We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Explore the fundamentals of biomedical engineering technologies with this thought-provoking introduction, framed around modern-day global cancer inequities. Connecting engineering principles to real-world global health scenarios, this textbook introduces major technological advances in cancer care through the lens of global health inequity, discusses how promising new technologies can address this inequity, and demonstrates how novel medical technologies are adopted for real-world clinical use. It includes modular chapters designed to enable a flexible pathway through material, for students from a wide range of backgrounds; boxed discussion of contemporary issues in engineering for global health, encouraging students to explore ethical questions related to science and society; supplementary lab modules for hands-on experience in translating engineering principles into healthcare solutions; and over 200 end-of-chapter problems, targeting multiple learning outcomes to solidify student understanding. This introduction is designed to equip students with all the critical, technical, and ethical knowledge they need to excel.
Transform your research into commercial biomedical products with this revised and updated second edition. Covering drugs, devices and diagnostics, this book provides a step-by-step introduction to the process of commercialization, and will allow you to create a realistic business plan to develop your ideas into approved biomedical technologies. This new edition includes: Over 25% new material, including practical tips on startup creation from experienced entrepreneurs. Tools for starting, growing and managing a new venture, including business planning and commercial strategy, pitching investors, and managing operations.Global real-world case studies, including emerging technologies such as regulated medical software and Artificial Intelligence (AI), offer insights into key challenges and help illustrate complex points. Tips and operational tools from established industry insiders, suitable for graduate students and new biomedical entrepreneurs.
A comprehensive guide to the science of a transformational ultrananocrystalline-diamond (UNCDTM) thin film technology enabling a new generation of high-tech and external and implantable medical devices. Edited and co-authored by a co-originator and pioneer in the field, it describes the synthesis and material properties of UNCDTM coatings and multifunctional oxide/nitride thin films and nanoparticles, and how these technologies can be integrated into the development of implantable and external medical devices and treatments of human biological conditions. Bringing together contributions from experts around the world, it covers a range of clinical applications, including ocular implants, glaucoma treatment devices, implantable prostheses, scaffolds for stem cell growth and differentiation, Li-ion batteries for defibrillators and pacemakers, and drug delivery and sensor devices. Technology transfer and regulatory issues are also covered. This is essential reading for researchers, engineers and practitioners in the field of high-tech and medical device technologies across materials science and biomedical engineering.
Providing a concise and accessible overview of the design, implementation and management of medical software, this textbook will equip students with a solid understanding of critical considerations for both standalone medical software (software as a medical device/SaMD) and software that is integrated into hardware devices. It includes: practical discussion of key regulatory documents and industry standards, and how these translate into concrete considerations for medical software design; detailed coverage of the medical software lifecycle process ; accessible introduction to quality and risk management systems in the context of medical software; succinct coverage of essential topics in data science, machine learning, statistics, cybersecurity, software engineering and healthcare bring readers up-to-speed; six cautionary real-world case studies illustrate the dangers of improper or careless software processes. Accompanied by online resources for instructors, this is the ideal introduction for undergraduate students in biomedical engineering, electrical engineering and computer science, junior software engineers, and digital health entrepreneurs.
The first introductory book on the subject, this book will provide a complete grounding to this pioneering field for students and professionals across biomedical engineering, biology and medicine. It features a comprehensive overview of original work in this revolutionary field. Topics discussed include drug delivery, cell-material interaction and gene therapy, accompanied by real-world examples and over 100 illustrations. The book teaches readers how to design and test their own nanomedical systems for real-world applications in biomedical engineering, medicine and pharmacy. Presenting a thorough discussion of the science and engineering of nanomedicine, it discusses vital environmental, social and ethical impacts of this revolutionary technology. Including over 200 thought-provoking study questions, allowing the reader to self-assess their understanding, this book is a rich source of information that will be of interest and importance in nanomedicine.
A comprehensive guide on Atomic-Scale Analytical Tomography (ASAT) that discusses basic concepts and implications of the technique in areas such as material sciences, microscopy, engineering sciences and several interdisciplinary avenues. The title interrogates how to successfully achieve ASAT at the intersection of transmission electron microscopy and atom probe microscopy. This novel concept is capable of identifying individual atoms in large volumes as well as in 3D, with high spatial resolution. Written by leading experts from academia and industry, this book serves as a guide with real-world applications on cutting-edge research problems. An essential reading for researchers, engineers and practitioners interested in nanoscale characterisation, this book introduces the reader to a new direction for atomic-scale microscopy.
Condensing 40 years of teaching experience, this unique textbook will provide students with an unrivalled understanding of the fundamentals of fluid mechanics, and enable them to place that understanding firmly within a biological context. Each chapter introduces, explains, and expands a core concept in biofluid mechanics, establishing a firm theoretical framework for students to build upon in further study. Practical biofluid applications, clinical correlations, and worked examples throughout the book provide real-world scenarios to help students quickly master key theoretical topics. Examples are drawn from biology, medicine, and biotechnology with applications to normal function, disease, and devices, accompanied by over 500 figures to reinforce student understanding. Featuring over 120 multicomponent end-of-chapter problems, flexible teaching pathways to enable tailor-made course structures, and extensive Matlab and Maple code examples, this is the definitive textbook for advanced undergraduate and graduate students studying a biologically-grounded course in fluid mechanics.
Practical Techniques in Molecular Biotechnology intends to familiarise students with the basics of the well-known experiments of molecular biotechnology and related courses like chemical biotechnology and cell biology. The content of the book will be useful in strengthening the basic skills and help students to apply the concepts to real-world problems. This book emphasises important concepts like bioanalytical techniques, biochemical analysis of proteins, recombinant DNA, and protein technology etc. The text will help students to understand the theoretical aspects of the techniques and provide experience with hands-on techniques to demonstrate practical troubleshooting and data analysis. The text is supported with diagrams, data, summaries for the quick recap and appendices with useful protocols and calculation methods.
Discover the fundamental principles of biomedical measurement design and performance evaluation with this hands-on guide. Whether you develop measurement instruments or use them in novel ways, this practical text will prepare you to be an effective generator and consumer of biomedical data. Designed for both classroom instruction and self-study, it explains how information is encoded into recorded data and can be extracted and displayed in an accessible manner. Describes and integrates experimental design, performance assessment, classification, and system modelling. Combines mathematical concepts with computational models, providing the tools needed to answer advanced biomedical questions. Includes MATLAB® scripts throughout to help readers model all types of biomedical systems, and contains numerous homework problems, with a solutions manual available online. This is an essential text for advanced undergraduate and graduate students in bioengineering, electrical and computer engineering, computer science, medical physics, and anyone preparing for a career in biomedical sciences and engineering.
Connecting theory with real-life applications, this is the first ever textbook to equip students with a comprehensive knowledge of all the key concepts in bionanotechnology. By bridging the interdisciplinary gap from which bionanotechnology emerged, it provides a systematic introduction to the subject, accessible to students from a wide variety of backgrounds. Topics range from nanomaterial preparation, properties and biofunctionalisation, and analytical methods used in bionanotechnology, to bioinspired and DNA nanotechnology, and applications in biosensing, medicine and tissue engineering. Throughout the book, features such as 'Back to basics' and 'Research report' boxes enable students to build a strong theoretical knowledge and to link this to practical applications and up-to-date research. With over 200 detailed, full-colour illustrations and more than 100 end-of-chapter problems, this is an essential guide to bionanotechnology for any student studying this exciting, fast-developing and interdisciplinary field.
Written by a pioneer in the field, this text provides a complete introduction to X-ray microscopy, providing all of the technical background required to use, understand and even develop X-ray microscopes. Starting from the basics of X-ray physics and focusing optics, it goes on to cover imaging theory, tomography, chemical and elemental analysis, lensless imaging, computational methods, instrumentation, radiation damage, and cryomicroscopy, and includes a survey of recent scientific applications. Designed as a 'one-stop' text, it provides a unified notation, and shows how computational methods in different areas are linked with one another. Including numerous derivations, and illustrated with dozens of examples throughout, this is an essential text for academics and practitioners across engineering, the physical sciences and the life sciences who use X-ray microscopy to analyze their specimens, as well as those taking courses in X-ray microscopy.
This accessible yet in-depth textbook describes the step-by-step processes involved in biomedical device design. Integrating microfabrication techniques, sensors and digital signal processing with key clinical applications, it covers: the measurement, amplification and digitization of physiological signals, and the removal of interfering signals; the transmission of signals from implanted sensors through the body, and the issues surrounding the powering of these sensors; networks for transferring sensitive patient data to hospitals for continuous home-monitoring systems; tests for ensuring patient safety; the cost-benefit and technological trade-offs involved in device design; and current challenges in biomedical device design. With dedicated chapters on electrocardiography, digital hearing aids and mobile health, and including numerous end-of-chapter homework problems, online solutions and additional references for extended learning, it is the ideal resource for senior undergraduate students taking courses in biomedical instrumentation and clinical technology.
Learn about the theory, techniques and applications of wavefront shaping in biomedical imaging using this unique text. With authoritative contributions from researchers who are defining the field, cutting-edge theory is combined with real-world practical examples, experimental data and the latest research trends to provide the first book-level treatment of the subject. It is suitable for both background reading and use in a course, with coverage of essential topics such as adaptive optical microscopy, deep tissue microscopy, time reversal and optical phase conjugation, and tomography. The latest images from the forefront of biomedical imaging are included, and full-colour versions are available in the eBook version. Researchers, practitioners and graduate students in optics, biophotonics, biomedical engineering, and biology who use biomedical imaging tools and are looking to advance their knowledge of the subject will find this an indispensable resource.
Drawing together topics from a wide range of disciplines, this text provides a comprehensive insight into the fundamentals of magnetic biosensors and the applications of magnetic nanoparticles in medicine. Internationally renowned researchers showcase topics ranging from the basic physical principles of magnetism to the detection and manipulation, synthesis protocols and natural occurrence of magnetic nanoparticles. Up-to-date examples of their clinical usage and research applications in the biomedical fields of sensing by diverse magnetic detection methods, in imaging by MRI and in therapeutic strategies such as hyperthermia, are also discussed, providing a thorough introduction to this rapidly developing field. Each chapter features questions with answers, highlighted definition boxes, and numerous illustrations which help readers grasp key concepts. Mathematical tools, together with key literature references, provide a strong underpinning for the material, making it ideal for graduate students, lecturers, medical researchers and industrial scientific strategists.
This succinct textbook gives students the perfect introduction to the world of biomaterials, linking the fundamental properties of metals, polymers, ceramics and natural biomaterials to the unique advantages and limitations surrounding their biomedical applications. Clinical concerns such as sterilization, surface modification, cell-biomaterial interactions, drug delivery systems and tissue engineering are discussed in detail, giving students practical insight into the real-world challenges associated with biomaterials engineering; key definitions, equations and concepts are concisely summarised alongside the text, allowing students to quickly and easily identify the most important information; and bringing together elements from across the book, the final chapter discusses modern commercial implants, challenging students to consider future industrial possibilities. Concise enough to be taught in a single semester, and requiring only a basic understanding of biology, this balanced and accessible textbook is the ideal introduction to biomaterials for students of engineering and materials science.
Richly illustrated throughout with actual tissue images, this innovative book shows that the soft-hard tissue junction is best understood in a biomechanical context. The authors describe their pioneering experimental methods, providing an essential structure-function framework for computational modelling, and thereby encouraging the development of more realistic, predictive models of this important tissue junction. Covering the three main musculoskeletal junctions of cartilage-bone, disc-vertebra, and ligament/tendon-bone, the relevant soft tissues are examined with respect to both their own inherent structure and their mode of integration with the hard tissue. The soft-hard tissue interface is explored with a focus on structural damage resulting from overloading, and its associated pathologies. Adopting a multiscale approach, ranging in structural resolution from the macro to fibril levels, this is a must-have guide to the field and an ideal resource for researchers seeking new and creative approaches for studying the joint and spine tissues.
Image processing is a hands-on discipline, and the best way to learn is by doing. This text takes its motivation from medical applications and uses real medical images and situations to illustrate and clarify concepts and to build intuition, insight and understanding. Designed for advanced undergraduates and graduate students who will become end-users of digital image processing, it covers the basics of the major clinical imaging modalities, explaining how the images are produced and acquired. It then presents the standard image processing operations, focusing on practical issues and problem solving. Crucially, the book explains when and why particular operations are done, and practical computer-based activities show how these operations affect real images. All images, links to the public-domain software ImageJ and custom plug-ins, and selected solutions are available from www.cambridge.org/books/dougherty.
This unique introductory text explains cell functions using the engineering principles of robust devices. Adopting a process-based approach to understanding cell and tissue biology, it describes the molecular and mechanical features that enable the cell to be robust in operating its various components, and explores the ways in which molecular modules respond to environmental signals to execute complex functions. The design and operation of a variety of complex functions are covered, including engineering lipid bilayers to provide fluid boundaries and mechanical controls, adjusting cell shape and forces with dynamic filament networks, and DNA packaging for information retrieval and propagation. Numerous problems, case studies and application examples help readers connect theory with practice, and solutions for instructors and videos of lectures accompany the book online. Assuming only basic mathematical knowledge, this is an invaluable resource for graduate and senior undergraduate students taking single-semester courses in cell mechanics, biophysics and cell biology.
This fully updated second edition provides readers with all they need to understand the use of medical technology in patient care. Incorporating the most recent changes in healthcare, regulations, Standards, and technology, coverage is expanded to include new chapters on device testing, with a particular emphasis on safety inspections, and the interface of medical technology with the electronic medical record. A wide variety of medical instrumentation is discussed, focusing on device types and classifications, and including individual manufacturers as examples. It is designed for readers with a fundamental understanding of anatomy, physiology and medical terminology, as well as electronic concepts such as voltage, current, resistance, impedance, analog and digital signals, and sensors. Additional documents and solutions to end-of-chapter questions accompany the book online, providing biomedical engineering technicians with the resources and tools they need to become knowledgeable and effective members of the patient care team.