Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-12-07T23:15:51.334Z Has data issue: false hasContentIssue false

Chapter 16 - Control of Gram-Positive Multidrug-Resistant Pathogens

from Section 4 - Antimicrobial-Resistant Organisms

Published online by Cambridge University Press:  02 April 2018

Ebbing Lautenbach
Affiliation:
University of Pennsylvania School of Medicine
Preeti N. Malani
Affiliation:
University of Michigan, Ann Arbor
Keith F. Woeltje
Affiliation:
Washington University School of Medicine, St Louis
Jennifer H. Han
Affiliation:
University of Pennsylvania School of Medicine
Emily K. Shuman
Affiliation:
University of Michigan, Ann Arbor
Jonas Marschall
Affiliation:
Washington University School of Medicine, St Louis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Available at: www.cdc.gov/drugresistance/threat-report-2013/. Accessed January 4, 2016.Google Scholar
Cosgrove, SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42 Suppl 2:S82S89.10.1086/499406CrossRefGoogle ScholarPubMed
National Nosocomial Infections Surveillance System. National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 to June 2002, issued August 2002. Am J Infect Control. 2002;30(8):458475.10.1067/mic.2002.130032CrossRefGoogle Scholar
Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):114.10.1086/668770CrossRefGoogle Scholar
Tattevin, P, Schwartz, BS, Graber, CJ, et al. Concurrent epidemics of skin and soft tissue infection and bloodstream infection due to community-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2012;55(6):781788.10.1093/cid/cis527CrossRefGoogle ScholarPubMed
Dantes, R, Mu, Y, Belflower, R, et al. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med. 2013;173(21):19701978.Google Scholar
Burton, DC, Edwards, JR, Horan, TC, et al. Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in US intensive care units, 1997–2007. JAMA. 2009;301(7):727736.10.1001/jama.2009.153CrossRefGoogle ScholarPubMed
Kallen, AJ, Mu, Y, Bulens, S, et al. Health care-associated invasive MRSA infections, 2005–2008. JAMA. 2010;304(6):641648.10.1001/jama.2010.1115CrossRefGoogle ScholarPubMed
Roberts, RR, Hota, B, Ahmad, I, et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis. 2009;49(8):11751184.10.1086/605630CrossRefGoogle Scholar
Kollef, MH, Sherman, G, Ward, S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115(2):462474.CrossRefGoogle ScholarPubMed
Engemann, JJ, Carmeli, Y, Cosgrove, SE, et al. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis. 2003;36(5):592598.10.1086/367653CrossRefGoogle ScholarPubMed
Cosgrove, SE, Qi, Y, Kaye, KS, et al. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: Mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005;26(2):166174.CrossRefGoogle ScholarPubMed
Cosgrove, SE, Sakoulas, G, Perencevich, EN, et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):5359.10.1086/345476CrossRefGoogle ScholarPubMed
Rubin, RJ, Harrington, CA, Poon, A, et al. The economic impact of Staphylococcus aureus infection in new york city hospitals. Emerg Infect Dis. 1999;5(1):917.10.3201/eid0501.990102CrossRefGoogle ScholarPubMed
Yaw, LK, Robinson, JO, Ho, KM. A comparison of long-term outcomes after methicillin-resistant and methicillin-sensitive Staphylococcus aureus bacteraemia: an observational cohort study. Lancet Infect Dis. 2014;14(10):967975.10.1016/S1473-3099(14)70876-XCrossRefGoogle Scholar
Edmond, MB, Ober, JF, Dawson, JD, et al. Vancomycin-resistant enterococcal bacteremia: natural history and attributable mortality. Clin Infect Dis. 1996;23(6):12341239.10.1093/clinids/23.6.1234CrossRefGoogle ScholarPubMed
Bhavnani, SM, Drake, JA, Forrest, A, et al. A nationwide, multicenter, case-control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis. 2000;36(3):145158.10.1016/S0732-8893(99)00136-4CrossRefGoogle ScholarPubMed
Vergis, EN, Hayden, MK, Chow, JW, et al. Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. a prospective multicenter study. Ann Intern Med. 2001;135(7):484492.10.7326/0003-4819-135-7-200110020-00007CrossRefGoogle ScholarPubMed
Cheah, AL, Spelman, T, Liew, D, et al. Enterococcal bacteraemia: factors influencing mortality, length of stay and costs of hospitalization. Clin Microbiol Infect. 2013;19(4):E181E189.10.1111/1469-0691.12132CrossRefGoogle ScholarPubMed
Garbutt, JM, Ventrapragada, M, Littenberg, B, et al. Association between resistance to vancomycin and death in cases of enterococcus faecium bacteremia. Clin Infect Dis. 2000;30(3):466472.10.1086/313694CrossRefGoogle ScholarPubMed
Erlandson, KM, Sun, J, Iwen, PC, et al. Impact of the more-potent antibiotics quinupristin-dalfopristin and linezolid on outcome measure of patients with vancomycin-resistant enterococcus bacteremia. Clin Infect Dis. 2008;46(1):3036.CrossRefGoogle ScholarPubMed
Chambers, HF. Methicillin-resistant staphylococci. Clin Microbiol Rev. 1988;1(2):173186.10.1128/CMR.1.2.173CrossRefGoogle ScholarPubMed
Garcia-Alvarez, L, Holden, MT, Lindsay, H, et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595603.10.1016/S1473-3099(11)70126-8CrossRefGoogle Scholar
Salgado, CD, Farr, BM, Calfee, DP. Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis. 2003;36(2):131139.CrossRefGoogle ScholarPubMed
Naimi, TS, LeDell, KH, Como-Sabetti, K, et al. Comparison of community- and health care–associated methicillin-resistant Staphylococcus aureus infection. JAMA. 2003;290(22):29762984.10.1001/jama.290.22.2976CrossRefGoogle ScholarPubMed
Said-Salim, B, Mathema, B, Braughton, K, et al. Differential distribution and expression of panton-valentine leucocidin among community-acquired methicillin-resistant Staphylococcus aureus strains. J Clin Microbiol. 2005;43(7):33733379.10.1128/JCM.43.7.3373-3379.2005CrossRefGoogle ScholarPubMed
Diep, BA, Chambers, HF, Graber, CJ, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med. 2008;148(4):249257.10.7326/0003-4819-148-4-200802190-00204CrossRefGoogle ScholarPubMed
Kaplan, SL, Hulten, KG, Gonzalez, BE, et al. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin Infect Dis. 2005;40(12):17851791.10.1086/430312CrossRefGoogle ScholarPubMed
Liu, C, Graber, CJ, Karr, M, et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin Infect Dis. 2008;46(11):16371646.10.1086/587893CrossRefGoogle Scholar
Popovich, KJ, Weinstein, RA, Hota, B. Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis. 2008;46(6):787794.10.1086/528716CrossRefGoogle ScholarPubMed
Currie, A, Davis, L, Odrobina, E, et al. Sensitivities of nasal and rectal swabs for detection of methicillin-resistant Staphylococcus aureus colonization in an active surveillance program. J Clin Microbiol. 2008;46(9):31013103.10.1128/JCM.00848-08CrossRefGoogle Scholar
Sader, HS, Fey, PD, Limaye, AP, et al. Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother. 2009;53(10):41274132.10.1128/AAC.00616-09CrossRefGoogle ScholarPubMed
Steinkraus, G, White, R, Vancomycin, Friedrich L. MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–2005. J Antimicrob Chemother. 2007;60(4):788794.10.1093/jac/dkm258CrossRefGoogle Scholar
Wang, G, Hindler, JF, Ward, KW, et al. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol. 2006;44(11):38833886.CrossRefGoogle ScholarPubMed
Holmes, NE, Turnidge, JD, Munckhof, WJ, et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J Infect Dis. 2011;204(3):340347.10.1093/infdis/jir270CrossRefGoogle Scholar
Kalil, AC, Van Schooneveld, TC, Fey, PD, et al. Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections: a systematic review and meta-analysis. JAMA. 2014;312(15):15521564.10.1001/jama.2014.6364CrossRefGoogle ScholarPubMed
Soriano, A, Marco, F, Martinez, JA, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46(2):193200.10.1086/524667CrossRefGoogle ScholarPubMed
Tenover, FC, Moellering, RC Jr. The rationale for revising the clinical and laboratory standards institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis. 2007;44(9):12081215.10.1086/513203CrossRefGoogle ScholarPubMed
Maor, Y, Hagin, M, Belausov, N, et al. Clinical features of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia versus those of methicillin-resistant S. aureus bacteremia. J Infect Dis. 2009;199(5):619624.10.1086/596629CrossRefGoogle ScholarPubMed
Cui, L, Ma, X, Sato, K, et al. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol. 2003;41(1):514.10.1128/JCM.41.1.5-14.2003CrossRefGoogle ScholarPubMed
Sievert, DM, Rudrik, JT, Patel, JB, et al. Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis. 2008;46(5):668674.10.1086/527392CrossRefGoogle ScholarPubMed
Wegener, H. Ending the use of antimicrobial growth promotes is making a difference. ASM News. 2003;69(9:)443448.Google Scholar
Werner, G, Coque, TM, Hammerum, AM, et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Eur Surveill. 2008;13(47):19046.10.2807/ese.13.47.19046-enCrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. About antimicrobial resistance. Available at: www.cdc.gov/drugresistance/about.html. Accessed January 4, 2016.Google Scholar
Calfee, DP, Salgado, CD, Milstone, AM, et al. Strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(7):772796.10.1086/676534CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. Management of multidrug-resistant organisms in healthcare settings. Available at: www.cdc.gov/hicpac/mdro/mdro_0.html. Accessed January 4, 2016.Google Scholar
Centers for Disease Control and Prevention. Surveillance for C. difficile, MRSA, and other drug-resistant infections. Available at: www.cdc.gov/nhsn/acute-care-hospital/cdiff-mrsa/index.html. Accessed January 5, 2016.Google Scholar
Struelens, MJ, Hawkey, PM, French, GL, et al. Laboratory tools and strategies for methicillin-resistant Staphylococcus aureus screening, surveillance and typing: state of the art and unmet needs. Clin Microbiol Infect. 2009;15(2):112119.10.1111/j.1469-0691.2009.02698.xCrossRefGoogle ScholarPubMed
Malhotra-Kumar, S, Haccuria, K, Michiels, M, et al. Current trends in rapid diagnostics for methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococcus species. J Clin Microbiol. 2008;46(5):15771587.10.1128/JCM.00326-08CrossRefGoogle ScholarPubMed
Boyce, JM PD, Healthcare Infection Control Practices Advisory Committee, HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Guideline for hand hygiene in health-care settings. recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Society for Healthcare Epidemiology of America/Association for Professionals in Infection Control/Infectious Diseases Society of America. MMWR Recomm Rep. 2002;Oct 25;51(RR-16):145.Google ScholarPubMed
Centers for Disease Control and Prevention. Guideline for hand hygiene in health-care settings. Available at: www.cdc.gov/handhygiene/training.html. Accessed January 5, 2016.Google Scholar
Morgan, DJ, Murthy, R, Munoz-Price, LS, et al. Reconsidering contact precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. Infect Control Hosp Epidemiol. 2015;36(10):11631172.10.1017/ice.2015.156CrossRefGoogle ScholarPubMed
Stelfox, HT, Bates, DW, Redelmeier, DA. Safety of patients isolated for infection control. JAMA. 2003;290(14):18991905.10.1001/jama.290.14.1899CrossRefGoogle ScholarPubMed
Day, HR, Perencevich, EN, Harris, AD, et al. Do contact precautions cause depression? A two-year study at a tertiary care medical centre. J Hosp Infect. 2011;79(2):103107.10.1016/j.jhin.2011.03.026CrossRefGoogle Scholar
Harris, AD, Pineles, L, Belton, B, et al. Universal glove and gown use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA. 2013;310(15):15711580.Google ScholarPubMed
Occupational exposure to bloodborne pathogens–OSHA. final rule. Fed Regist. 1991;56(235):6400464182.Google Scholar
Boyce, JM, Potter-Bynoe, G, Chenevert, C, et al. Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol. 1997;18(9):622627.10.1086/502213CrossRefGoogle ScholarPubMed
Smith, TL, Iwen, PC, Olson, SB, et al. Environmental contamination with vancomycin-resistant enterococci in an outpatient setting. Infect Control Hosp Epidemiol. 1998;19(7):515518.10.1086/647862CrossRefGoogle Scholar
Hardy, KJ, Oppenheim, BA, Gossain, S, et al. A study of the relationship between environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and patients’ acquisition of MRSA. Infect Control Hosp Epidemiol. 2006;27(2):127132.10.1086/500622CrossRefGoogle ScholarPubMed
Snyder, GM, Thom, KA, Furuno, JP, et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol. 2008;29(7):583589.10.1086/588701CrossRefGoogle ScholarPubMed
Puzniak, LA, Leet, T, Mayfield, J, et al. To gown or not to gown: The effect on acquisition of vancomycin-resistant enterococci. Clin Infect Dis. 2002;35(1):1825.10.1086/340739CrossRefGoogle ScholarPubMed
Srinivasan, A, Song, X, Ross, T, et al. A prospective study to determine whether cover gowns in addition to gloves decrease nosocomial transmission of vancomycin-resistant enterococci in an intensive care unit. Infect Control Hosp Epidemiol. 2002;23(8):424428.10.1086/502079CrossRefGoogle Scholar
Williams, C, McGraw, P, Schneck, EE, et al. Impact of universal gowning and gloving on health care worker clothing contamination. Infect Control Hosp Epidemiol. 2015;36(4):431437.10.1017/ice.2014.75CrossRefGoogle ScholarPubMed
Vajravelu, RK, Guerrero, DM, Jury, LA, et al. Evaluation of stethoscopes as vectors of Clostridium difficile and methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2012;33(1):9698.10.1086/663338CrossRefGoogle ScholarPubMed
de Gialluly, C, Morange, V, de Gialluly, E, et al. Blood pressure cuff as a potential vector of pathogenic microorganisms: a prospective study in a teaching hospital. Infect Control Hosp Epidemiol. 2006;27(9):940943.10.1086/507284CrossRefGoogle ScholarPubMed
Livornese, LL Jr, Dias, S, Samel, C, et al. Hospital-acquired infection with vancomycin-resistant enterococcus faecium transmitted by electronic thermometers. Ann Intern Med. 1992;117(2):112116.10.7326/0003-4819-117-2-112CrossRefGoogle ScholarPubMed
Brooks, S, Khan, A, Stoica, D, et al. Reduction in vancomycin-resistant enterococcus and Clostridium difficile infections following change to tympanic thermometers. Infect Control Hosp Epidemiol. 1998;19(5):333336.10.1086/647824CrossRefGoogle ScholarPubMed
Sexton, T, Clarke, P, O’Neill, E, et al. Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: Correlation with patient isolates and implications for hospital hygiene. J Hosp Infect. 2006;62(2):187194.10.1016/j.jhin.2005.07.017CrossRefGoogle ScholarPubMed
Neely, AN, Maley, MP. Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol. 2000;38(2):724726.10.1128/JCM.38.2.724-726.2000CrossRefGoogle ScholarPubMed
Drees, M, Snydman, DR, Schmid, CH, et al. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis. 2008;46(5):678685.10.1086/527394CrossRefGoogle ScholarPubMed
Carling, PC, Parry, MM, Rupp, ME, et al. Improving cleaning of the environment surrounding patients in 36 acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(11):10351041.10.1086/591940CrossRefGoogle ScholarPubMed
Hayden, MK, Bonten, MJ, Blom, DW, et al. Reduction in acquisition of vancomycin-resistant enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis. 2006;42(11):15521560.10.1086/503845CrossRefGoogle ScholarPubMed
Rupp, ME, Fitzgerald, T, Sholtz, L, et al. Maintain the gain: program to sustain performance improvement in environmental cleaning. Infect Control Hosp Epidemiol. 2014;35(7):866868.CrossRefGoogle ScholarPubMed
Sehulster, L, Chinn, RY, CDC, et al. Guidelines for environmental infection control in health-care facilities: recommendations of CDC and the healthcare infection control practices advisory committee (HICPAC). MMWR Recomm Rep. 2003;52 (RR-10):142.Google ScholarPubMed
Carling, PC, Parry, MF, Bruno-Murtha, LA, et al. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. 2010;38(4):10541059.10.1097/CCM.0b013e3181cdf705CrossRefGoogle ScholarPubMed
Passaretti, CL, Otter, JA, Reich, NG, et al. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis. 2013;56(1):2735.10.1093/cid/cis839CrossRefGoogle ScholarPubMed
Nerandzic, MM, Thota, P, Sankar, CT, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015;36(2):192197.10.1017/ice.2014.36CrossRefGoogle ScholarPubMed
Salgado, CD, Sepkowitz, KA, John, JF, et al. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34(5):479486.10.1086/670207CrossRefGoogle ScholarPubMed
Byers, KE, Anglim, AM, Anneski, CJ, et al. Duration of colonization with vancomycin-resistant enterococcus. Infect Control Hosp Epidemiol. 2002;23(4):207211.10.1086/502036CrossRefGoogle ScholarPubMed
Donskey, CJ, Hoyen, CK, Das, SM, et al. Recurrence of vancomycin-resistant enterococcus stool colonization during antibiotic therapy. Infect Control Hosp Epidemiol. 2002;23(8):436440.10.1086/502081CrossRefGoogle ScholarPubMed
Henard, S, Lozniewski, A, Aissa, N, et al. Evaluation of the duration of vanA vancomycin-resistant enterococcus faecium carriage and clearance during a large-scale outbreak in a region of eastern France. Am J Infect Control. 2011;39(2):169171.10.1016/j.ajic.2010.07.003CrossRefGoogle Scholar
Scanvic, A, Denic, L, Gaillon, S, et al. Duration of colonization by methicillin-resistant Staphylococcus aureus after hospital discharge and risk factors for prolonged carriage. Clin Infect Dis. 2001;32(10):13931398.10.1086/320151CrossRefGoogle ScholarPubMed
Harbarth, S, Liassine, N, Dharan, S, et al. Risk factors for persistent carriage of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2000;31(6):13801385.10.1086/317484CrossRefGoogle ScholarPubMed
Marschall, J, Muhlemann, K. Duration of methicillin-resistant Staphylococcus aureus carriage, according to risk factors for acquisition. Infect Control Hosp Epidemiol. 2006;27(11):12061212.10.1086/507917CrossRefGoogle ScholarPubMed
Shenoy, ES, Kim, J, Rosenberg, ES, et al. Discontinuation of contact precautions for methicillin-resistant Staphylococcus aureus: a randomized controlled trial comparing passive and active screening with culture and polymerase chain reaction. Clin Infect Dis. 2013;57(2):176184.10.1093/cid/cit206CrossRefGoogle ScholarPubMed
Robicsek, A, Beaumont, JL, Paule, SM, et al. Universal surveillance for methicillin-resistant Staphylococcus aureus in 3 affiliated hospitals. Ann Intern Med. 2008;148(6):409418.10.7326/0003-4819-148-6-200803180-00003CrossRefGoogle ScholarPubMed
Girou, E, Pujade, G, Legrand, P, et al. Selective screening of carriers for control of methicillin-resistant Staphylococcus aureus (MRSA) in high-risk hospital areas with a high level of endemic MRSA. Clin Infect Dis. 1998;27(3):543550.10.1086/514695CrossRefGoogle ScholarPubMed
Huang, SS, Rifas-Shiman, SL, Pottinger, JM, et al. Improving the assessment of vancomycin-resistant enterococci by routine screening. J Infect Dis. 2007;195(3):339346.10.1086/510624CrossRefGoogle ScholarPubMed
Huang, SS, Yokoe, DS, Hinrichsen, VL, et al. Impact of routine intensive care unit surveillance cultures and resultant barrier precautions on hospital-wide methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2006;43(8):971978.10.1086/507636CrossRefGoogle ScholarPubMed
Marshall, C, Richards, M, McBryde, E. Do active surveillance and contact precautions reduce MRSA acquisition? A prospective interrupted time series. PLoS One. 2013;8(3):e58112.10.1371/journal.pone.0058112CrossRefGoogle ScholarPubMed
Jain, R, Kralovic, SM, Evans, ME, et al. Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections. N Engl J Med. 2011;364(15):14191430.CrossRefGoogle ScholarPubMed
Harbarth, S, Fankhauser, C, Schrenzel, J, et al. Universal screening for methicillin-resistant Staphylococcus aureus at hospital admission and nosocomial infection in surgical patients. JAMA. 2008;299(10):11491157.10.1001/jama.299.10.1149CrossRefGoogle ScholarPubMed
Huskins, WC, Huckabee, CM, O’Grady, NP, et al. Intervention to reduce transmission of resistant bacteria in intensive care. N Engl J Med. 2011;364(15):14071418.10.1056/NEJMoa1000373CrossRefGoogle ScholarPubMed
Derde, LP, Cooper, BS, Goossens, H, et al. Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomised trial. Lancet Infect Dis. 2014;14(1):3139.10.1016/S1473-3099(13)70295-0CrossRefGoogle ScholarPubMed
Huang, SS, Septimus, E, Kleinman, K, et al. Targeted versus universal decolonization to prevent ICU infection. N Engl J Med. 2013;368(24):22552265.10.1056/NEJMoa1207290CrossRefGoogle ScholarPubMed
Eveillard, M, de Lassence, A, Lancien, E, et al. Evaluation of a strategy of screening multiple anatomical sites for methicillin-resistant Staphylococcus aureus at admission to a teaching hospital. Infect Control Hosp Epidemiol. 2006;27(2):181184.10.1086/500627CrossRefGoogle ScholarPubMed
Cherkaoui, A, Renzi, G, Francois, P, et al. Comparison of four chromogenic media for culture-based screening of meticillin-resistant Staphylococcus aureus. J Med Microbiol. 2007;56 (Pt 4):500503.10.1099/jmm.0.46981-0CrossRefGoogle ScholarPubMed
Jeyaratnam, D, Whitty, CJ, Phillips, K, et al. Impact of rapid screening tests on acquisition of meticillin resistant Staphylococcus aureus: cluster randomised crossover trial. BMJ. 2008;336(7650):927930.10.1136/bmj.39525.579063.BECrossRefGoogle ScholarPubMed
Roisin, S, Laurent, C, Denis, O, et al. Impact of rapid molecular screening at hospital admission on nosocomial transmission of methicillin-resistant Staphylococcus aureus: Cluster randomised trial. PLoS One. 2014;9(5):e96310.10.1371/journal.pone.0096310CrossRefGoogle ScholarPubMed
Dacre, J, Emmerson, AM, Jenner, EA. Gentamicin-methicillin-resistant Staphylococcus aureus: epidemiology and containment of an outbreak. J Hosp Infect. 1986;7(2):130136.10.1016/0195-6701(86)90055-1CrossRefGoogle ScholarPubMed
Meier, PA, Carter, CD, Wallace, SE, et al. A prolonged outbreak of methicillin-resistant Staphylococcus aureus in the burn unit of a tertiary medical center. Infect Control Hosp Epidemiol. 1996;17(12):798802.Google ScholarPubMed
Saiman, L, Cronquist, A, Wu, F, et al. An outbreak of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2003;24(5):317321.10.1086/502217CrossRefGoogle Scholar
Vernon, MO, Hayden, MK, Trick, WE, et al. Chlorhexidine gluconate to cleanse patients in a medical intensive care unit: the effectiveness of source control to reduce the bioburden of vancomycin-resistant enterococci. Arch Intern Med. 2006;166(3):306312.10.1001/archinte.166.3.306CrossRefGoogle Scholar
Karki, S, Cheng, AC. Impact of non-rinse skin cleansing with chlorhexidine gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. J Hosp Infect. 2012;82(2):7184.10.1016/j.jhin.2012.07.005CrossRefGoogle ScholarPubMed
Ridenour, G, Lampen, R, Federspiel, J, et al. Selective use of intranasal mupirocin and chlorhexidine bathing and the incidence of methicillin-resistant Staphylococcus aureus colonization and infection among intensive care unit patients. Infect Control Hosp Epidemiol. 2007;28(10):11551161.10.1086/520102CrossRefGoogle ScholarPubMed
Evans, HL, Dellit, TH, Chan, J, et al. Effect of chlorhexidine whole-body bathing on hospital-acquired infections among trauma patients. Arch Surg. 2010;145(3):240246.10.1001/archsurg.2010.5CrossRefGoogle ScholarPubMed
Noto, MJ, Domenico, HJ, Byrne, DW, et al. Chlorhexidine bathing and health care-associated infections: a randomized clinical trial. JAMA. 2015;313(4):369378.10.1001/jama.2014.18400CrossRefGoogle ScholarPubMed
Climo, MW, Sepkowitz, KA, Zuccotti, G, et al. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med. 2009;37(6):18581865.10.1097/CCM.0b013e31819ffe6dCrossRefGoogle ScholarPubMed
Climo, MW, Yokoe, DS, Warren, DK, et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013;368(6):533542.10.1056/NEJMoa1113849CrossRefGoogle ScholarPubMed
Lee, AS, Cooper, BS, Malhotra-Kumar, S, et al. Comparison of strategies to reduce meticillin-resistant Staphylococcus aureus rates in surgical patients: a controlled multicentre intervention trial. BMJ Open. 2013;3(9):e003126003126.CrossRefGoogle ScholarPubMed
Widner, A, Nobles, DL, Faulk, C, et al. The impact of a “search and destroy” strategy for the prevention of methicillin-resistant Staphylococcus aureus infections in an inpatient rehabilitation facility. PM R. 2014;6(2):121–6; quiz 126.10.1016/j.pmrj.2013.09.013CrossRefGoogle Scholar
Kassakian, SZ, Mermel, LA, Jefferson, JA, et al. Impact of chlorhexidine bathing on hospital-acquired infections among general medical patients. Infect Control Hosp Epidemiol. 2011;32(3):238243.10.1086/658334CrossRefGoogle ScholarPubMed
Rupp, ME, Cavalieri, RJ, Lyden, E, et al. Effect of hospital-wide chlorhexidine patient bathing on healthcare-associated infections. Infect Control Hosp Epidemiol. 2012;33(11):10941100.10.1086/668024CrossRefGoogle ScholarPubMed
Wang, X, Panchanathan, S, Chowell, G. A data-driven mathematical model of CA-MRSA transmission among age groups: evaluating the effect of control interventions. PLoS Comput Biol. 2013;9(11):e1003328.10.1371/journal.pcbi.1003328CrossRefGoogle ScholarPubMed
Popoola, VO, Budd, A, Wittig, SM, et al. Methicillin-resistant Staphylococcus aureus transmission and infections in a neonatal intensive care unit despite active surveillance cultures and decolonization: challenges for infection prevention. Infect Control Hosp Epidemiol. 2014;35(4):412418.10.1086/675594CrossRefGoogle Scholar
Delaney, HM, Wang, E, Melish, M. Comprehensive strategy including prophylactic mupirocin to reduce Staphylococcus aureus colonization and infection in high-risk neonates. J Perinatol. 2013;33(4):313318.10.1038/jp.2012.102CrossRefGoogle ScholarPubMed
Milstone, AM, Elward, A, Song, X, et al. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet. 2013;381(9872):10991106.10.1016/S0140-6736(12)61687-0CrossRefGoogle ScholarPubMed
Kumar, N, David, MZ, Boyle-Vavra, S, et al. High Staphylococcus aureus colonization prevalence among patients with skin and soft tissue infections and controls in an urban emergency department. J Clin Microbiol. 2015;53(3):810815.10.1128/JCM.03221-14CrossRefGoogle Scholar
Buehlmann, M, Frei, R, Fenner, L, et al. Highly effective regimen for decolonization of methicillin-resistant Staphylococcus aureus carriers. Infect Control Hosp Epidemiol. 2008;29(6):510516.10.1086/588201CrossRefGoogle ScholarPubMed
Hetem, DJ, Bonten, MJ. Clinical relevance of mupirocin resistance in Staphylococcus aureus. J Hosp Infect. 2013;85(4):249256.10.1016/j.jhin.2013.09.006CrossRefGoogle ScholarPubMed
Lee, AS, Macedo-Vinas, M, Francois, P, et al. Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case-control study. Clin Infect Dis. 2011;52(12):14221430.10.1093/cid/cir233CrossRefGoogle ScholarPubMed
Batra, R, Cooper, BS, Whiteley, C, et al. Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit. Clin Infect Dis. 2010;50(2):210217.10.1086/648717CrossRefGoogle Scholar
Centers for Disease Control and Prevention. Guide to infection prevention for outpatient settings: minimum expectations for safe care. Available at: www.cdc.gov/HAI/settings/outpatient/outpatient-care-guidelines.html. Accessed January 22, 2016.Google Scholar
Smith, PW, Bennett, G, Bradley, S, et al. SHEA/APIC guideline: infection prevention and control in the long-term care facility. Am J Infect Control. 2008;36(7):504535.10.1016/j.ajic.2008.06.001CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×