To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For Γ a finite subgroup of $\mathrm{SL}_2(\mathbb{C})$ and $n \geq 1$, we study the fibres of the Procesi bundle over the Γ-fixed points of the Hilbert scheme of n points in the plane. For each irreducible component of this fixed point locus, our approach reduces the study of the fibres of the Procesi bundle, as an $(\mathfrak{S}_n \times \Gamma)$-module, to the study of the fibres of the Procesi bundle over an irreducible component of dimension zero in a smaller Hilbert scheme. When Γ is of type A, our main result shows, as a corollary, that the fibre of the Procesi bundle over the monomial ideal associated with a partition λ is induced, as an $(\mathfrak{S}_n \times \Gamma)$-module, from the fibre of the Procesi bundle over the monomial ideal associated with the core of λ. We give different proofs of this corollary in two edge cases using only representation theory and symmetric functions.
Motivated by classical Alexander invariants of affine hypersurface complements, we endow certain finite dimensional quotients of the homology of abelian covers of complex algebraic varieties with a canonical and functorial mixed Hodge structure (MHS). More precisely, we focus on covers which arise algebraically in the following way: if U is a smooth connected complex algebraic variety and G is a complex semiabelian variety, the pullback of the exponential map by an algebraic morphism $f:U\to G$ yields a covering space $\pi :U^f\to U$ whose group of deck transformations is $\pi _1(G)$. The new MHSs are compatible with Deligne’s MHS on the homology of U through the covering map $\pi $ and satisfy a direct sum decomposition as MHSs into generalized eigenspaces by the action of deck transformations. This provides a vast generalization of the previous results regarding univariable Alexander modules by Geske, Maxim, Wang and the authors in [16, 17]. Lastly, we reduce the problem of whether the first Betti number of the Milnor fiber of a central hyperplane arrangement complement is combinatorial to a question about the Hodge filtration of certain MHSs defined in this paper, providing evidence that the new structures contain interesting information.
In this paper we show that the rank of the normal function function of the genus $g$ Ceresa cycle over the moduli space of curves has the maximal rank possible, $3g-3$ , provided that $g\ge 3$. In genus 3 we show that the Green–Griffiths invariant of this normal function is a Teichmüller modular form of weight $(4,0,-1)$ and use this to show that the rank of the Ceresa normal function is exactly 1 along the hyperelliptic locus. We also introduce new techniques and tools for studying the behaviour of normal functions along and transverse to boundary divisors. These include the introduction of residual normal functions and the use of global monodromy arguments to compute them.
We show that the derived categories of perverse Nori motives investigate and mixed Hodge modules are the derived categories of their constructible hearts. This enables us to construct $\infty$-categorical lifts of the six operations. As a result, we obtain realisation functors from the category of Voevodsky étale motives to the derived categories of perverse Nori motives and mixed Hodge modules that commute with the operations. We also prove that if a motivic t-structure exists then Voevodsky étale motives and the derived category of perverse Nori motives are equivalent. Finally, we give a presentation of the indization of the derived category of perverse Nori motives as a category of modules in Voevodsky étale motives.
We formulate Guo–Jacquet type fundamental lemma conjectures and arithmetic transfer conjectures for inner forms of $GL_{2n}$. Our main results confirm these conjectures for division algebras of invariant $1/4$ and $3/4$.
We introduce a notion of equivariant vector bundles on schemes over semirings. We do this by considering the functor of points of a locally free sheaf. We prove that every toric vector bundle on a toric scheme X over an idempotent semifield equivariantly splits as a sum of toric line bundles. We then study the equivariant Picard group $\operatorname{Pic}_G(X)$. Finally, we prove a version of Klyachko’s classification theorem for toric vector bundles over an idempotent semifield.
Let S and T be smooth projective varieties over an algebraically closed field k. Suppose that S is a surface admitting a decomposition of the diagonal. We show that, away from the characteristic of k, if an algebraic correspondence $T \to S$ acts trivially on the unramified cohomology, then it acts trivially on any normalized, birational and motivic functor. This generalizes Kahn’s result on the torsion order of S. We also exhibit an example of S over $\mathbb {C}$ for which $S \times S$ violates the integral Hodge conjecture.
We compute the co-multiplication of the algebraic Morava K-theory for split orthogonal groups. This allows us to compute the decomposition of the Morava motives of generic maximal orthogonal Grassmannians and to compute a Morava K-theory analogue of the J-invariant in terms of the ordinary (Chow) J-invariant.
We prove the coherence of multiplier submodule sheaves associated with Griffiths semi-positive singular hermitian metrics over holomorphic vector bundles on complex manifolds which have no nontrivial subvarieties, such as generic complex tori.
We prove a functional transcendence theorem for the integrals of algebraic forms in families of algebraic varieties. This allows us to prove a geometric version of André’s generalization of the Grothendieck period conjecture, which we state using the formalism of Nori motives.
More precisely, we prove a version of the Ax–Schanuel conjecture for the comparison between the flat and algebraic coordinates of an arbitrary admissible graded polarizable variation of integral mixed Hodge structures. This can be seen as a generalization of the recent Ax–Schanuel theorems of [13, 18] for mixed period maps.
We prove the conjecture of Franceschini and Lorenzini [‘Fat points of $\mathbb P^n$ whose support is contained in a linear proper subspace’, J. Pure and Appl. Algebra160 (2001), 169–182] about the regularity index of fat points of $\mathbb P^n$ whose support is contained in a linear proper subspace.
Let $X$ be a curve of genus at least 4 that is very general or very general hyperelliptic. We classify all the ways in which a power $(JX)^k$ of the Jacobian of $X$ can be isogenous to a product of Jacobians of curves. As an application, we show that if $A$ is a very general principally polarized abelian variety of dimension at least 4 or the intermediate Jacobian of a very general cubic threefold, then no power $A^k$ is isogenous to a product of Jacobians of curves. This confirms various cases of the Coleman–Oort conjecture. We further deduce from our results some progress on the question of whether the integral Hodge conjecture fails for $A$ as above.
A real variety whose real locus achieves the Smith–Thom equality is called maximal. This paper introduces new constructions of maximal real varieties, by using moduli spaces of geometric objects. We establish the maximality of the following real varieties:
– moduli spaces of stable vector bundles of coprime rank and degree over a maximal real curve (recovering Brugallé–Schaffhauser’s theorem with a short new proof), which extends to moduli spaces of parabolic vector bundles;
– moduli spaces of stable Higgs bundles of coprime rank and degree over a maximal real curve, providing maximal hyper-Kähler manifolds in every even dimension;
– if a real variety has maximal Hilbert square, then the variety and its Hilbert cube are maximal, which happens for all maximal real cubic 3-folds, but never for maximal real cubic 4-folds;
– punctual Hilbert schemes on a maximal real surface with vanishing first $\mathbb {F}_2$-Betti number and connected real locus, such as $\mathbb {R}$-rational maximal real surfaces and some generalized Dolgachev surfaces;
– moduli spaces of stable sheaves on an $\mathbb {R}$-rational maximal Poisson surface (e.g. the real projective plane).
We highlight that maximality is a motivic property when interpreted as equivariant formality, and hence any real variety motivated by maximal ones is also maximal.
Let $\mathcal {X}\to \mathbb {D}$ be a flat family of projective complex 3-folds over a disc $\mathbb {D}$ with smooth total space $\mathcal {X}$ and smooth general fibre $\mathcal {X}_t,$ and whose special fiber $\mathcal {X}_0$ has double normal crossing singularities, in particular, $\mathcal {X}_0=A\cup B$, with A, B smooth threefolds intersecting transversally along a smooth surface $R=A\cap B.$ In this paper, we first study the limit singularities of a $\delta $-nodal surface in the general fibre $S_t\subset \mathcal {X}_t$, when $S_t$ tends to the central fibre in such a way its $\delta $ nodes tend to distinct points in R. The result is that the limit surface $S_0$ is in general the union $S_0=S_A\cup S_B$, with $S_A\subset A$, $S_B\subset B$ smooth surfaces, intersecting on R along a $\delta $-nodal curve $C=S_A\cap R=S_B\cap B$. Then we prove that, under suitable conditions, a surface $S_0=S_A\cup S_B$ as above indeed deforms to a $\delta $-nodal surface in the general fibre of $\mathcal {X}\to \mathbb {D}$. As applications, we prove that there are regular irreducible components of the Severi variety of degree d surfaces with $\delta $ nodes in $\mathbb {P}^3$, for every $\delta \leqslant {d-1\choose 2}$ and of the Severi variety of complete intersection $\delta $-nodal surfaces of type $(d,h)$, with $d\geqslant h-1$ in $\mathbb {P}^4$, for every $\delta \leqslant {{d+3}\choose 3}-{{d-h+1}\choose 3}-1.$
We define kappa classes on moduli spaces of Kollár-Shepherd-Barron-Alexeev (KSBA)-stable varieties and pairs, generalizing the Miller–Morita–Mumford classes on moduli of curves, and computing them in some cases where the virtual fundamental class is known to exist, including Burniat and Campedelli surfaces. For Campedelli surfaces, an intermediate step is finding the Chow (same as cohomology) ring of the GIT quotient $(\mathbb {P}^2)^7//SL(3)$.
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of relative invariants.
For a Lie algebra ${\mathfrak g}$ of holomorphic vector fields on a complex manifold M, any holomorphic ${\mathfrak g}$-invariant hypersurface is given in terms of a ${\mathfrak g}$-invariant divisor. This generalizes the classical notion of scalar relative ${\mathfrak g}$-invariant. Any ${\mathfrak g}$-invariant divisor gives rise to a ${\mathfrak g}$-equivariant line bundle, and a large part of this paper is therefore devoted to the investigation of the group $\mathrm {Pic}_{\mathfrak g}(M)$ of ${\mathfrak g}$-equivariant line bundles. We give a cohomological description of $\mathrm {Pic}_{\mathfrak g}(M)$ in terms of a double complex interpolating the Chevalley-Eilenberg complex for ${\mathfrak g}$ with the Čech complex of the sheaf of holomorphic functions on M.
We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a characterization of them with our general theory. Examples, including projective geometry of curves and second-order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some classical computations. At the end, we briefly discuss generalizations of this theory.
We find an Lascoux–Leclerc–Thibon (LLT)-type formula for a general power of the nabla operator of [BG99] applied to the Cauchy product for the modified Macdonald polynomials, and use it to deduce a new proof of the generalized shuffle theorem describing $\nabla^k e_n$ [HHL+05a, CM18, Mel21], and the formula for $(\nabla^k p_1^n,e_n)$ from [EH16, GH22] as corollaries. We give a direct proof of the theorem by verifying that the LLT expansion satisfies the defining properties of $\nabla^k$, such as triangularity in the dominance order, as well as a geometric proof based on a method for counting bundles on $\mathbb{P}^1$ due to the second author [Mel20]. These formulas are related to an affine paving of the type A unramified affine Springer fiber studied by Goresky, Kottwitz, and MacPherson in [GKM04], and also to Stanley’s chromatic symmetric functions.
We examine the maximum dimension of a linear system of plane cubic curves whose $\mathbb {F}_q$-members are all geometrically irreducible. Computational evidence suggests that such a system has a maximum (projective) dimension of $3$. As a step towards the conjecture, we prove that there exists a three-dimensional linear system $\mathcal {L}$ with at most one geometrically reducible $\mathbb {F}_q$-member.
We study hyperbolicity properties of the moduli space of polarized abelian varieties (also known as the Siegel modular variety) in characteristic p. Our method uses the plethysm operation for Schur functors as a key ingredient and requires a new positivity notion for vector bundles in characteristic p called $(\varphi,D)$-ampleness. Generalizing what was known for the Hodge line bundle, we also show that many automorphic vector bundles on the Siegel modular variety are $(\varphi,D)$-ample.