Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-ktsnh Total loading time: 0 Render date: 2025-12-07T23:15:46.936Z Has data issue: false hasContentIssue false

Chapter 17 - Control of Gram-Negative Multidrug-Resistant Pathogens

from Section 4 - Antimicrobial-Resistant Organisms

Published online by Cambridge University Press:  02 April 2018

Ebbing Lautenbach
Affiliation:
University of Pennsylvania School of Medicine
Preeti N. Malani
Affiliation:
University of Michigan, Ann Arbor
Keith F. Woeltje
Affiliation:
Washington University School of Medicine, St Louis
Jennifer H. Han
Affiliation:
University of Pennsylvania School of Medicine
Emily K. Shuman
Affiliation:
University of Michigan, Ann Arbor
Jonas Marschall
Affiliation:
Washington University School of Medicine, St Louis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

World Health Organization (WHO). www.who.int/drugresistance/documents/surveillancereport/en/. Accessed November 12, 2015.Google Scholar
Drees, M, Pineles, L, Harris, AD, Morgan, DJ. Variation in definitions and isolation procedures for multidrug-resistant Gram-negative bacteria: a survey of the Society for Healthcare Epidemiology of America Research Network. Infect Control Hosp Epidemiol. Apr 2014;35(4):362366.CrossRefGoogle Scholar
Magiorakos, AP, Srinivasan, A, Carey, RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. Mar 2012;18(3):268281.CrossRefGoogle ScholarPubMed
Tacconelli, E, Cataldo, MA, Dancer, SJ, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20 Suppl 1:155.CrossRefGoogle ScholarPubMed
World Health Organization (WHO). www.cdc.gov/nhsn/pdfs/ps-analysis-resources/phenotype_definitions.pdf. Accessed November 12, 2015.Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; approved standard. Twenty-fourth informational supplement. CLSI Document M100-S24. Wayne, PA: CLSI 2014.Google Scholar
Sievert, DM, Ricks, P, Edwards, JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):114.CrossRefGoogle Scholar
Bush, K. The ABCD’s of B-lactamase nomenclature. J Infect Chemother. 2013; 19(4):549559.10.1007/s10156-013-0640-7CrossRefGoogle Scholar
Castanheira, M, Farrell, SE, Krause, KM, Jones, RN, Sader, HS. Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother. 2014;58(2):833838.10.1128/AAC.01896-13CrossRefGoogle ScholarPubMed
D’Andrea, MM, Arena, F, Pallecchi, L, Rossolini, GM. CTX-M-type beta-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. Aug 2013;303(6–7):305317.CrossRefGoogle ScholarPubMed
Hidron, AI, Edwards, JR, Patel, J, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. Nov 2008;29(11):9961011.CrossRefGoogle Scholar
Guh, AY, Bulens, SN, Mu, Y, et al. Epidemiology of carbapenem-resistant enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314(14):14791487.CrossRefGoogle ScholarPubMed
Perez, F, Van Duin, D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. Apr 2013;80(4):225233.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR. 2013;62(9):165170.Google Scholar
Borer, A, Saidel-Odes, L, Riesenberg, K, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30(10):972976.CrossRefGoogle ScholarPubMed
Gupta, N, Limbago, BM, Patel, JB, Kallen, AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):6067.10.1093/cid/cir202CrossRefGoogle ScholarPubMed
Satlin, MJ, Jenkins, SG, Walsh, TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58(9):12741283.10.1093/cid/ciu052CrossRefGoogle ScholarPubMed
Munoz-Price, LS, Poirel, L, Bonomo, RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013; 13(9):785–96.10.1016/S1473-3099(13)70190-7CrossRefGoogle ScholarPubMed
Nordmann, P, Naas, T, Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):17911798.CrossRefGoogle ScholarPubMed
Kitchel, B, Rasheed, JK, Patel, JB, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother. 2009;53(8):33653370.CrossRefGoogle ScholarPubMed
Kaiser, RM, Castanheira, M, Jones, RN, Tenover, F, Lynfield, R. Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007–2009 SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis. Jul 2013;76(3):356360.10.1016/j.diagmicrobio.2013.03.032CrossRefGoogle ScholarPubMed
Kumarasamy, KK, Toleman, MA, Walsh, TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancetl Infect Dis. 2010;10(9):597602.CrossRefGoogle Scholar
Mathers, AJ, Hazen, KC, Carroll, J, et al. First clinical cases of OXA-48-producing carbapenem-resistant Klebsiella pneumoniae in the United States: the “menace” arrives in the New World. J Clin Microbiol. 2013; 51(2)680683.10.1128/JCM.02580-12CrossRefGoogle ScholarPubMed
Centers for Disease Control (CDC). www.cdc.gov/hai/organisms/cre/definition.html. Accessed October 19, 2015.Google Scholar
Chea, N, Bulens, SN, Kongphet-Tran, T, et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant Enterobacteriaceae. Emerg Infect Dis. 2015;21(9):16111616.CrossRefGoogle ScholarPubMed
Hrabak, J, Chudackova, E, Papagiannitsis, CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. Sep 2014;20(9):839853.10.1111/1469-0691.12678CrossRefGoogle ScholarPubMed
Hombach, M, von Gunten, B, Gastelberg, C, et al. Evaluation of the RAPIDEC® CARBA NP test for the detection of carbapenemases in Enterobacteriaceae. J Clin Microbiol 2015 Sep 30. pii: JCM.02327–15. Epub ahead of print.Google ScholarPubMed
Nordmann, P, Poirel, L, Dortet, L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):15031507.10.3201/eid1809.120355CrossRefGoogle ScholarPubMed
Pseudomonas dermatitis/folliculitis associated with pool and hot tubs: Colorado and Maine, 1999–2000. MMW. 2000;49(48):10871091.Google Scholar
Dixon, RS, Sydnor, CH. Puncture wound pseudomonal osteomyelitis of the foot. J Foot Ankle Surg. 1993; 32(4):434442.Google ScholarPubMed
Wieland, M, Lederman, MM, Kline-King, C, et al. Left-sided endocarditis due to Pseudomonas aeruginosa: a report of 10 cases and review of the literature. Medicine (Baltimore). May 1986; 65(3):180189.10.1097/00005792-198605000-00006CrossRefGoogle ScholarPubMed
Livermore, DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002; 34(5):634640.CrossRefGoogle ScholarPubMed
Maragakis, LL and Perl, TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 2008;46(8):12541263.10.1086/529198CrossRefGoogle ScholarPubMed
Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002–2004. MMWR. 2004;53(45):10631066.Google Scholar
Lolans, K, Rice, TW, Munoz-Price, LS, Quinn, JP. Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother. 2006;50(9):29412945.CrossRefGoogle ScholarPubMed
Munoz-Price, LS, Arheart, K, Nordmann, P, et al. Eighteen years of experience with Acinetobacter baumannii in a tertiary care hospital. Crit Care Med. Dec 2013;41(12):27332742.10.1097/CCM.0b013e318298a541CrossRefGoogle ScholarPubMed
Thom, KA, Maragakis, LL, Richards, K, et al. Assessing the burden of Acinetobacter baumannii in Maryland: a statewide cross-sectional period prevalence survey. Infect Control Hosp Epidemiol. Sep 2012;33(9):883888.Google ScholarPubMed
Harris, AD, McGregor, JC, Furuno, JP. What infection control interventions should be undertaken to control multidrug-resistant gram-negative bacteria? Clin Infect Dis Sept 2006:43 Suppl 2:S57S61.10.1086/504479CrossRefGoogle ScholarPubMed
Williams, C, McGraw, P, Schneck, EE, et al. Impact of universal gowning and gloving on health care worker clothing contamination. Infect Control Hosp Epidemiol. 2015;36(4):431437.10.1017/ice.2014.75CrossRefGoogle ScholarPubMed
Hayden, MK, Blom, DW, Lyle, EA, Moore, CG, Weinstein, RA. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol. 2008;29(2):149154.10.1086/524331CrossRefGoogle ScholarPubMed
Snyder, GM, Thom, KA, Furuno, JP, et al. Detection of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on the gowns and gloves of healthcare workers. Infect Control Hosp Epidemiol. 2008;29(7):583589.CrossRefGoogle ScholarPubMed
Morgan, DJ, Liang, SY, Smith, CL, et al. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol. 2010;31(7):716721.10.1086/653201CrossRefGoogle ScholarPubMed
Harris, AD, Perencevich, EN, Johnson, JK, et al. Patient-to-patient transmission is important in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae acquisition. Clin Infect Dis. 2007;45(10):13471350.10.1086/522657CrossRefGoogle ScholarPubMed
Harris, AD, Kotetishvili, M, Shurland, S, et al. How important is patient-to-patient transmission in extended-spectrum beta-lactamase Escherichia coli acquisition. Am J Infect Contrl. 2007;35(2):97101.10.1016/j.ajic.2006.09.011CrossRefGoogle ScholarPubMed
Rock, C, Thom, KA, Masnick, M, Johnson, JK, Harris, AD, Morgan, DJ. Frequency of Klebsiella pneumoniae carbapenemase (KPC)-producing and non-KPC-producing Klebsiella species contamination of healthcare workers and the environment. Infect Control Hosp Epidemiol. 2014;35(4):426429.10.1086/675598CrossRefGoogle ScholarPubMed
Cohen, CC, Cohen, B, Shang, J. Effectiveness of contact precautions against multidrug-resistant organism transmission in acute care: a systematic review of the literature. J Hosp Infect. 2015;90(4):275284.10.1016/j.jhin.2015.05.003CrossRefGoogle ScholarPubMed
Kho, AN, Dexter, PR, Warvel, JS, et al. An effective computerized reminder for contact isolation of patients colonized or infected with resistant organisms. Int J Med Informatics. 2008;77(3):194198.10.1016/j.ijmedinf.2007.02.005CrossRefGoogle ScholarPubMed
Palmore, TN, Henderson, DK. Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches. Clin Infect Dis. 2013;57(11):15931599.10.1093/cid/cit531CrossRefGoogle ScholarPubMed
Schwaber, MJ, Lev, B, Israeli, A, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 1 2011;52(7):848855.10.1093/cid/cir025CrossRefGoogle Scholar
Lucet, JC, Decre, D, Fichelle, A, et al. Control of a prolonged outbreak of extended-spectrum beta-lactamase-producing enterobacteriaceae in a university hospital. Clin Infect Dis. 1999;29(6):14111418.CrossRefGoogle ScholarPubMed
Tamma, PD, Savard, P, Pal, T, Sonnevend, A, Perl, TM, Milstone, AM. An outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2012;33(6):631634.10.1086/665715CrossRefGoogle Scholar
Munoz-Price, LS, Hayden, MK, Lolans, K, et al. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31(4):341347.CrossRefGoogle Scholar
Munoz-Price, LS, Quinn, JP. Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae. Curr Op Infect Dis. 2013;26(4):378387.10.1097/01.qco.0000431853.71500.77CrossRefGoogle ScholarPubMed
Schwaber, MJ, Carmeli, Y. An ongoing national intervention to contain the spread of carbapenem-resistant enterobacteriaceae. Clin Infect Dis. Mar 2014;58(5):697703.10.1093/cid/cit795CrossRefGoogle ScholarPubMed
Kramer, A, Schwebke, I, Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130.10.1186/1471-2334-6-130CrossRefGoogle Scholar
Denton, M, Wilcox, MH, Parnell, P, et al. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. Intensive Crit Care Nurs. Ar 2005;21(2):9498.10.1016/j.iccn.2003.10.008CrossRefGoogle ScholarPubMed
Carling, PC, Parry, MF, Bruno-Murtha, LA, Dick, B. Improving environmental hygiene in 27 intensive care units to decrease multidrug-resistant bacterial transmission. Crit Care Med. Apr 2010;38(4):10541059.CrossRefGoogle ScholarPubMed
Contamination, Hota B., disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis. Oct 2004;39(8):11821189.Google Scholar
Boyce, JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. Jun 2007;65, Suppl 2:5054.10.1016/S0195-6701(07)60015-2CrossRefGoogle ScholarPubMed
Jawad, A, Seifert, H, Snelling, AM, Heritage, J, Hawkey, PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol. 1998;36(7):19381941.10.1128/JCM.36.7.1938-1941.1998CrossRefGoogle ScholarPubMed
Levin, AS, Gobara, S, Mendes, CM, Cursino, MR, Sinto, S. Environmental contamination by multidrug-resistant Acinetobacter baumannii in an intensive care unit. Infect Control Hosp Epidemiol. Nov 2001;22(11):717720.10.1086/501852CrossRefGoogle Scholar
Catalano, M, Quelle, LS, Jeric, PE, Di Martino, A, Maimone, SM. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect. 1999;42(1):2735.10.1053/jhin.1998.0535CrossRefGoogle ScholarPubMed
Das, I, Lambert, P, Hill, D, Noy, M, Bion, J, Elliott, T. Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect. 2002;50(2):110114.10.1053/jhin.2001.1127CrossRefGoogle Scholar
Aygun, G, Demirkiran, O, Utku, T, et al. Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. J Hosp Infect. 2002;52(4):259262.CrossRefGoogle Scholar
Anaissie, EJ, Penzak, SR, Dignani, MC. The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med. 2002;162(13):14831492.10.1001/archinte.162.13.1483CrossRefGoogle ScholarPubMed
Bonten, MJ, Weinstein, RA. Transmission pathways of Pseudomonas aeruginosa in intensive care units: don’t go near the water. Crit Care Med. 2002;30(10):23842385.10.1097/00003246-200210000-00037CrossRefGoogle ScholarPubMed
Epstein, L, Hunter, JC, Arwady, MA, et al. New Delhi metallo-beta-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA. 2014;312(14):14471455.10.1001/jama.2014.12720CrossRefGoogle Scholar
Ha, J, Son, BK. Current Issues in duodenoscope-associated infections: now is the time to take action. Clin Endoscopy. 2015;48(5):361363.10.5946/ce.2015.48.5.361CrossRefGoogle Scholar
Muscarella, LF. Risk of transmission of carbapenem-resistant Enterobacteriaceae and related “superbugs” during gastrointestinal endoscopy. World J Gastrointest Endoscopy. 2014;6(10):457474.10.4253/wjge.v6.i10.457CrossRefGoogle ScholarPubMed
Calfee, D, Jenkins, SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol. 2008;29(10):966968.10.1086/590661CrossRefGoogle ScholarPubMed
Snitkin, ES, Zelazny, AM, Thomas, PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Translational Med. 2012;4(148):148ra116.10.1126/scitranslmed.3004129CrossRefGoogle ScholarPubMed
Akduman, B, Akduman, D, Tokgoz, H, et al. Long-term fluoroquinolone use before prostate biopsy may increase the risk of sepsis caused by resistant microorganisms. Urology. 2011; 78(2):250255.10.1016/j.urology.2011.02.065CrossRefGoogle ScholarPubMed
Boucher, HW, Talbot, GH, Bradley, JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48(1):112.10.1086/595011CrossRefGoogle ScholarPubMed
Hsu, AJ and Tamma, PD. Treatment of multidrug-resistant Gram-negative infections in children. Clin Infect Dis May 2014; 58(10):14391448.10.1093/cid/ciu069CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC). Centers for Disease Control (CDE). www.cdc.gov/drugresistance/pdf/ar-threats-2013–508.pdf. Accessed November 13, 2015.Google Scholar
Tamma, PD and Cosgrove, SE. Antimicrobial stewardship. Infec Dis Clin North Am 2011; 25(1):245260.10.1016/j.idc.2010.11.011CrossRefGoogle ScholarPubMed
Marchaim, D, Chopra, T, Bhargava, A, et al. Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol. 2012;33(8):817830.10.1086/666642CrossRefGoogle ScholarPubMed
Carmeli, Y, Lidji, SK, Shabtai, E, Navon-Venezia, S, Schwaber, MJ. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis. 2011;70(3):367372.10.1016/j.diagmicrobio.2011.03.009CrossRefGoogle ScholarPubMed
Dortch, MJ, Fleming, SB, Kauffmann, RM, Dossett, LA, Talbot, TR, May, AK. Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg Infecti. 2011;12(1):1525.10.1089/sur.2009.059CrossRefGoogle ScholarPubMed
Rahal, JJ, Urban, C, Horn, C, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA. 1998;280(14):12331237.10.1001/jama.280.14.1233CrossRefGoogle ScholarPubMed
Ntagiopoulos, PG, Paramythiotou, E, Antoniadou, A, et al. Impact of an antibiotic restriction policy on the antibiotic resistance patterns of Gram-negative microorganisms in an intensive care unit in Greece. Int J Antimicrob Agents. 2007; 30:360365.10.1016/j.ijantimicag.2007.05.012CrossRefGoogle Scholar
Altunsoy, A, Aypak, C, Azap, A, et al. The impact of a nationwide antibiotic restriction program on antibiotic usage and resistance against nosocomial pathogens in Turkey. Int J Med Sci. 2011;4:339344.10.7150/ijms.8.339CrossRefGoogle Scholar
Davey, P, Brown, E, Charani, E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Systematic Review Apr 20134:CD003543. doi:10.1002/14651858.CD003543.pub3.CrossRefGoogle Scholar
Roquilly, A, Marret, E, Abraham, E, Asehnoune, K. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin Infect Dis. 2015;60(1):6475.10.1093/cid/ciu740CrossRefGoogle ScholarPubMed
Price, R, MacLennan, G, Glen, J, Su, DC. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014;348:g2197.10.1136/bmj.g2197CrossRefGoogle ScholarPubMed
de Smet, AM, Kluytmans, JA, Blok, HE, et al. Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an open-label, clustered group-randomised, crossover study. Lancet Infect Dis. 2011;11(5):372380.10.1016/S1473-3099(11)70035-4CrossRefGoogle ScholarPubMed
Oostdijk, EA, Kesecioglu, J, Schultz, MJ, et al. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA. 2014;312(14):14291437.10.1001/jama.2014.7247CrossRefGoogle ScholarPubMed
Lin, MY, Lolans, K, Blom, DW, et al. The effectiveness of routine daily chlorhexidine gluconate bathing in reducing Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae skin burden among long-term acute care hospital patients. Infect Control Hosp Epidemiol. 2014;35(4):440442.10.1086/675613CrossRefGoogle ScholarPubMed
Septimus, EJ, Hayden, MK, Kleinman, K, et al. Does chlorhexidine bathing in adult intensive care units reduce blood culture contamination? A pragmatic cluster-randomized trial. Infect Control Hosp Epidemiol. 2014; 35 Suppl 3:S17S22.10.1086/677822CrossRefGoogle ScholarPubMed
Milstone, AM, Elward, A, Song, X, et al. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet. 2013;381(9872):10991106.CrossRefGoogle ScholarPubMed
Climo, MW, Yokoe, DS, Warren, DK, et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. Feb 7 2013;368(6):533542.10.1056/NEJMoa1113849CrossRefGoogle ScholarPubMed
Climo, MW, Sepkowitz, KA, Zuccotti, G, et al. The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med. 2009;37(6):18581865.CrossRefGoogle ScholarPubMed
Hayden, MK, Lin, MY, Lolans, K, et al. Prevention of colonization and infection by Klebsiella pneumoniae carbapenemase-producing enterobacteriaceae in long-term acute-care hospitals. Clin Infect Dis. 2015;60(8):11531161.10.1093/cid/ciu1173CrossRefGoogle ScholarPubMed
Brooks, SE, Walczak, MA, Hameed, R, et al. Chlorhexidine resistance in antibiotic-resistant bacteria isolated from the surfaces of dispensers of soap containing chlorhexidine. Infect Control Hosp Epidemiol. 2002; 23(11):692695.10.1086/501996CrossRefGoogle ScholarPubMed
Tattawasart, U, Maillard, JY, Furr, JR, Russell, AD. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int J Antimicrob Agents. 2000;16(3):233238.10.1016/S0924-8579(00)00206-5CrossRefGoogle ScholarPubMed
Thomas, L, Maillard, JY, Lambert, RJ, Russell, AD. Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect. 2000;46(4):297303.10.1053/jhin.2000.0851CrossRefGoogle ScholarPubMed
Higgins, CS, Murtough, SM, Williamson, E, et al. Resistance to antibiotics and biocides among non-fermenting Gram-negative bacteria. Clin Microbiol Infect. 2001;7(6):308315.10.1046/j.1198-743x.2001.00253.xCrossRefGoogle ScholarPubMed
Hilty, M, Betsch, BY, Bogli-Stuber, K, et al. Transmission dynamics of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis. 2012;55(7):967975.10.1093/cid/cis581CrossRefGoogle ScholarPubMed
Madigan, T, Johnson, JR, Clabots, C, et al. Extensive household outbreak of urinary tract infection and intestinal colonization due to extended-spectrum beta-lactamase-producing Escherichia coli sequence type 131. Clin Infect Dis. 2015;61(1):e512.10.1093/cid/civ273CrossRefGoogle ScholarPubMed
Doi, Y, Park, YS, Rivera, JI, et al. Community-associated extended-spectrum beta-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis. 2013;56(5):641648.10.1093/cid/cis942CrossRefGoogle ScholarPubMed
Gould, CV, Rothenberg, R, Steinberg, JP. Antibiotic resistance in long-term acute care hospitals: the perfect storm. Infect Control Hosp Epidemiol. 2006;27(9):920925.10.1086/507280CrossRefGoogle ScholarPubMed
O’Fallon, E, Pop-Vicas, A, The Emerging, D’Agata E. Threat of multidrug-resistant gram-negative organisms in long-term care facilities. J Ger Ser A. 2009; 64(1):138141.10.1093/gerona/gln020CrossRefGoogle ScholarPubMed
Mills, JP, Talati, NJ, Alby, K, Han, JH. The epidemiology of carbapenem-resistant Klebsiella pneumoniae colonization and infection among long-term acute care hospital residents. Infect Control Hosp Epidemiol. 12 2015:16.Google Scholar
Lin, MY, Lyles-Banks, RD, Lolans, K, et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57(9):12461252.CrossRefGoogle ScholarPubMed
O’Fallon, E, Gautam, S, D’ Agata, EM. Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent colonization. Clin Infect Dis. 2009;48(10):13751381.10.1086/598194CrossRefGoogle Scholar
Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Healthcare Infection Control Practices Advisory C: management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35(10 Suppl 2):S165S193.10.1016/j.ajic.2007.10.006CrossRefGoogle Scholar
Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L, Health Care Infection Control Practices Advisory C. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am J Infect Control. 2007;35(10 Suppl 2):S65S164.10.1016/j.ajic.2007.10.007CrossRefGoogle Scholar
Centers for Disease Control and Prevention (CDC). ww.cdc.gov/hai/organisms/cre/cre-toolkit/index.html. Accessed November 13th, 2015.Google Scholar
Feldman, N, Adler, A, Molshatzki, N, et al. Gastrointestinal colonization by KPC-producing Klebsiella pneumoniae following hospital discharge: duration of carriage and risk factors for persistent carriage. Clin Microbiol Infect. 2013;19(4):E190196.10.1111/1469-0691.12099CrossRefGoogle ScholarPubMed
Oren, I, Sprecher, H, Finkelstein, R, et al. Eradication of carbapenem-resistant Enterobacteriaceae gastrointestinal colonization with nonabsorbable oral antibiotic treatment: a prospective controlled trial. Am J Infecti Control. 2013;41(12):11671172.10.1016/j.ajic.2013.04.018CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×