To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Master the art of data converter design with this definitive textbook, a detailed and accessible introduction ideal for students and practicing engineers. Razavi's distinctive and intuitive pedagogical approach, building up from elementary components to complex systems. Step-by-step transistor-level designs and simulations offer a practical hands-on understanding of key design concepts. Comprehensive coverage of essential topics including sampling circuits, comparator design, digital-to-analog converters, flash topologies, SAR and pipelined architectures, time-interleaved converters, and oversampling systems. Over 250 examples pose thought-provoking questions, reinforcing core concepts and helping students develop confidence. Over 350 end-of-chapter homework problems to test student understanding, with solutions available for course instructors. Developed by leading author Behzad Razavi, and addressing all the principles and design concepts essential to today's engineers, this is the ideal text for senior undergraduate and graduate-level students and professional engineers who aspire to excel in data converter analysis and design.
While an understanding of electronic principles is vitally important for scientists and engineers working across many disciplines, the breadth of the subject can make it daunting. This textbook offers a concise and practical introduction to electronics, suitable for a one-semester undergraduate course as well as self-guided students. Beginning with the basics of general circuit laws and resistor circuits to ease students into the subject, the textbook then covers a wide range of topics, from passive circuits to semiconductor-based analog circuits and basic digital circuits. Exercises are provided at the end of each chapter, and answers to select questions are included at the end of the book. The complete solutions manual is available for instructors to download, together with eight laboratory exercises that parallel the text. Now in its second edition, the text has been updated and expanded with additional topic coverage and exercises.
Analog Electronic Circuits is a core subject for the undergraduate students of Electronics and Communication, Instrumentation, Computer and Electrical Engineering. The subject is also a must read for other branches of engineering like mechanical and civil Engineering. This book aims to provide a detailed coverage of the subject area with emphasis on fundamental concepts. It is an ideal textbook on analog electronic circuits for the undergraduate students, and a reference book for the graduate students. It provides a comprehensive coverage of the subject matter in reader friendly, easy to comprehend language. It includes more than 170 solved examples, 390 practice problems, and 300 figures. It covers discussion on small-signal amplifiers, negative feedback in amplifiers, linear and non-linear applications of operational amplifiers. Practical approximations are used at many places to avoid rigorous analysis methods.
This practically-oriented, all-inclusive guide covers the essential concepts of power electronics through MATLAB® examples and simulations. In-depth explanation of important topics including digital control, power electronic applications, and electrical drives make it a valuable reference for readers. The experiments and applications based on MATLAB® models using fuzzy logic and neural networks are included for better understanding. Engrossing discussion of concepts such as diac, light-emitting diode, thyristors, power MOSFET and static induction transistor, offers an enlightening experience to readers. With numerous solved examples, exercises, review questions, and GATE questions, the undergraduate and graduate students of electrical and electronics engineering will find this text useful.
The understanding of fundamental concepts of electrical engineering is necessary before moving on to more advanced concepts. This book is designed as a textbook for an introductory course in electrical engineering for undergraduate students from all branches of engineering. The text is organized into fourteen chapters, and provides a balance between theory and applications. Numerous circuit diagrams and explicit illustrations add to the readability of the text. The authors have covered some important topics such as electromagnetic field theory, electrostatics, electrical circuits, magnetostatics, network theorems, three-phase systems and electrical machines. A separate chapter on measurement and instrumentation covers important topics including errors in measurement, electro-mechanical indicating instruments, current transformers and potential transformers in detail. Pedagogical features are interspersed throughout the book for better understanding of concepts.
Providing in-depth coverage and comprehensive discussion on essential concepts of electronics engineering, this textbook begins with detailed explanation of classification of semiconductors, transport phenomena in semiconductor and Junction diodes. It covers circuit modeling techniques for bipolar junction transistors, used in designing amplifiers. The textbook discusses design construction and operation principle for junction gate field-effect transistor, silicon controlled rectifier and operational amplifier. Two separate chapters on Introduction to Communication Systems and Digital Electronics covers topics including modulation techniques, logic circuits, De Morgan's theorem and digital circuits. Applications of oscillators, silicon controlled rectifier and operational amplifier are covered in detail. Pedagogical features including solved problems, multiple choice questions and unsolved exercises are interspersed throughout the textbook for better understating of concepts. This text is the ideal resource for first year undergraduate engineering students taking an introductory, single-semester course in fundamentals of electronics engineering/principles of electronics engineering.
Analog and digital electronics are an important part of most modern courses in physics. Closely mapped to the current UGC CBCS syllabus, this comprehensive textbook will be a vital resource for undergraduate students of physics and electronics. The content is structured to emphasize fundamental concepts and applications of various circuits and instruments. A wide range of topics like semiconductor physics, diodes, transistors, amplifiers, Boolean algebra, combinational and sequential logic circuits, and microprocessors are covered in lucid language and illustrated with many diagrams and examples for easy understanding. A diverse set of questions in each chapter, including multiple-choice, reasoning, numerical, and practice problems, will help students consolidate the knowledge gained. Finally, computer simulations and project ideas for projects will help readers apply the theoretical concepts and encourage experiential learning.
The much-anticipated new edition of 'Learning the Art of Electronics' is here! It defines a hands-on course, inviting the reader to try out the many circuits that it describes. Several new labs (on amplifiers and automatic gain control) have been added to the analog part of the book, which also sees an expanded treatment of meters. Many labs now have online supplements. The digital sections have been rebuilt. An FPGA replaces the less-capable programmable logic devices, and a powerful ARM microcontroller replaces the 8051 previously used. The new microcontroller allows for more complex programming (in C) and more sophisticated applications, including a lunar lander, a voice recorder, and a lullaby jukebox. A new section explores using an Integrated Development Environment to compile, download, and debug programs. Substantial new lab exercises, and their associated teaching material, have been added, including a project reflecting this edition's greater emphasis on programmable logic. Online resources including online chapters, teaching materials and video demonstrations can be found at: https://LearningTheArtOfElectronics.com.
Get up to speed with the fundamentals of complementary metal oxide semiconductor (CMOS) for wireline communication with this practical introduction, from short-reach optical links to various electrical links. It presents practical coverage of the state of the art, equipping readers with all the tools needed to understand these circuits and then design their own. A comprehensive treatment of components, including details for front-end circuits, equalizers, oscillators, phase-locked loops and clock and data recovery systems, accompanies significant coverage of inverter-based circuits, preparing the reader for modern designs in nano-scale CMOS. Numerous inline examples demonstrate concepts and solutions, allowing readers to absorb the theory and confidently apply concepts to new scenarios. Suitable for graduate students and professional engineers working in mixed-signal integrated circuit design for high-speed interconnects, and including over 100 end-of-chapter problems to extend learning (with online solutions for instructors), this versatile book will equip readers with an unrivalled understanding of exactly what goes into a modern wireline link – and why.
Chip designing is a complex task that requires an in-depth understanding of VLSI design flow, skills to employ sophisticated design tools, and keeping pace with the bleeding-edge semiconductor technologies. This lucid textbook is focused on fulfilling these requirements for students, as well as a refresher for professionals in the industry. It helps the user develop a holistic view of the design flow through a well-sequenced set of chapters on logic synthesis, verification, physical design, and testing. Illustrations and pictorial representations have been used liberally to simplify the explanation. Additionally, each chapter has a set of activities that can be performed using freely available tools and provide hands-on experience with the design tools. Review questions and problems are given at the end of each chapter to revise the concepts. Recent trends and references are listed at the end of each chapter for further reading.
This book introduces a new thrilling field - Neurocomputational Poetics, the scientific 'marriage' between cognitive poetics, data science and neuroscience. Its goal is to uncover the secrets of verbal art reception and to explain how readers come to understand and like literary texts. For centuries, verbal art reception has been considered too subjective for quantitative scientific studies and till date many scholars in the humanities and neurosciences alike view literary reading as too complex for accurate computational prediction of the neuronal, experiential and behavioural aspects of reader responses to texts. This book sets out to change this view.
Offering a new perspective, this textbook demystifies the operation of electric machines by providing an integrated understanding of electromagnetic fields, electric circuits, numerical analysis, and computer programming. It presents fundamental concepts in a rigorous manner, emphasising underlying physical modelling assumptions and limitations, and provides detailed explanations of how to implement the finite element method to explore these concepts using Python. It includes explanations of the conversion of concepts into algorithms, and algorithms into code, and examples building in complexity, from simple linear-motion electromagnets to rotating machines. Over 100 theoretical and computational end-of-chapter exercises test understanding, with solutions for instructors and downloadable Python code available online.Ideal for graduates and senior undergraduates studying electric machines, electric machine design and control, and power electronic converters and power systems engineering, this textbook is also a solid reference for engineers interested in understanding, analysing and designing electric motors, generators, and transformers.
Get up to speed on the modelling, design, technologies, and applications of tunable circuits and reconfigurable mm-wave systems. Coverage includes smart antennas and frequency-agile RF components, as well as a detailed comparison of three key technologies for the design of tunable mm-wave circuits: CMOS, RF MEMS, and microwave liquid crystals, and measurement results of state-of-the-art prototypes. Numerous examples of tunable circuits and systems are included that can be practically implemented for the reader's own needs. Ideal for graduate students studying RF/microwave engineering, and researchers and engineers involved in circuit and system design for new communication platforms such as mm-wave 5G and beyond, high-throughput satellites in GSO, and future satellite constellations in MEO/LEO, as well as for automotive radars, security and biomedical mm-wave systems.
The first comprehensive guide to discrete-time (DT) receivers (RX), discussing the fundamental concepts and implications of the technology. This book will serve as an essential reference, covering the necessary building blocks of this field, such as low-noise transconductance amplifiers, current-driven mixers, DT band-pass filters, and DT low-pass filters. As well as addressing the basics, the authors present the most recent state-of-the-art techniques applied to the DT RX blocks. A step-by-step style is used to allow readers to develop the required skills to design the DT receivers at the architecture level, while providing in-depth knowledge of the details. Written by leading experts from academia, research, and industry, this book provides an excellent reference to the subject for a wide audience, from postgraduate students to experienced researchers and professionals working with RF circuits.
Get up to speed with the fundamentals of electronic sensor design with this comprehensive guide, and discover powerful techniques to reduce the overall design timeline for your specific applications. Includes a step-by-step introduction to a generalized information-centric approach for designing electronic sensors, demonstrating universally applicable practical approaches to speed up the design process. Features detailed coverage of all the tools necessary for effective characterization and organization of the design process, improving overall process efficiency. Provides a coherent and rigorous theoretical framework for understanding the fundamentals of sensor design, to encourage an intuitive understanding of sensor design requirements. Emphasising an integrated interdisciplinary approach throughout, this is an essential tool for professional engineers and graduate students keen to improve their understanding of cutting-edge electronic sensor design.
Synthesising fifteen years of research, this authoritative text provides a comprehensive treatment of two major technologies for wireless chip and module interface design, covering technology fundamentals, design considerations and tradeoffs, practical implementation considerations, and discussion of practical applications in neural network, reconfigurable processors, and stacked SRAM. It explains the design principles and applications of two near-field wireless interface technologies for 2.5-3D IC and module integration respectively, and describes system-level performance benefits, making this an essential resource for researchers, professional engineers and graduate students performing research in next-generation wireless chip and module interface design.
Do you need to understand feedback? Perhaps you're a little rusty on theory basics? Dig in to this self-contained guide for an accessible and concise explanation of the fundamentals. Distills the relevant essence of linear system theory, calculus, differential equations, linear algebra, basic physics, numerical methods, and complex analysis, and links them back to an explanation of feedback theory. Provides a tight synthesis of analytical and conceptual understanding. Maintains a focus on common use cases. Whether you are a struggling undergraduate, a doctoral student preparing for your qualifying exams, or an industry practitioner, this easy-to-understand book invites you to relax, enjoy the material, and follow your curiosity.
This updated and expanded new edition equips students with a thorough understanding of the state-of-the-art in radio frequency (RF) design and the practical knowledge and skills needed in industry. Introductory and advanced topics are covered in-depth, with clear step-by-step explanations, including core topics such as RF components, signals and systems, two-ports, noise, distortion, low-noise amplifiers, power amplifiers, and transceiver architectures. New material has been added on wave propagation, skin effect, antennas, mixers and oscillators, and digital PAs and transmitters. Two new chapters detail the analysis and design of RF and IF filters (including SAW and FBAR duplexers and N-path filters), phase-locked loops, frequency synthesizers, digital PLLs, and frequency dividers. Theory is linked to practice through real-world applications, practical design examples, and exploration of the pros and cons of various topologies. Over 250 homework problems are included, with solutions and lecture slides for instructors available online. With its uniquely practical and intuitive approach, this is an essential text for graduate courses on RFICs and a useful reference for practicing engineers.
Using a modern, pedagogical approach, this textbook gives students and engineers a comprehensive and rigorous knowledge of CMOS phase-locked loop (PLL) design for a wide range of applications. It features intuitive presentation of theoretical concepts, built up gradually from their simplest form to more practical systems; broad coverage of key topics, including oscillators, phase noise, analog PLLs, digital PLLs, RF synthesizers, delay-locked loops, clock and data recovery circuits, and frequency dividers; tutorial chapters on high-performance oscillator design, covering fundamentals to advanced topologies; and extensive use of circuit simulations to teach design mentality, highlight design flaws, and connect theory with practice. Including over 200 thought-provoking examples highlighting best practices and common pitfalls, 250 end-of-chapter homework problems to test and enhance the readers' understanding, and solutions and lecture slides for instructors, this is the perfect text for senior undergraduate and graduate-level students and professional engineers who want an in-depth understanding of PLL design.
Master the usage of s-parameters in signal integrity applications and gain full understanding of your simulation and measurement environment with this rigorous and practical guide. Solve specific signal integrity problems including calculation of the s-parameters of a network, linear simulation of circuits, de-embedding, and virtual probing, all with expert guidance. Learn about the interconnectedness of s-parameters, frequency responses, filters, and waveforms. This invaluable resource for signal integrity engineers is supplemented with the open-source software SignalIntegrity, a Python package for scripting solutions to signal integrity problems.