We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dedicated to a new class of wideband antenna, significantly developed over the past two decades, this book is the ultimate reference on magnetoelectric dipole antennas. The author is world-renowned for his pioneering work on antennas and has continuously developed the magnetoelectric dipole antenna since 2006. With contributions from the author and his students as well as results from research groups worldwide, the development of this novel antenna is fully captured. The theory and design are presented step-by-step, using simple technical explanations, making the contents accessible to readers without specialized training in antenna designs. Including the various applications of the antenna such as communications, global positioning, sensing, radar, medical imaging and IoT, this book endeavours to demonstrate the versatility and interdisciplinary of the antennas. Helping readers to develop sophisticated antennas with this thorough coverage on magnetoelectric dipole antennas, this is the ideal reference for graduate students, researchers, and electrical engineers.
This dynamic textbook provides students with a concise and accessible introduction to the fundamentals of modern digital communications systems. Building from first principles, its comprehensive approach equips students with all of the mathematical tools, theoretical knowledge, and practical understanding they need to excel. It equips students with a strong mathematical foundation spanning signals and systems, probability, random variables, and random processes, and introduces students to key concepts in digital information sources, analog-to-digital conversion, digital modulation, power spectra, multi-carrier modulation, and channel coding. It includes over 85 illustrative examples, and more than 270 theoretical and computational end-of-chapter problems, allowing students to connect theory to practice, and is accompanied by downloadable Matlab code, and a digital solutions manual for instructors. Suitable for a single-semester course, this succinct textbook is an ideal introduction to the field of digital communications for senior undergraduate students in electrical engineering.
Now reissued by Cambridge University Press, the updated second edition of this definitive textbook provides an unrivaled introduction to the theoretical and practical fundamentals of wireless communications. Key technical concepts are developed from first principles, and demonstrated to students using over 50 carefully curated worked examples. Over 200 end-of-chapter problems, based on real-world industry scenarios, help cement student understanding. The book provides a thorough coverage of foundational wireless technologies, including wireless local area networks (WLAN), 3G systems, and Bluetooth along with refreshed summaries of recent cellular standards leading to 4G and 5G, insights into the new areas of mobile satellite communications and fixed wireless access, and extra homework problems. Supported online by a solutions manual and lecture slides for instructors, this is the ideal foundation for senior undergraduate and graduate courses in wireless communications.
The ideal reference book providing all the information needed to fully understand magnetic communications in a self-contained source, written by experts in the field. This book offers a comprehensive introduction to magnetic communication using easy-to-understand language to explain concepts throughout and introduces the theory step by step with examples. A careful balance of combined theoretical and practical perspective is given throughout the book with interdisciplinary and multidisciplinary considerations for in-depth and diverse understanding. This book covers the background, developments, fundaments, antennas, channels, performance, protocol related to magnetic communications as well as applications that are of current interest, such as IoT, MIMO and wireless power transfer. The figures of merit within magnetic communication system components are included, demonstrating how to both model and analyze them. This book will be of great benefit to graduate students, researchers, and electrical engineers working in the fields of wireless communications and the internet of things.
This book provides the state-of-the-art research on aerial communications coexisting with terrestrial networks from physical, MAC, network, and application layer perspectives. It includes thorough discussion of control issues, access techniques and resource sharing between cellular communication and aerial communications to accommodate larger volumes of traffic and to provide better service to users. Other challenges are explored in this text are: identification of services, radio resource allocation and resource management for aerial links, self-organizing aerial networks, aerial offloading, and performance evaluation of aerial communications. This volume will be a highly useful resource for students, researchers and engineers interested in obtaining comprehensive information on the design, evaluation, and applications of aerial access networks and communications.
Master the fundamentals of digital communications systems with this accessible and hands-on introductory textbook, carefully interweaving theory and practice. The just-in-time approach introduces essential background as needed, keeping academic theory firmly linked to practical applications. The example-led teaching frames key concepts in the context of real-world systems, such as 5G, WiFi, and GPS. Stark provides foundational material on the trade-offs between energy and bandwidth efficiency, giving students a solid grounding in the fundamental challenges of designing digital communications systems. Features include over 300 illustrative figures, 80 examples, and 130 end-of-chapter problems to reinforce student understanding, with solutions for instructors. Accompanied online by lecture slides, computational MATLAB® and Python resources, and supporting data sets, this is the ideal introduction to digital communications for senior undergraduate and graduate students in electrical engineering.
This book offers comprehensive, practical guidance on RF propagation channel characterization at mmWave and sub-terahertz frequencies, with an overview of both measurement systems and current and future channel models. It introduces the key concepts required for performing accurate mmWave channel measurements, including channel sounder architectures, calibration methods, channel sounder performance metrics and their relationship to propagation channel characteristics. With a comprehensive introduction to mmWave channel models, the book allows readers to carefully review and select the most appropriate channel model for their application. The book provides fundamental system theory accessible in a step by step way with clear examples throughout. With inter- and multidisciplinary perspectives, the reader will observe the tight interaction between measurements and modeling for these frequency bands and how different disciplines interact. This is an excellent reference for researchers, including graduate students, working on mmWave and sub-THz wireless communications, and for engineers developing communication systems.
Discover the fundamental characteristics of ultra-dense networks with this comprehensive text. Featuring a consistent mathematical description of ultra-dense small cell networks while also covering real-world issues such as network deployment, operation and optimization, this book investigates performance metrics of coverage probability and area spectral efficiency (ASE) and addresses the aspects of ultra-dense networks that make them different from current networks. Insightful intuitions, which will assist decision-makers as they migrate their services, are explained and mathematically proven. The book presents the latest review of research outcomes on ultra-dense networks, based on both theoretical analyses and network simulations, includes over 200 sources from 3GPP, the Small Cell Forum, journals and conference proceedings, and covers all other related and prominent topics. This is an ideal reference text for professionals who are dealing with the development, deployment, operation and maintenance of ultra-dense small cell networks, as well as researchers and graduate students in communications.
Experience a guided tour of the key information-theoretic principles that underpin the design of next-generation cellular systems with this invaluable reference. Written by experts in the field, the text encompasses principled theoretical guidelines for the design and performance analysis of network architectures, coding and modulation schemes, and communication protocols. Presenting an extensive overview of the most important ideas and topics necessary for the development of future wireless systems, as well as providing a detailed introduction to network information theory, this is the perfect tool for researchers and graduate students in the fields of information theory and wireless communications, as well as for practitioners in the telecommunications industry.
The first book on 6G wireless presents an overall vision for 6G - an era of intelligence-of-everything - with drivers, key capabilities, use cases, KPIs, and the technology innovations that will shape it. These innovations include immersive human-centric communication, sensing, localization, and imaging, connected machine learning and networked AI, Industry 4.0 and beyond with connected intelligence, smart cities and life, and the satellite mega-constellation for 3D full-Earth wireless coverage. Also covered are new air-interface and networking technologies, integrated sensing and communications, and integrated terrestrial and non-terrestrial networks. In addition, novel network architectures to enable network AI, user centric networks, native trustworthiness are discussed. Essential reading for researchers in academia and industry working on B5G wireless communications.
Understand both uncoded and coded caching techniques in future wireless network design. Expert authors present new techniques that will help you to improve backhaul, load minimization, deployment cost reduction, security, energy efficiency and the quality of the user experience. Covering topics from high-level architectures to specific requirement-oriented caching design and analysis, including big-data enabled caching, caching in cloud-assisted 5G networks, and security, this is an essential resource for academic researchers, postgraduate students and engineers working in wireless communications.
Understand the theoretical principles, key technologies and applications of UDNs with this authoritative survey. Theory is explained in a clear, step-by-step manner, and recent advances and open research challenges in UDN physical layer design, resource allocation and network management are described, with examples, in the context of B5G and 6G standardization. Topics covered include NOMA-based physical layer design, physical layer security. Interference management, 3D base station deployment, software defined UDNs, wireless edge caching in UDNs, UDN-based UAVs and field trials and tests. A perfect resource for graduate students, researchers and professionals who need to get up to speed on the state of the art and future opportunities in UDNs.
Understand the fundamental principles and applications of ambient backscatter technology with this authoritative review. Covering both theory and practical engineering, leading researchers describe and explain hardware design, network design, and signal processing, and discuss architectures, protocols, communication methods, open research issues, emerging applications, and advanced system models with innovative solutions. This is an essential tool for graduate students, researchers, engineers, developers, and entrepreneurs.
A thorough treatment of UAV wireless communications and networking research challenges and opportunities. Detailed, step-by-step development of carefully selected research problems that pertain to UAV network performance analysis and optimization, physical layer design, trajectory path planning, resource management, multiple access, cooperative communications, standardization, control, and security is provided. Featuring discussion of practical applications including drone delivery systems, public safety, IoT, virtual reality, and smart cities, this is an essential tool for researchers, students, and engineers interested in broadening their knowledge of the deployment and operation of communication systems that integrate or rely on unmanned aerial vehicles.
Elucidating fundamental design principles by means of accurate trade-off analysis of relevant design options using suitable mathematical tools, this is the first book to provide a coherent treatment of transmission technologies essential to current and future wireless systems. Develop in-depth knowledge of the capabilities and limitations of wireless transmission technologies in supporting high-quality wireless transmission services, and foster a thorough understanding of various design trade-offs, to help identify an ideal choice for your own application requirements. Key technologies such as advanced diversity combining, multi-user scheduling, multi-user multi-antenna transmission, relay transmission, and cognitive radio are examined, making this an essential resource for senior graduate students, researchers, and engineers working in wireless communications.
Understand the fundamental theory and practical design aspects of green and soft wireless communications networks with this expert text. It provides comprehensive and unified coverage of 5G physical layer design, as well as design of the higher and radio access layers and the core network, drawing on viewpoints from both academia and industry. Get to grips with the theory through authoritative discussion of information-theoretical results, and learn about fundamental green design trade-offs, software-defined network architectures, and energy efficient radio resource management strategies. Applications of wireless big data and artificial intelligence to wireless network design are included, providing an excellent design reference, and real-world examples of employment in software-defined 5G networks and energy saving solutions from wireless communications companies and cellular operators help to connect theory with practice. This is an essential text for graduate students, professionals and researchers.
Written specifically for a one-semester course, this textbook introduces the physical and engineering principles of communication systems using an accessible, yet mathematically rigorous, approach. Beginning with valuable background material on signals and systems, and random processes, the text then guides students through the core topics, including amplitude modulation, pulse modulation, and noise. Key terms and formulae are highlighted throughout to help students identify essential points easily. Worked examples, practice problems, and review questions reinforce concepts and enable students to develop confidence in solving problems on their own. To help visualize the concepts discussed, MATLAB-based exercises and examples are provided throughout, supported by an introductory appendix for students who are new to MATLAB. Each chapter ends with a practical applications section, showing students how concepts are used in real-life communication scenarios and devices. Figures from the book and a solutions manual, password-protected for instructors, are available online.
Understand the fundamentals of wireless and MIMO communication with this accessible and comprehensive text. Viewing the subject through an information theory lens, but also drawing on other perspectives, it provides a sound treatment of the key concepts underpinning contemporary wireless communication and MIMO, all the way to massive MIMO. Authoritative and insightful, it includes over 330 worked examples and 450 homework problems, with solutions and MATLAB code and data available online. Altogether, this is an excellent resource for instructors and graduate students, as well as an outstanding reference for researchers and practicing engineers.
Showcasing the essential principles behind modern communication systems, this accessible undergraduate textbook provides a solid introduction to the foundations of communication theory. Carefully selected topics introduce students to the most important and fundamental concepts, giving students a focused, in-depth understanding of core material, and preparing them for more advanced study. Abstract concepts are introduced to students 'just in time' and reinforced by nearly 200 end-of-chapter exercises, alongside numerous MATLAB code fragments, software problems and practical lab exercises, firmly linking the underlying theory to real-world problems, and providing additional hands-on experience. Finally, an accessible lecture-style organisation makes it easy for students to navigate to key passages, and quickly identify the most relevant material. Containing material suitable for a one- or two-semester course, and accompanied online by a password-protected solutions manual and supporting instructor resources, this is the perfect introductory textbook for undergraduate students studying electrical and computer engineering.
Using a systems framework, this textbook provides a clear and comprehensive introduction to the performance, analysis and design of radio systems for students and practising engineers. Presented within a consistent framework, the first part of the book describes the fundamentals of the subject: propagation, noise, antennas and modulation. The analysis and design of radios, including RF circuit design and signal processing, is covered in the second half of the book. The former is presented with minimal involvement of Smith charts, enabling students to grasp the fundamentals more readily. Both traditional and software-defined/direct sampling technology are described, with pros and cons of each strategy explained. Numerous examples within the text involve realistic analysis and design activities, and emphasize how practical experiences may differ from theory or taught procedures. End-of-chapter problems are provided, as are a password-protected solutions manual and lecture slides to complete the teaching package for instructors.