To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Connections between heaps of modules and (affine) modules over rings are explored. This leads to explicit, often constructive, descriptions of some categorical constructions and properties that are implicit in universal algebra and algebraic theories. In particular, it is shown that the category of groups with a compatible action of a truss T (also called pointed T-modules) is isomorphic to the category of modules over the ring $\mathrm {R}(T)$ universally associated to the truss. This is widely used in the explicit description of free objects. Next, it is proven that the category of heaps of modules over T is isomorphic to the category of affine modules over $\mathrm {R}(T)$ and, in order to make the picture complete, that (in the unital case) these are in turn equivalent to a specific subcategory of the slice category of pointed T-modules over $\mathrm {R}(T)$. These correspondences and properties are then used to describe explicitly various (co)limits and to compare short exact sequences in the Barr-exact category of heaps of T-modules with short exact sequences as defined previously.
We adapt the abstract concepts of abelianness and centrality of universal algebra to the context of inverse semigroups. We characterize abelian and central congruences in terms of the corresponding congruence pairs. We relate centrality to conjugation in inverse semigroups. Subsequently, we prove that solvable and nilpotent inverse semigroups are groups.
We show that the set of Liouville numbers has a rich set-theoretic structure: it can be partitioned in an explicit way into an uncountable collection of subsets, each of which is dense in the real line. Furthermore, each of these partitioning subsets can be similarly partitioned, and the process can be repeated indefinitely.
We investigate semigroups S which have the property that every subsemigroup of $S\times S$ which contains the diagonal $\{ (s,s)\colon s\in S\}$ is necessarily a congruence on S. We call such an S a DSC semigroup. It is well known that all finite groups are DSC, and easy to see that every DSC semigroup must be simple. Building on this, we show that for broad classes of semigroups, including periodic, stable, inverse and several well-known types of simple semigroups, the only DSC members are groups. However, it turns out that there exist nongroup DSC semigroups, which we obtain by utilising a construction introduced by Byleen for the purpose of constructing interesting congruence-free semigroups. Such examples can additionally be regular or bisimple.
We examine the consequences of having a total division operation $\frac {x}{y}$ on commutative rings. We consider two forms of binary division, one derived from a unary inverse, the other defined directly as a general operation; each are made total by setting $1/0$ equal to an error value $\bot $, which is added to the ring. Such totalised divisions we call common divisions. In a field the two forms are equivalent and we have a finite equational axiomatisation E that is complete for the equational theory of fields equipped with common division, which are called common meadows. These equational axioms E turn out to be true of commutative rings with common division but only when defined via inverses. We explore these axioms E and their role in seeking a completeness theorem for the conditional equational theory of common meadows. We prove they are complete for the conditional equational theory of commutative rings with inverse based common division. By adding a new proof rule, we can prove a completeness theorem for the conditional equational theory of common meadows. Although, the equational axioms E fail with common division defined directly, we observe that the direct division does satisfy the equations in E under a new congruence for partial terms called eager equality.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.
Two first-order logic theories are definitionally equivalent if and only if there is a bijection between their model classes that preserves isomorphisms and ultraproducts (Theorem 2). This is a variant of a prior theorem of van Benthem and Pearce. In Example 2, uncountably many pairs of definitionally inequivalent theories are given such that their model categories are concretely isomorphic via bijections that preserve ultraproducts in the model categories up to isomorphism. Based on these results, we settle several conjectures of Barrett, Glymour and Halvorson.
It is argued that a nonsingular elliptic curve admits a natural or fundamental abelian heap structure uniquely determined by the curve itself. It is shown that the set of complex analytic or rational functions from a nonsingular elliptic curve to itself is a truss arising from endomorphisms of this heap.
The complete characterisation of order types of non-standard models of Peano arithmetic and its extensions is a famous open problem. In this paper, we consider subtheories of Peano arithmetic (both with and without induction), in particular, theories formulated in proper fragments of the full language of arithmetic. We study the order types of their non-standard models and separate all considered theories via their possible order types. We compare the theories with and without induction and observe that the theories without induction tend to have an algebraic character that allows model constructions by closing a model under the relevant algebraic operations.
In this paper, we determine the homotopy types of the Morse complexes of certain collections of simplicial complexes by studying dominating vertices or strong collapses. We show that if K contains two leaves that share a common vertex, then its Morse complex is strongly collapsible and hence has the homotopy type of a point. We also show that the pure Morse complex of a tree is strongly collapsible, thereby recovering as a corollary a result of Ayala et al. (2008, Topology and Its Applications 155, 2084–2089). In addition, we prove that the Morse complex of a disjoint union $K\sqcup L$ is the Morse complex of the join $K*L$. This result is used to compute the homotopy type of the Morse complex of some families of graphs, including Caterpillar graphs, as well as the automorphism group of a disjoint union for a large collection of disjoint complexes.
In this paper, we give an axiomatization of the ordinal number system, in the style of Dedekind’s axiomatization of the natural number system. The latter is based on a structure $(N,0,s)$ consisting of a set N, a distinguished element $0\in N$ and a function $s\colon N\to N$. The structure in our axiomatization is a triple $(O,L,s)$, where O is a class, L is a class function defined on all s-closed ‘subsets’ of O, and s is a class function $s\colon O\to O$. In fact, we develop the theory relative to a Grothendieck-style universe (minus the power set axiom), as a way of bringing the natural and the ordinal cases under one framework. We also establish a universal property for the ordinal number system, analogous to the well-known universal property for the natural number system.
Just like group actions are represented by group automorphisms, Lie algebra actions are represented by derivations: up to isomorphism, a split extension of a Lie algebra $B$ by a Lie algebra $X$ corresponds to a Lie algebra morphism $B\to {\mathit {Der}}(X)$ from $B$ to the Lie algebra ${\mathit {Der}}(X)$ of derivations on $X$. In this article, we study the question whether the concept of a derivation can be extended to other types of non-associative algebras over a field ${\mathbb {K}}$, in such a way that these generalized derivations characterize the ${\mathbb {K}}$-algebra actions. We prove that the answer is no, as soon as the field ${\mathbb {K}}$ is infinite. In fact, we prove a stronger result: already the representability of all abelian actions – which are usually called representations or Beck modules – suffices for this to be true. Thus, we characterize the variety of Lie algebras over an infinite field of characteristic different from $2$ as the only variety of non-associative algebras which is a non-abelian category with representable representations. This emphasizes the unique role played by the Lie algebra of linear endomorphisms $\mathfrak {gl}(V)$ as a representing object for the representations on a vector space $V$.
Let G be a group and A a set equipped with a collection of finitary operations. We study cellular automata $$\tau :{A^G} \to {A^G}$$ that preserve the operations AG of induced componentwise from the operations of A. We show τ that is an endomorphism of AG if and only if its local function is a homomorphism. When A is entropic (i.e. all finitary operations are homomorphisms), we establish that the set EndCA(G;A), consisting of all such endomorphic cellular automata, is isomorphic to the direct limit of Hom(AS, A), where S runs among all finite subsets of G. In particular, when A is an R-module, we show that EndCA(G;A) is isomorphic to the group algebra $${\rm{End}}(A)[G]$$. Moreover, when A is a finite Boolean algebra, we establish that the number of endomorphic cellular automata over AG admitting a memory set S is precisely $${(k|S|)^k}$$, where k is the number of atoms of A.
We present a metric condition $\TTMetric$ which describes the geometry of classical small cancellation groups and applies also to other known classes of groups such as two-dimensional Artin groups. We prove that presentations satisfying condition $\TTMetric$ are diagrammatically reducible in the sense of Sieradski and Gersten. In particular, we deduce that the standard presentation of an Artin group is aspherical if and only if it is diagrammatically reducible. We show that, under some extra hypotheses, $\TTMetric$-groups have quadratic Dehn functions and solvable conjugacy problem. In the spirit of Greendlinger's lemma, we prove that if a presentation P = 〈X| R〉 of group G satisfies conditions $\TTMetric -C'(\frac {1}{2})$, the length of any nontrivial word in the free group generated by X representing the trivial element in G is at least that of the shortest relator. We also introduce a strict metric condition $\TTMetricStrict$, which implies hyperbolicity.
We define a fragment of monadic infinitary second-order logic corresponding to an abstract separation property. We use this to define the concept of a separation subclass. We use model theoretic techniques and games to show that separation subclasses whose axiomatisations are recursively enumerable in our second-order fragment can also be recursively axiomatised in their original first-order language. We pin down the expressive power of this formalism with respect to first-order logic, and investigate some questions relating to decidability and computational complexity. As applications of these results, by showing that certain classes can be straightforwardly defined as separation subclasses, we obtain first-order axiomatisability results for these classes. In particular we apply this technique to graph colourings and a class of partial algebras arising from separation logic.
Infinite product operations are at the forefront of the study of homotopy groups of Peano continua and other locally path-connected spaces. In this paper, we define what it means for a space X to have infinitely commutative $\pi _1$-operations at a point $x\in X$. Using a characterization in terms of the Specker group, we identify several natural situations in which this property arises. Maintaining a topological viewpoint, we define the transfinite abelianization of a fundamental group at any set of points $A\subseteq X$ in a way that refines and extends previous work on the subject.
In this paper we investigate the computational complexity of deciding if the variety generated by a given finite idempotent algebra satisfies a special type of Maltsev condition that can be specified using a certain kind of finite labelled path. This class of Maltsev conditions includes several well known conditions, such as congruence permutability and having a sequence of n Jónsson terms, for some given n. We show that for such “path defined” Maltsev conditions, the decision problem is polynomial-time solvable.
Let $p$ be an odd prime. The unary algebra consisting of the dihedral group of order $2p$, acting on itself by left translation, is a minimal congruence lattice representation of $\mathbb{M}_{p+1}$.
This paper investigates the computational complexity of deciding if a given finite idempotent algebra has a ternary term operation $m$ that satisfies the minority equations $m(y,x,x)\approx m(x,y,x)\approx m(x,x,y)\approx y$. We show that a common polynomial-time approach to testing for this type of condition will not work in this case and that this decision problem lies in the class NP.