties. Finally, the book presents a framework for numerical simulations. It also covers important modelling techniques including agent-based modelling, and advanced modelling of limit order books based on Hawkes processes. The book also provides in-depth coverage of simulation techniques and introduces general, flexible, open source library concepts useful to readers studying trading strategies in order-driven markets.
Econophysics applies the methodology of physics to the study of economics. However, whilst physicists have good understanding of statistical physics, they may be unfamiliar with recent advances in statistical conjectures, including Bayesian and predictive methods. Equally, economists with knowledge of probabilities do not have a background in statistical physics and agent-based models. Proposing a unified view for a dynamic probabilistic approach, this book is useful for advanced undergraduate and graduate students as well as researchers in physics, economics and finance. The book takes a finitary approach to the subject, discussing the essentials of applied probability, and covering finite Markov chain theory and its applications to real systems. Each chapter ends with a summary, suggestions for further reading, and exercises with solutions at the end of the book.
Written by world experts in the foundations of quantum mechanics and its applications to social science, this book shows how elementary quantum mechanical principles can be applied to decision-making paradoxes in psychology and used in modelling information in finance and economics. The book starts with a thorough overview of some of the salient differences between classical, statistical and quantum mechanics. It presents arguments on why quantum mechanics can be applied outside of physics and defines quantum social science. The issue of the existence of quantum probabilistic effects in psychology, economics and finance is addressed and basic questions and answers are provided. Aimed at researchers in economics and psychology, as well as physics, basic mathematical preliminaries and elementary concepts from quantum mechanics are defined in a self-contained way.
The distribution of wealth and income is never uniform, and philosophers and economists have tried for years to understand the reasons and formulate remedies for such inequalities. This book introduces the elegant and intriguing kinetic exchange models that physicists have developed to tackle these issues. This is the first monograph in econophysics focussed on the analyses and modelling of these distributions, and is ideal for physicists and economists. It is written in simple, lucid language, with plenty of illustrations and in-depth analyses, making it suitable for researchers new to this field as well as specialized readers. It explores the origin of economic inequality and examines the scientific steps that can be taken to reduce this inequality in the future.
Stochastic calculus provides a powerful description of a specific class of stochastic processes in physics and finance. However, many econophysicists struggle to understand it. This book presents the subject simply and systematically, giving graduate students and practitioners a better understanding and enabling them to apply the methods in practice. The book develops Ito calculus and Fokker–Planck equations as parallel approaches to stochastic processes, using those methods in a unified way. The focus is on nonstationary processes, and statistical ensembles are emphasized in time series analysis. Stochastic calculus is developed using general martingales. Scaling and fat tails are presented via diffusive models. Fractional Brownian motion is thoroughly analyzed and contrasted with Ito processes. The Chapman–Kolmogorov and Fokker–Planck equations are shown in theory and by example to be more general than a Markov process. The book also presents new ideas in financial economics and a critical survey of econometrics.
Recognising that the economy is a complex system with boundedly rational interacting agents, the book presents a theory of behavioral rationality and heterogeneous expectations in complex economic systems and confronts the nonlinear dynamic models with empirical stylized facts and laboratory experiments. The complexity modeling paradigm has been strongly advocated since the late 1980s by some economists and by multidisciplinary scientists from various fields, such as physics, computer science and biology. More recently the complexity view has also drawn the attention of policy makers, who are faced with complex phenomena, irregular fluctuations and sudden, unpredictable market transitions. The complexity tools - bifurcations, chaos, multiple equilibria - discussed in this book will help students, researchers and policy makers to build more realistic behavioral models with heterogeneous expectations to describe financial market movements and macro-economic fluctuations, in order to better manage crises in a complex global economy.
This is the substantially revised and restructured second edition of Ron Shone's successful advanced textbook Economic Dynamics. The book provides detailed coverage of dynamics and phase diagrams, including: quantitative and qualitative dynamic systems, continuous and discrete dynamics, linear and non-linear systems and single equation and systems of equations. It illustrates dynamic systems using Mathematica, Maple V and spreadsheets. It provides a thorough introduction to phase diagrams and their economic application and explains the nature of saddle path solutions. The second edition contains a new chapter on oligopoly and an extended treatment of stability of discrete dynamic systems and the solving of first-order difference equations. Detailed routines on the use of Mathematica and Maple are now contained in the body of the text, which now includes advice on the use of Excel and additional examples and exercises throughout. Supporting website contains solutions manual and learning tools.
In the first comprehensive and full-length study of the English historical economists, Gerard Koot traces their revolt against the theory, policy recommendations and academic dominance of classical and neoclassical economics in Britain between 1870 and 1926. English Historical Economics, 1870–1926 shows how these historical critics challenged the deductive method and mechanistic assumptions of the economic orthodoxy, developing an historical and inductive method for economic studies and laying the foundation for the professional study of economic history. The author examines the effect of this new methodology upon English politics, discussing the intellectual framework that the historical economists provided for the conservative attack on laissez-faire philosophy in links between such larger social, economic, political and intellectual controversies and the origin and growth of English historical economics.
The economic crisis of 2008 has shown that the capital markets need new theoretical and mathematical concepts to describe and price financial instruments. Focusing on interest rates and coupon bonds, this book does not employ stochastic calculus – the bedrock of the present day mathematical finance – for any of the derivations. Instead, it analyzes interest rates and coupon bonds using quantum finance. The Heath-Jarrow-Morton and the Libor Market Model are generalized by realizing the forward and Libor interest rates as an imperfectly correlated quantum field. Theoretical models have been calibrated and tested using bond and interest rates market data. Building on the principles formulated in the author's previous book (Quantum Finance, Cambridge University Press, 2004) this ground-breaking book brings together a diverse collection of theoretical and mathematical interest rate models. It will interest physicists and mathematicians researching in finance, and professionals working in the finance industry.
This second edition presents the advances made in finance market analysis since 2005. The book provides a careful introduction to stochastic methods along with approximate ensembles for a single, historic time series. The new edition explains the history leading up to the biggest economic disaster of the 21st century. Empirical evidence for finance market instability under deregulation is given, together with a history of the explosion of the US Dollar worldwide. A model shows how bounds set by a central bank stabilized FX in the gold standard era, illustrating the effect of regulations. The book presents economic and finance theory thoroughly and critically, including rational expectations, cointegration and arch/garch methods, and replaces several of those misconceptions by empirically based ideas. This book will be of interest to finance theorists, traders, economists, physicists and engineers, and leads the reader to the frontier of research in time series analysis.
Econophysics is an emerging interdisciplinary field that takes advantage of the concepts and methods of statistical physics to analyse economic phenomena. This book expands the explanatory scope of econophysics to the real economy by using methods from statistical physics to analyse the success and failure of companies. Using large data sets of companies and income-earners in Japan and Europe, a distinguished team of researchers show how these methods allow us to analyse companies, from huge corporations to small firms, as heterogeneous agents interacting at multiple layers of complex networks. They then show how successful this approach is in explaining a wide range of recent findings relating to the dynamics of companies. With mathematics kept to a minimum, the book is not only a lively introduction to the field of econophysics but also provides fresh insights into company behaviour.