Skip to main content Accessibility help
×
Hostname: page-component-857557d7f7-qdphv Total loading time: 0 Render date: 2025-12-07T17:37:31.939Z Has data issue: false hasContentIssue false

Chapter 9 - Fertility

Published online by Cambridge University Press:  06 November 2025

Camran R. Nezhat
Affiliation:
Stanford University School of Medicine, California
Farr R. Nezhat
Affiliation:
Nezhat Surgery for Gynecology/Oncology, New York
Ceana Nezhat
Affiliation:
Nezhat Medical Center, Atlanta
Nisha Lakhi
Affiliation:
Richmond University Medical Center, New York
Azadeh Nezhat
Affiliation:
Nezhat Institute and Center for Special Minimally Invasive and Robotic Surgery, California
Get access

Summary

The field of reproductive medicine is evolving rapidly. We are living in an era in which what was seemingly impossible a decade ago is being made possible, and century-old dogmas are being challenged. Thanks to new cryopreservation technologies, infertility and premature ovarian failure, especially when induced by medical treatments, are no longer unavoidable consequences. Whereas success with oocyte cryopreservation is now an acceptable and successful approach for use in patients who face the risk of ovarian failure due to medical treatments or to create “egg banks” for oocyte donation, ovarian tissue cryopreservation and transplantation have only recently been accepted as a nonexperimental way to reverse menopause and restore fertility. Recent advances in in-vitro maturation, stem cell and gene editing technologies, coupled with the advances in fertility preservation, point to a promising future in Reproductive Surgery and Medicine.

Information

Type
Chapter
Information
Nezhat's Textbook of Minimally Invasive Surgery
Including Hysteroscopy, Vaginoscopy and Robotic-Assisted Procedures
, pp. 159 - 223
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Cobo, A, Meseguer, M, Remohi, J, et al. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 2010;25:22392246.CrossRefGoogle Scholar
Cobo, A, Garrido, N, Crespo, J, et al. Accumulation of oocytes: a new strategy for managing low-responder patients. Reprod Biomed Online 2012;24:424432.CrossRefGoogle ScholarPubMed
Rienzi, L, Cobo, A, Paffoni, A, et al. Consistent and predictable delivery rates after oocyte vitrification: an observational longitudinal cohort multicentric study. Hum Reprod 2012;27:16061612.CrossRefGoogle ScholarPubMed
Doyle, JO, Richter, KS, Lim, J, et al. Successful elective and medically indicated oocyte vitrification and warming for autologous in vitro fertilization, with predicted birth probabilities for fertility preservation according to number of cryopreserved oocytes and age at retrieval. Fertil Steril 2016;105:459466 e2.CrossRefGoogle ScholarPubMed
Porcu, E. Oocyte freezing. Semin Reprod Med 2001;19:221230.CrossRefGoogle ScholarPubMed
White, YA, Woods, DC, Takai, Y, et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012;18:413421.CrossRefGoogle ScholarPubMed
der Elst J, Van. Oocyte freezing: here to stay? Hum Reprod Update 2003;9:463470.CrossRefGoogle Scholar
Ho, JR, Woo, I, Louie, K, et al. A comparison of live birth rates and perinatal outcomes between cryopreserved oocytes and cryopreserved embryos. J Assist Reprod Genet 2017;34:13591366.CrossRefGoogle ScholarPubMed
Polge, C, Smith, AU, Parkes, AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949;164:666.CrossRefGoogle ScholarPubMed
Trounson, A, Mohr, L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 1983;305:707709.CrossRefGoogle ScholarPubMed
Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1986;1:884-886.CrossRefGoogle ScholarPubMed
Porcu, E, Fabbri, R, Seracchioli, R, et al. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 1997;68:724-726.CrossRefGoogle ScholarPubMed
Cha, KY Hong, SW, Chung, HM, et al. Pregnancy and implantation from vitrified oocytes following in vitro fertilization (IVF) and in vitro culture (IVC). Fertil Steril 1999;72(Suppl 1):S2.Google Scholar
Saragusty, J, Arav, A : Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 2011;141:119.CrossRefGoogle ScholarPubMed
Agca, Y, Liu, J, McGrath, JJ, et al. Membrane permeability characteristics of metaphase II mouse oocytes at various temperatures in the presence of Me2SO. Cryobiology 1998;36:287300.CrossRefGoogle ScholarPubMed
Pickering, SJ, Johnson, MH. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod 1987;2:207216.CrossRefGoogle ScholarPubMed
Johnson, MH, Pickering, SJ, George, MA. The influence of cooling on the properties of the zona pellucida of the mouse oocyte. Hum Reprod 1988;3:383387.CrossRefGoogle ScholarPubMed
Borini, A, Sciajno, R, Bianchi, V, et al. Clinical outcome of oocyte cryopreservation after slow cooling with a protocol utilizing a high sucrose concentration. Hum Reprod 2006;21:512517.CrossRefGoogle ScholarPubMed
Borini, A, Levi Setti, PE, Anserini, P, et al. Multicenter observational study on slow-cooling oocyte cryopreservation: clinical outcome. Fertil Steril 2010;94:16621668.CrossRefGoogle ScholarPubMed
Kuleshova, L, Gianaroli, L, Magli, C, et al. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 1999;14:30773079.CrossRefGoogle ScholarPubMed
Almodin, CG, Ceschin, A, Nakano, RE, et al. Vitrification of human oocytes and its contribution to in vitro fertilization programs. JBRA Assist Reprod 2015;19:135140.CrossRefGoogle ScholarPubMed
Kushnir, VA, Darmon, SK, Barad, DH, et al. New national outcome data on fresh versus cryopreserved donor oocytes. J Ovarian Res 2018;11:2.CrossRefGoogle ScholarPubMed
Goldman, KN, Noyes, NL, Knopman, JM, et al. Oocyte efficiency: does live birth rate differ when analyzing cryopreserved and fresh oocytes on a per-oocyte basis? Fertil Steril 2013;100:712717.CrossRefGoogle ScholarPubMed
Seki, S, Mazur, P. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod 2008;79:727737.CrossRefGoogle ScholarPubMed
Rienzi, L, Gracia, C, Maggiulli, R, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 2017;23:139155.Google ScholarPubMed
Bielanski, A, Vajta, G. Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum Reprod 2009;24:24572467.CrossRefGoogle ScholarPubMed
Cobo, A, Bellver, J, de los Santos, MJ, et al. Viral screening of spent culture media and liquid nitrogen samples of oocytes and embryos from hepatitis B, hepatitis C, and human immunodeficiency virus chronically infected women undergoing in vitro fertilization cycles. Fertil Steril 2012;97:7478.CrossRefGoogle ScholarPubMed
Toth, TL, Baka, SG, Veeck, LL, et al. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril 1994;61:891894.CrossRefGoogle ScholarPubMed
Cao, Y, Xing, Q, Zhang, ZG, et al. Cryopreservation of immature and in-vitro matured human oocytes by vitrification. Reprod Biomed Online 2009;19:369373.CrossRefGoogle ScholarPubMed
Pincus, G, Enzmann, EV. The comparative behavior of mammalian eggs in vivo and in vitro: I. The activation of ovarian eggs.J Exp Med 1935;62:665675.CrossRefGoogle ScholarPubMed
Edwards, RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 1965;208:349351.CrossRefGoogle ScholarPubMed
Cha, KY, Koo, JJ, Ko, JJ, et al. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril 1991;55:109113.CrossRefGoogle Scholar
Trounson, A, Wood, C, Kausche, A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril 1994;62:353362.CrossRefGoogle ScholarPubMed
Rosendahl, M, Andersen, MT, Ralfkiaer, E, et al. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril 2010;94:21862190.CrossRefGoogle ScholarPubMed
Isachenko, E, Rahimi, G, Isachenko, V, et al. In-vitro maturation of germinal-vesicle oocytes and cryopreservation in metaphase I/II: a possible additional option to preserve fertility during ovarian tissue cryopreservation. Reprod Biomed Online 2004;8:553557.CrossRefGoogle Scholar
Hourvitz, A, Maman, E, Brengauz, M, et al. In vitro maturation for patients with repeated in vitro fertilization failure due to “oocyte maturation abnormalities.Fertil Steril 2010;94:496501.CrossRefGoogle ScholarPubMed
Morimoto, Y, Fukuda, A, Satou, M. Use of in vitro fertilization in a clinical setting: patient populations and outcomes. In Graves, DK, Weissman, A, Howles, CM, Showham, Z, eds. Textbook of Assisted Reproductive Techniques, 5th ed. Boca Raton: CRC Press; 2018: Chapter 10.Google Scholar
Mussett, MV, Parrott, DM. Factors affecting the fertility of mice with orthotopic ovarian grafts. J Reprod Fertil 1961;2:8097.CrossRefGoogle ScholarPubMed
Gosden, RG, Baird, DT, Wade, JC, et al. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at – 196 degrees C. Hum Reprod 1994;9:597603.CrossRefGoogle ScholarPubMed
Oktay, K, Karlikaya, G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med 2000;342:1919.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E, Veeck, L, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 2004;363:837840.CrossRefGoogle ScholarPubMed
Lee, DM, Yeoman, RR, Battaglia, DE, et al. Live birth after ovarian tissue transplant. Nature 2004;428:137138.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Demylle, D, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004;364:14051410.CrossRefGoogle ScholarPubMed
Hubinont, C, Debieve, F, Biard, JM, et al. Livebirth after cryopreserved ovarian tissue transplantation. Lancet 2012;380:106; author reply 107; discussion 107108.CrossRefGoogle ScholarPubMed
Pacheco, F, Oktay, K. Current success and efficiency of autologous ovarian transplantation: a meta-analysis. Reprod Sci 2017;24:11111120.CrossRefGoogle ScholarPubMed
Soleimani, R, Heytens, E, Darzynkiewicz, Z, et al. Mechanisms of chemotherapy-induced human ovarian aging: double strand DNA breaks and microvascular compromise. Aging (Albany NY) 2011;3:782793.CrossRefGoogle ScholarPubMed
Oktay, KH, Yih, M. Preliminary experience with orthotopic and heterotopic transplantation of ovarian cortical strips. Semin Reprod Med 2002;20:6374.CrossRefGoogle ScholarPubMed
Oktay, K, Aydin, BA, Karlikaya, G. A technique for laparoscopic transplantation of frozen-banked ovarian tissue. Fertil Steril 2001;75:12121216.CrossRefGoogle ScholarPubMed
Meirow, D, Levron, J, Eldar-Geva, T, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 2005;353:318321.CrossRefGoogle Scholar
Oktay, K, Bedoschi, G, Pacheco, F, et al. First pregnancies, live birth, and in vitro fertilization outcomes after transplantation of frozen-banked ovarian tissue with a human extracellular matrix scaffold using robot-assisted minimally invasive surgery. Am J Obstet Gynecol 2016;214:94 e19.CrossRefGoogle ScholarPubMed
Oktay, K, Taylan, E, Kawahara, T, et al. Robot-assisted orthotopic and heterotopic ovarian tissue transplantation techniques: surgical advances since our first success in 2000. Fertil Steril 2019;111:604606.CrossRefGoogle ScholarPubMed
Jansen, LA, De Caigny, P, Guay, NA, et al. The evidence base for the acellular dermal matrix AlloDerm: a systematic review. Ann Plast Surg 2013;70:587594.CrossRefGoogle ScholarPubMed
Taylan, E, Oktay, K. Application of decellularized tissue scaffolds in ovarian tissue transplantation. Methods Mol Biol 2018;1577:177181.CrossRefGoogle ScholarPubMed
Oktay, K, Karlikaya, G, Akman, O, et al. Interaction of extracellular matrix and activin-A in the initiation of follicle growth in the mouse ovary. Biol Reprod 2000;63:457461.CrossRefGoogle ScholarPubMed
Oktem, O, Oktay, K. The role of extracellular matrix and activin-A in in vitro growth and survival of murine preantral follicles. Reprod Sci 2007;14:358366.CrossRefGoogle ScholarPubMed
Oktay, K, Economos, K, Kan, M, et al. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA 2001;286:14901493.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E, Rosenwaks, Z, et al. A technique for transplantation of ovarian cortical strips to the forearm. Fertil Steril 2003;80:193198.CrossRefGoogle ScholarPubMed
Revel, A, Elami, A, Bor, A, et al. Whole sheep ovary cryopreservation and transplantation. Fertil Steril 2004;82:17141715.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E. Ovarian transplantation in humans: indications, techniques and the risk of reseeding cancer. Eur J Obstet Gynecol Reprod Biol 2004;113 Suppl 1:S4547.CrossRefGoogle ScholarPubMed
Stern, CJ, Gook, D, Hale, LG, et al. Delivery of twins following heterotopic grafting of frozen-thawed ovarian tissue. Hum Reprod 2014;29:1828.CrossRefGoogle ScholarPubMed
Schroder, CP, Timmer-Bosscha, H, Wijchman, JG, et al. An in vitro model for purging of tumour cells from ovarian tissue. Hum Reprod 2004;19:10691075.CrossRefGoogle Scholar
Smitz, JE, Cortvrindt, RG. The earliest stages of folliculogenesis in vitro. Reproduction 2002;123:185202.CrossRefGoogle ScholarPubMed
Aubard, Y. Ovarian tissue xenografting. Eur J Obstet Gynecol Reprod Biol 2003;108:1418.CrossRefGoogle ScholarPubMed
Sönmezer, M, Şükür, YE, Saçıntı, KG, et al. Safety of ovarian cryopreservation and transplantation in patients with acute leukemia: a case series. Am J Obstet Gynecol. 2024 Jan;230(1):79.e1–79. e10.CrossRefGoogle Scholar
Tilly, JL, Kolesnick, RN. Sphingolipids, apoptosis, cancer treatments and the ovary: investigating a crime against female fertility. Biochim Biophys Acta 2002;1585:135138.CrossRefGoogle ScholarPubMed
Morita, Y, Perez, GI, Paris, F, et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 2000;6:11091114.CrossRefGoogle ScholarPubMed
Fahy, UM, Cahill, DJ, Wardle, PG, et al. In-vitro fertilization in completely natural cycles. Hum Reprod 1995;10:572575.CrossRefGoogle ScholarPubMed
Christopoulos, PF, Msaouel, P, Koutsilieris, M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015;14:43.CrossRefGoogle ScholarPubMed
Swain, SM. Tamoxifen for patients with estrogen receptor-negative breast cancer. J Clin Oncol 2001;19:93S97S.Google ScholarPubMed
Oktay, K, Buyuk, E, Libertella, N, et al. Fertility preservation in breast cancer patients: a prospective controlled comparison of ovarian stimulation with tamoxifen and letrozole for embryo cryopreservation. J Clin Oncol 2005;23:43474353.CrossRefGoogle ScholarPubMed
Oktay, K, Hourvitz, A, Sahin, G, et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab 2006;91:38853890.CrossRefGoogle ScholarPubMed
Azim, AA, Costantini-Ferrando, M, Oktay, K. Safety of fertility preservation by ovarian stimulation with letrozole and gonadotropins in patients with breast cancer: a prospective controlled study. J Clin Oncol 2008;26:26302635.CrossRefGoogle ScholarPubMed
Azim, AA, Costantini-Ferrando, M, Lostritto, K, et al. Relative potencies of anastrozole and letrozole to suppress estradiol in breast cancer patients undergoing ovarian stimulation before in vitro fertilization. J Clin Endocrinol Metab 2007;92:21972200.CrossRefGoogle ScholarPubMed
Kim, J, Turan, V, Oktay, K. Long-term safety of letrozole and gonadotropin stimulation for fertility preservation in women with breast cancer. J Clin Endocrinol Metab 2016;101:13641471.CrossRefGoogle ScholarPubMed
Reddy, J, Turan, V, Bedoschi, G, et al. Triggering final oocyte maturation with gonadotropin-releasing hormone agonist (GnRHa) versus human chorionic gonadotropin (hCG) in breast cancer patients undergoing fertility preservation: an extended experience. J Assist Reprod Genet 2014;31:927932.CrossRefGoogle ScholarPubMed
Toyooka, Y, Tsunekawa, N, Akasu, R, et al. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 2003;100:1145711462.CrossRefGoogle ScholarPubMed
Hubner, K, Fuhrmann, G, Christenson, LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003;300:12511256.CrossRefGoogle ScholarPubMed
Lacham-Kaplan, O, Chy, H, Trounson, A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells 2006;24:266273.CrossRefGoogle ScholarPubMed
Trounson, A. Human embryonic stem cell derivation and directed differentiation. Ernst Schering Res Found Workshop 2005;(54): 2744.CrossRefGoogle ScholarPubMed
Strelchenko, N, Verlinsky, O, Kukharenko, V, et al. Morula-derived human embryonic stem cells. Reprod Biomed Online 2004;9:623629.CrossRefGoogle ScholarPubMed
Tesar, PJ. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc Natl Acad Sci U S A 2005;102:82398244.CrossRefGoogle ScholarPubMed
Chung, Y, Klimanskaya, I, Becker, S, et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 2006;439:216219.CrossRefGoogle ScholarPubMed
Solter, D, Knowles, BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 1975;72:50995102.CrossRefGoogle ScholarPubMed
Cowan, CA, Klimanskaya, I, McMahon, J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004;350:13531356.CrossRefGoogle ScholarPubMed
Clark, AT, Bodnar, MS, Fox, M, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004;13:727739.CrossRefGoogle ScholarPubMed
Ayhan, A, Guvenal, T, Salman, MC, et al. The role of cytoreductive surgery in nongenital cancers metastatic to the ovaries. Gynecol Oncol 2005;98:235241.CrossRefGoogle Scholar
Trounson, A, DeWitt, ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 2016;17:194200.CrossRefGoogle ScholarPubMed
Trounson, A, McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015;17:1122.CrossRefGoogle ScholarPubMed
Guhr, A, Kobold, S, Seltmann, S, et al. Recent trends in research with human pluripotent stem cells: impact of research and use of cell lines in experimental research and clinical trials. Stem Cell Reports 2018;11:485496.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:12621278.CrossRefGoogle Scholar
Gupta, RM, Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014;124:41544161.CrossRefGoogle ScholarPubMed
Komor, AC, Badran, AH, Liu, DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017;169:559.CrossRefGoogle ScholarPubMed

References

Jaslow, CR. Uterine factors. Obstet Gynecol Clin North Am Mar 2014;41(1):5786.CrossRefGoogle ScholarPubMed
Cogendez, E, Dolgun, ZN, Sanverdi, I, Turgut, A, Eren, S. Post-abortion hysteroscopy: a method for early diagnosis of congenital and acquired intrauterine causes of abortions. Eur J Obstet Gynecol Reprod Biol May 2011;156(1):101104.CrossRefGoogle ScholarPubMed
Harger, JH, Archer, DF, Marchese, SG, Muracca-Clemens, M, Garver, KL. Etiology of recurrent pregnancy losses and outcome of subsequent pregnancies. Obstet Gynecol Nov 1983;62(5):574581.Google ScholarPubMed
Nicotra, M, Stampone, C, Piscitelli, C, et al. Hysterosalpingographic abnormalities in infertile women: radiological and clinical interpretation. Acta Eur Fertil Mar–Apr 1988;19(2):7982.Google ScholarPubMed
McElhinney, DB, Cabalka, AK, Aboulhosn, JA, et al. Transcatheter tricuspid valve-in-valve implantation for the treatment of dysfunctional surgical bioprosthetic valves: an international, multicenter registry study. Circulation Apr 19 2016;133(16):15821593.CrossRefGoogle ScholarPubMed
Wood, MA, Kerrigan, KL, Burns, MK, et al. Overcoming the challenging cervix: identification and techniques to access the uterine cavity. Obstet Gynecol Surv Nov 2018;73(11):641649.CrossRefGoogle ScholarPubMed
Barbieri, RL. Stenosis of the external cervical os: an association with endometriosis in women with chronic pelvic pain. Fertil Steril Sep 1998;70(3):571573.CrossRefGoogle ScholarPubMed
Bettocchi, S, Bramante, S, Bifulco, G, et al. Challenging the cervix: strategies to overcome the anatomic impediments to hysteroscopy: analysis of 31,052 office hysteroscopies. Fertil Steril May 2016;105(5):e16e17.CrossRefGoogle ScholarPubMed
Hasegawa, K, Torii, Y, Kato, R, Udagawa, Y, Fukasawa, I. The problems of cervical conization for postmenopausal patients. Eur J Gynaecol Oncol 2016;37(3):327331.Google ScholarPubMed
Baldauf, J, Dreyfus, M, Ritter, J, Meyer, P, Philippe, E. Risk of cervical stenosis after large loop excision or laser conization. Obstet Gynecol 1997;88;(6):933938.CrossRefGoogle Scholar
Sanfilippo, JS, Wakim, NG, Schikler, KN, Yussman, MA. Endometriosis in association with uterine anomaly. Am J Obstet Gynecol Jan 1986;154(1):3943.CrossRefGoogle ScholarPubMed
Aydeniz, B, Gruber, IV, Schauf, B, et al. A multicenter survey of complications associated with 21,676 operative hysteroscopies. Eur J Obstet Gynecol Reprod Biol Sep 10 2002;104(2):160164.CrossRefGoogle Scholar
Jansen, FW, Vredevoogd, CB, van Ulzen, K, et al. Complications of hysteroscopy: a prospective, multicenter study. Obstet Gynecol Aug 2000;96(2):266270.Google ScholarPubMed
Kayatas, S, Meseci, E, Tosun, OA, et al. Experience of hysteroscopy indications and complications in 5,474 cases. Clin Exp Obstet Gynecol 2014;41(4):451454.CrossRefGoogle ScholarPubMed
Tomas, C, Tikkinen, K, Tuomivaara, L, Tapanainen, JS, Martikainen, H. The degree of difficulty of embryo transfer is an independent factor for predicting pregnancy. Hum Reprod Oct 2002;17(10):26322635.CrossRefGoogle Scholar
Brown, J, Buckingham, K, Buckett, W, Abou-Setta, AM. Ultrasound versus “clinical touch” for catheter guidance during embryo transfer in women. Cochrane Database Sys Rev Mar 17 2016;3:CD006107.Google ScholarPubMed
Mains, L, Van Voorhis, BJ. Optimizing the technique of embryo transfer. Fertil Steril Aug 2010;94(3):785790.CrossRefGoogle ScholarPubMed
The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, mullerian anomalies and intrauterine adhesions. Fertil Steril Jun 1988;49(6):944955.CrossRefGoogle Scholar
Rasmussen, F, Lindequist, S, Larsen, C, Justesen, P. Therapeutic effect of hysterosalpingography: oil- versus water-soluble contrast media–a randomized prospective study. Radiology Apr 1991;179(1):7578.CrossRefGoogle ScholarPubMed
Bateman, BG, Nunley, WC Jr, Kitchin, JD 3rd. Intravasation during hysterosalpingography using oil-base contrast media. Fertil Steril Nov 1980;34(5):439443.CrossRefGoogle ScholarPubMed
van Welie, N. Dreyer, K. van Rijswijk, J. et al. Treatment effect of oil-based contrast at HSG is dependent on pain at HSG but not on volume of contrast. Fertil Steril 2018;110:e40.CrossRefGoogle Scholar
Pittaway, DE, Winfield, AC, Maxson, W, et al. Prevention of acute pelvic inflammatory disease after hysterosalpingography: efficacy of doxycycline prophylaxis. Am J Obstet Gynecol Nov 15 1983;147(6):623626.CrossRefGoogle ScholarPubMed
Glatstein, IZ, Sleeper, LA, Lavy, Y, et al. Observer variability in the diagnosis and management of the hysterosalpingogram. Fertil Steril Feb 1997;67(2):233237.CrossRefGoogle ScholarPubMed
Karande, VC, Pratt, DE, Balin, MS, et al. What is the radiation exposure to patients during a gynecoradiologic procedure? Fertil Steril Feb 1997;67(2):401403.CrossRefGoogle Scholar
Jongen, VH, Collins, JM, Lubbers, JA, van Selm, M. Unsuspected early pregnancy at hysterosalpingography. Fertil Steril Sep 2001;76(3):610611.CrossRefGoogle ScholarPubMed
Swart, P, Mol, BW, Veen, F, et al. The accuracy of hysterosalpingography in the diagnosis of tubal pathology: a meta-analysis. Fertil Steril 1995;64(3):486491.CrossRefGoogle ScholarPubMed
Saunders, RD, Shwayder, JM, Nakajima, ST. Current methods of tubal patency assessment. Fertil Steril 2011;95(7):21712179.CrossRefGoogle ScholarPubMed
Soares, SR, dos Reis MM, Barbosa, Camargos, AF. Diagnostic accuracy of sonohysterography, transvaginal sonography, and hysterosalpingography in patients with uterine cavity diseases. Fertil Steril Feb 2000;73(2):406411.CrossRefGoogle ScholarPubMed
Perez-Medina, T, Bajo-Arenas, J, Salazar, F, et al. Endometrial polyps and their implication in the pregnancy rates of patients undergoing intrauterine insemination: a prospective, randomized study. Hum Reprod Jun 2005;20(6):16321635.CrossRefGoogle ScholarPubMed
Shamma, FN, Lee, G, Gutmann, JN, Lavy, G. The role of office hysteroscopy in in vitro fertilization. Fertil Steril Dec 1992;58(6):12371239.CrossRefGoogle ScholarPubMed
Ludwin, A, Ludwin, I, Banas, T, et al. Diagnostic accuracy of sonohysterography, hysterosalpingography and diagnostic hysteroscopy in diagnosis of arcuate, septate and bicornuate uterus. J Obstet Gynaecol Res Mar 2011;37(3):178186.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile female: a committee opinion. Fertil Steril Jun 2015;103(6):e4450.CrossRefGoogle Scholar
Seshadri, S, El-Toukhy, T, Douiri, A, Jayaprakasan, K, Khalaf, Y. Diagnostic accuracy of saline infusion sonography in the evaluation of uterine cavity abnormalities prior to assisted reproductive techniques: a systematic review and meta-analyses. Hum Reprod Update Mar-Apr 2015;21(2):262274.CrossRefGoogle ScholarPubMed
Laifer-Narin, SL, Ragavendra, N, Lu, DS, et al. Transvaginal saline hysterosonography: characteristics distinguishing malignant and various benign conditions. AJR Jun 1999;172(6):15131520.CrossRefGoogle ScholarPubMed
Ayida, G, Chamberlain, P, Barlow, D, Kennedy, S. Uterine cavity assessment prior to in vitro fertilization: comparison of transvaginal scanning, saline contrast hysterosonography and hysteroscopy. Ultrasound Obstet Gynecol Jul 1997;10(1):5962.CrossRefGoogle ScholarPubMed
Lindheim, SR, Natalie, A, Kushner, DM, Pritts, EA, Olive, DL. Sonohysterography: a valuable tool in evaluating the female pelvis. Obstet Gynecol Surv 2003;58(11):770784.CrossRefGoogle ScholarPubMed
Pretorius, DH, Nelson, TR. Three-dimensional ultrasound. Ultrasound Obstet Gynecol 1995;5(4):219.CrossRefGoogle ScholarPubMed
Pretorius, DH, Borok, NN, Coffler, MS, Nelson, TR. Three-dimensional ultrasound in obstetrics and gynecology. Radiol Clin North Am 2001;39(3):499521.CrossRefGoogle ScholarPubMed
Jurkovic, D, Geipel, A, Gruboeck, K, , et al. Three-dimensional ultrasound for the assessment of uterine anatomy and detection of congenital anomalies: a comparison with hysterosalpingography and two-dimensional sonography. Ultrasound Obstet Gynecol 2010;5(4):233237.CrossRefGoogle Scholar
Groszmann, YS, Benacerraf, BR. Complete evaluation of anatomy and morphology of the infertile patient in a single visit; the modern infertility pelvic ultrasound examination. Fertil Steril 2016;105(6):13811393.CrossRefGoogle Scholar
Ludwin, A, Pityński, K, Ludwin, I, Banas, T, Knafel, A. Two- and three-dimensional ultrasonography and sonohysterography versus hysteroscopy with laparoscopy in the differential diagnosis of septate, bicornuate, and arcuate uteri. J Minim Invasive Gynecol 2013;20(1):9099.CrossRefGoogle ScholarPubMed
Saravelos, SH, Jayaprakasan, K, Ojha, K, Tin-Chiu, L. Assessment of the uterus with three-dimensional ultrasound in women undergoing ART. Hum Reprod Update 2017;23(2):188210.Google ScholarPubMed
Berger, A, Batzer, F, Lev-Toaff, A, Berry-Roberts, C. Diagnostic imaging modalities for Müllerian anomalies: the case for a new gold standard. J Minim Invasive Gynecol 2014;21(3):335345.CrossRefGoogle ScholarPubMed
Salim, R, Woelfer, B, Backos, M, Regan, L, Jurkovic, D. Reproducibility of three-dimensional ultrasound diagnosis of congenital uterine anomalies. Ultrasound Obstet Gynecol 2003;21(6):578582.CrossRefGoogle ScholarPubMed
Ludwin, A, Ludwin, I, Kudia, M, Kottner, J. Reliability of the European Society of Human Reproduction and Embryology/European Society for Gynaecological Endoscopy and American Society for Reproductive Medicine classification systems for congenital uterine anomalies detected using three-dimensional ultrasonography. Fertil Steril 2015;104(3):688697.e688.CrossRefGoogle ScholarPubMed
Ludwin, A, Martins, WP, Nastri, CO, et al. Congenital Uterine Malformation by Experts (CUME): better criteria for distinguishing between normal/arcuate and septate uterus? Ultrasound Obstet Jan 2018;51(1):101109.CrossRefGoogle ScholarPubMed
Ludwin, A, Ludwin, I, Kudla, M, et al. Diagnostic accuracy of three-dimensional sonohysterography compared with office hysteroscopy and its interrater/intrarater agreement in uterine cavity assessment after hysteroscopic metroplasty. Fertil Steril May 2014;101(5):13921399.CrossRefGoogle ScholarPubMed
Nannini, R, Chelo, E, Branconi, F, Tantini, C, Scarselli, GF. Dynamic echohysteroscopy: a new diagnostic technique in the study of female infertility. Acta Eur Fertil 1981;12(2):165.Google Scholar
Exalto, N, Stappers, C, van Raamsdonk, LA, Emanuel, MH. Gel instillation sonohysterography: first experience with a new technique. Fertil Steril Jan 2007;87(1):152155.CrossRefGoogle ScholarPubMed
Richman, TS, Viscomi, GN, deCherney, A, Polan, ML, Alcebo, LO. Fallopian tubal patency assessed by ultrasound following fluid injection. Work in progress. Radiology Aug 1984;152(2):507510.CrossRefGoogle ScholarPubMed
Chan, YY, Jayaprakasan, K, Zamora, J, et al. The prevalence of congenital uterine anomalies in unselected and high-risk populations: a systematic review. Hum Reprod Update 2011;17(6):761771.CrossRefGoogle ScholarPubMed
Campbell, S, Bourne, TH, Tan, SL, Collins, WP. Hysterosalpingo contrast sonography (HyCoSy) and its future role within the investigation of infertility in Europe. Ultrasound Obstet Gynecol May 1 1994;4(3):245253.CrossRefGoogle ScholarPubMed
Dessole, S, Farina, M, Capobianco, G, et al. Determining the best catheter for sonohysterography. Fertil Steril Sep 2001;76(3):605609.CrossRefGoogle ScholarPubMed
Emanuel, MH, van Vliet, M, Weber, M, Exalto, N. First experiences with hysterosalpingo-foam sonography (HyFoSy) for office tubal patency testing. Hum Reprod Jan 2012;27(1):114117.CrossRefGoogle ScholarPubMed
Dessole, S, Farina, M, Rubattu, G, et al. Side effects and complications of sonohysterosalpingography. Fertil Steril Sep 2003;80(3):620624.CrossRefGoogle ScholarPubMed
Bonnamy, L, Marret, H, Perrotin, F, et al. Sonohysterography: a prospective survey of results and complications in 81 patients. Eur J Obstet Gynecol Reprod Biol Apr 10 2002;102(1):4247.CrossRefGoogle ScholarPubMed
Alatas, C, Aksoy, E, Akarsu, C, et al. Evaluation of intrauterine abnormalities in infertile patients by sonohysterography. Hum Reprod Mar 1997;12(3):487490.CrossRefGoogle ScholarPubMed
Kamel, HS, Darwish, AM, Mohamed, SA. Comparison of transvaginal ultrasonography and vaginal sonohysterography in the detection of endometrial polyps. Acta Obstet Gynecol Scand Jan 2000;79(1):6064.CrossRefGoogle ScholarPubMed
Schwarzler, P, Concin, H, Bosch, H, et al. An evaluation of sonohysterography and diagnostic hysteroscopy for the assessment of intrauterine pathology. Ultrasound Obstet Gynecol May 1998;11(5):337342.CrossRefGoogle ScholarPubMed
Christianson, MS, Legro, RS, Jin, S, et al. Comparison of sonohysterography to hysterosalpingogram for tubal patency assessment in a multicenter fertility treatment trial among women with polycystic ovary syndrome. J Assist Reprod Genet Sep 7 2018;35(12):21732180.CrossRefGoogle Scholar
Lev-Toaff, AS, Pinheiro, LW, Bega, G, Kurtz, AB, Goldberg, BB. Three-dimensional multiplanar sonohysterography: comparison with conventional two-dimensional sonohysterography and X-ray hysterosalpingography. J Ultrasound Med Apr 2001;20(4):295306.CrossRefGoogle ScholarPubMed
Nieuwenhuis, LL, Hermans, FJ, Bij de Vaate, AJM, et al. Three-dimensional saline infusion sonography compared to two-dimensional saline infusion sonography for the diagnosis of focal intracavitary lesions. Cochrane Database Sys Rev May 5 2017;5:CD011126.Google ScholarPubMed
Salim, R, Lee, C, Davies, A, et al. A comparative study of three-dimensional saline infusion sonohysterography and diagnostic hysteroscopy for the classification of submucous fibroids. Hum Reprod Jan 2005;20(1):253257.CrossRefGoogle ScholarPubMed
Ludwin, A, Martins, WP, Ludwin, I. Uterine cavity imaging, volume estimation and quantification of degree of deformity using automatic volume calculation: description of technique. Ultrasound Obstet Gynecol Jul 2017;50(1):138140.CrossRefGoogle ScholarPubMed
Ludwin, A, Martins, WP, Ludwin, I. Evaluation of uterine niche by three-dimensional sonohysterography and volumetric quantification: techniques and scoring classification system. Ultrasound Obstet Gynecol Jan 2019;53(1):139143.CrossRefGoogle ScholarPubMed
Saravelos, SH, Li, TC. Virtual hysteroscopy with HDlive. Ultrasound Obstet Feb 2017;49(2):284286.CrossRefGoogle ScholarPubMed
Jeanty, P, Besnard, S, Arnold, A, Turner, C, Crum, P. Air-contrast sonohysterography as a first step assessment of tubal patency. J Ultrasound Med Aug 2000;19(8):519527.CrossRefGoogle ScholarPubMed
Luciano, DE, Exacoustos, C, Johns, DA, Luciano, AA. Can hysterosalpingo-contrast sonography replace hysterosalpingography in confirming tubal blockage after hysteroscopic sterilization and in the evaluation of the uterus and tubes in infertile patients? Am J Obstet Gynecol Jan 2011;204(1):79.e71–75.CrossRefGoogle ScholarPubMed
Sladkevicius, P, Zannoni, L, Valentin, L. B-flow ultrasound facilitates visualization of contrast medium during hysterosalpingo-contrast sonography. Ultrasound Obstet Gynecol Aug 2014;44(2):221227.CrossRefGoogle ScholarPubMed
Luciano, DE, Exacoustos, C, Luciano, AA. Contrast ultrasonography for tubal patency. J Minim Invasive Gynecol Nov–Dec 2014;21(6):994998.CrossRefGoogle ScholarPubMed
Robertshaw, IM, Sroga, JM, Batcheller, AE, et al. Hysterosalpingo-contrast sonography with a saline-air device is equivalent to hysterosalpingography only in the presence of tubal patency. J Ultrasound Med Jun 2016;35(6):12151222.CrossRefGoogle ScholarPubMed
Exacoustos, C, Di Giovanni, A, Szabolcs, B, et al. Automated three-dimensional coded contrast imaging hysterosalpingo-contrast sonography: feasibility in office tubal patency testing. Ultrasound Obstet Gynecol Mar 2013;41(3):328335.CrossRefGoogle Scholar
Maheux-Lacroix, S, Boutin, A, Moore, L, et al. Hysterosalpingosonography for diagnosing tubal occlusion in subfertile women: a systematic review with meta-analysis. Hum Reprod May 2014;29(5):953963.CrossRefGoogle ScholarPubMed
Ludwin, A, Nastri, CO, Ludwin, I, Martins, WP. Hysterosalpingo-lidocaine-foam sonography combined with power Doppler imaging (HyLiFoSy-PD) in tubal patency assessment: “flaming tube” sign. Ultrasound Obstet Gynecol Dec 2017;50(6):808810.CrossRefGoogle ScholarPubMed
Lindheim, SR, Cohen, M, Sauer, MV. Operative ultrasonography for upper genital tract pathology. J Assist Reprod Genet Oct 1998;15(9):542546.CrossRefGoogle ScholarPubMed
Lindheim, SR. Echosight Patton coaxial catheter-guided hysteroscopy. J Am Assoc Gynecol Laparosc May 2001;8(2):307311.CrossRefGoogle ScholarPubMed
Lindheim, SR, Morales, AJ. Operative ultrasound using an echogenic loop snare for intrauterine pathology. J Am Assoc Gynecol Laparosc Feb 2003;10(1):107110.CrossRefGoogle ScholarPubMed
Wei, AY, Schink, JC, Pritts, EA, Olive, DL, Lindheim, SR. Saline contrast sonohysterography and directed extraction, resection and biopsy of intrauterine pathology using a Uterine Explora Curette. Ultrasound Obstet Gynecol Feb 2006;27(2):202205.CrossRefGoogle ScholarPubMed
Cotangco, K, Clinton-Cirocco, K, Roy, K, et al. Concomitant saline infused sonohysterography and endometrial sampling of intrauterine pathology using sonosure device. Reports Gynecol Surg 2017;1(1):510.Google Scholar
Saravelos, SH, Li, TC. Ultrasound-guided treatment of intrauterine adhesions in the outpatient setting. Ultrasound Obstet Gynecol Aug 2017;50(2):278-280.CrossRefGoogle ScholarPubMed
Coccia, ME, Becattini, C, Bracco, GL, et al. Pressure lavage under ultrasound guidance: a new approach for outpatient treatment of intrauterine adhesions. Fertil Steril Mar 2001;75(3):601606.CrossRefGoogle ScholarPubMed
Ludwin, A, Martins, WP, Ludwin, I. Ultrasound-guided sequential intrauterine balloon dilatation for the prevention of adhesions. Ultrasound Obstet Gynecol Jan 24 2019;54(4):566568.CrossRefGoogle Scholar
Ludwin, A, Ludwin, I, Bhagavath, B, Lindheim, SR. Pre-, intra-, and postoperative management of Robert’s uterus. Fertil Steril Sep 2018;110(4):778779.CrossRefGoogle ScholarPubMed
Noyes, R, Hertig, A, Rock, J. Dating the endometrial biopsy. Fertil Steril 1950;1(1):325.CrossRefGoogle Scholar
Coutifaris, C, Myers, ER, Guzick, DS, et al. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril Nov 2004;82(5):12641272.CrossRefGoogle Scholar
Practice Committee of the American Society for Reproductive Medicine. Current clinical irrelevance of luteal phase deficiency: a committee opinion. Fertil Steril Apr 2015;103(4):e2732.CrossRefGoogle Scholar
Murray, MJ, Meyer, WR, Zaino, RJ, et al. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril May 2004;81(5):13331343.CrossRefGoogle ScholarPubMed
Coutifaris, C, Myers, ER, Guzick, DS, et al. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril Nov 2004;82(5):12641272.CrossRefGoogle Scholar
Nikas, G, Drakakis, P, Loutradis, D, et al. Uterine pinopodes as markers of the ‘nidation window’ in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod May 1995;10(5):12081213.CrossRefGoogle ScholarPubMed
Beier, HM, Beier-Hellwig, K. Molecular and cellular aspects of endometrial receptivity. Hum Reprod Update Sep–Oct 1998;4(5):448458.CrossRefGoogle ScholarPubMed
Lessey, BA. The role of the endometrium during embryo implantation. Hum Reprod Dec 2000;15 Suppl 6:3950.Google ScholarPubMed
Nikas, G, Develioglu, OH, Toner, JP, Jones, HW Jr. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum Reprod Mar 1999;14(3):787792.CrossRefGoogle ScholarPubMed
Ordi, J, Creus, M, Quintó, L, et al. Within-subject between-cycle variability of histological dating, alpha v beta 3 integrin expression, and pinopod formation in the human endometrium. J Clin Endocrinol Metab May 2003;88(5):21192125.CrossRefGoogle ScholarPubMed
Quinn, C, Ryan, E, Claessens, EA, et al. The presence of pinopodes in the human endometrium does not delineate the implantation window. Fertil Steril May 2007;87(5):10151021.CrossRefGoogle Scholar
Leach, RE, Jessmon, P, Coutifaris, C, et al. High throughput, cell type-specific analysis of key proteins in human endometrial biopsies of women from fertile and infertile couples. Hum Reprod Mar 2012;27(3):814828.CrossRefGoogle Scholar
Cakmak, H, Taylor, HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update Mar–Apr 2011;17(2):242253.CrossRefGoogle ScholarPubMed
Tapia, A, Gangi, LM, Zegers-Hochschild, F, et al. Differences in the endometrial transcript profile during the receptive period between women who were refractory to implantation and those who achieved pregnancy. Hum Reprod Feb 2008;23(2):340351.CrossRefGoogle ScholarPubMed
Ruiz-Alonso, M, Blesa, D, Diaz-Gimeno, P, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril Sep 2013;100(3):818824.CrossRefGoogle ScholarPubMed
Blesa, D, Ruiz-Alonso, M, Simon, C. Clinical management of endometrial receptivity. Semin Reprod Med Sep 2014;32(5):410-413.CrossRefGoogle ScholarPubMed
Mahajan, N. Endometrial receptivity array: clinical application. J Hum Reprod Sci Jul-Sep 2015;8(3):121129.CrossRefGoogle ScholarPubMed
Garrido-Gomez, T, Ruiz-Alonso, M, Blesa, D, et al. Profiling the gene signature of endometrial receptivity: clinical results. Fertil Steril Mar 15 2013;99(4):10781085.CrossRefGoogle ScholarPubMed
Miravet-Valenciano, JA, Rincon-Bertolin, A, Vilella, F, Simon, C. Understanding and improving endometrial receptivity. Curr Opin Obstet Gynecol Jun 2015;27(3):187192.CrossRefGoogle ScholarPubMed
Diaz-Gimeno, P, Horcajadas, JA, Martinez-Conejero, JA, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril Jan 2011;95(1):5060, 60.e51–15.CrossRefGoogle ScholarPubMed
Smit, JG, Kasius, JC, Eijkemans, MJ, et al. The international agreement study on the diagnosis of the septate uterus at office hysteroscopy in infertile patients. Fertil Steril Jun 2013;99(7):2108–2113 e2102.CrossRefGoogle Scholar
Smit, JG, Overdijkink, S, Mol, BW, et al. The impact of diagnostic criteria on the reproducibility of the hysteroscopic diagnosis of the septate uterus: a randomized controlled trial. Hum Reprod Jun 2015;30(6):1323-1330.CrossRefGoogle ScholarPubMed
Kasius, JC, Broekmans, FJ, Veersema, S, et al. Observer agreement in the evaluation of the uterine cavity by hysteroscopy prior to in vitro fertilization. Hum Reprod Apr 2011;26(4):801807.CrossRefGoogle ScholarPubMed
Ludwin, A, Ludwin, I. Reliability of hysteroscopy-based diagnosis of septate, arcuate and normal uterus: estimate or guestimate? Hum Reprod Jun 2016;31(6):13761377.CrossRefGoogle ScholarPubMed
El-Toukhy, T, Campo, R, Khalaf, Y, et al. Hysteroscopy in recurrent in-vitro fertilisation failure (TROPHY): a multicentre, randomised controlled trial. Lancet Jun 25 2016;387(10038):26142621.CrossRefGoogle ScholarPubMed
Bosteels, J, van Wessel, S, Weyers, S, et al. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities. Cochrane Database Sys Rev Dec 5 2018;12:Cd009461.Google ScholarPubMed
Hinckley, MD, Milki, AA. 1000 office-based hysteroscopies prior to in vitro fertilization: feasibility and findings. JSLS Apr-Jun 2004;8(2):103107.Google ScholarPubMed
Shalev, J, Meizner, I, Bar-Hava, I, et al. Predictive value of transvaginal sonography performed before routine diagnostic hysteroscopy for evaluation of infertility. Fertil Steril Feb 2000;73(2):412417.CrossRefGoogle ScholarPubMed
AAGL practice report: practice guidelines for the diagnosis and management of endometrial polyps. J Minim Invasive Gynecol Jan-Feb 2012;19(1):310.CrossRefGoogle Scholar
Yanaihara, A, Yorimitsu, T, Motoyama, H, Iwasaki, S, Kawamura, T. Location of endometrial polyp and pregnancy rate in infertility patients. Fertil Steril Jul 2008;90(1):180182.CrossRefGoogle ScholarPubMed
Ben-Nagi, J, Miell, J, Yazbek, J, Holland, T, Jurkovic, D. The effect of hysteroscopic polypectomy on the concentrations of endometrial implantation factors in uterine flushings. Reprod Biomed Online Nov 2009;19(5):737744.CrossRefGoogle ScholarPubMed
Lass, A, Williams, G, Abusheikha, N, Brinsden, P. The effect of endometrial polyps on outcomes of in vitro fertilization (IVF) cycles. J Assist Reprod Genet Sep 1999;16(8):410415.CrossRefGoogle ScholarPubMed
Preutthipan, S, Herabutya, Y. Hysteroscopic polypectomy in 240 premenopausal and postmenopausal women. Fertil Steril Mar 2005;83(3):705709.CrossRefGoogle ScholarPubMed
Hamerlynck, TW, Schoot, BC, van Vliet, HA, Weyers, S. Removal of endometrial polyps: hysteroscopic morcellation versus bipolar resectoscopy, a randomized trial. J Minim Invasive Gynecol Nov–Dec 2015;22(7):12371243.CrossRefGoogle ScholarPubMed
Tohma, YA, Zeyneloglu, HB, Aslan, OD, et al. Prevalence of endometrial cancer or atypical hyperplasia diagnosed incidentally in infertility clinic. Am J Obstet Gynecol Nov 2018;219(5):503505.CrossRefGoogle ScholarPubMed
Deans, R, Abbott, J. Review of intrauterine adhesions. J Minim Invasive Gynecol 2010;17(5):555569.CrossRefGoogle ScholarPubMed
Spiewankiewicz, B, Stelmachow, J, Sawicki, W, et al. The effectiveness of hysteroscopic polypectomy in cases of female infertility. Clin Exp Obstet Gynecol 2003;30(1):2325.Google ScholarPubMed
Shokeir, TA, Shalan, HM, El-Shafei, MM. Significance of endometrial polyps detected hysteroscopically in eumenorrheic infertile women. J Obstet Gynaecol Res Apr 2004;30(2):8489.CrossRefGoogle ScholarPubMed
Baird, DD, Dunson, DB, Hill, MC, Cousins, D, Schectman, JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol Jan 2003;188(1):100107.CrossRefGoogle ScholarPubMed
Munro, MG, Critchley, HO, Broder, MS, Fraser, IS, Disorders FWGo, M. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int J Gynaecol Obstet Apr 2011;113(1):313.CrossRefGoogle ScholarPubMed
Practice Committee of the American Society for Reproductive Medicine. Removal of myomas in asymptomatic patients to improve fertility and/or reduce miscarriage rate: a guideline. Fertil Steril Sep 2017;108(3):416425.CrossRefGoogle Scholar
Eldar-Geva, T, Meagher, S, Healy, DL, et al. Effect of intramural, subserosal, and submucosal uterine fibroids on the outcome of assisted reproductive technology treatment. Fertil Steril Oct 1998;70(4):687691.CrossRefGoogle ScholarPubMed
Hart, R, Khalaf, Y, Yeong, CT, et al. A prospective controlled study of the effect of intramural uterine fibroids on the outcome of assisted conception. Hum Reprod Nov 2001;16(11):24112417.CrossRefGoogle ScholarPubMed
Jun, SH, Ginsburg, ES, Racowsky, C, Wise, LA, Hornstein, MD. Uterine leiomyomas and their effect on in vitro fertilization outcome: a retrospective study. J Assist Reprod Genet Mar 2001;18(3):139143.CrossRefGoogle ScholarPubMed
Yarali, H, Bukulmez, O. The effect of intramural and subserous uterine fibroids on implantation and clinical pregnancy rates in patients having intracytoplasmic sperm injection. Arch Gynecol Obstet Jan 2002;266(1):3033.CrossRefGoogle ScholarPubMed
Donnez, J, Jadoul, P. What are the implications of myomas on fertility? A need for a debate? Hum Reprod Jun 2002;17(6):14241430.CrossRefGoogle ScholarPubMed
Horcajadas, JA, Goyri, E, Higon, MA, et al. Endometrial receptivity and implantation are not affected by the presence of uterine intramural leiomyomas: a clinical and functional genomics analysis. J Clin Endocrinol Metab Sep 2008;93(9):34903498.CrossRefGoogle Scholar
Bosteels, J, Weyers, S, Puttemans, P, et al. The effectiveness of hysteroscopy in improving pregnancy rates in subfertile women without other gynaecological symptoms: a systematic review. Hum Reprod Update Jan-Feb 2010;16(1):111.CrossRefGoogle ScholarPubMed
Surrey, ES, Minjarez, DA, Stevens, JM, Schoolcraft, WB. Effect of myomectomy on the outcome of assisted reproductive technologies. Fertil Steril May 2005;83(5):14731479.CrossRefGoogle ScholarPubMed
Friedman, JA, Wong, JMK, Chaudhari, A, Tsai, S, Milad, MP. Hysteroscopic myomectomy: a comparison of techniques and review of current evidence in the management of abnormal uterine bleeding. Curr Opin Obstet Gynecol Aug 2018;30(4):243251.CrossRefGoogle ScholarPubMed
Ashton, D, Amin, HK, Richart, RM, Neuwirth, RS. The incidence of asymptomatic uterine anomalies in women undergoing transcervical tubal sterilization. Obstet Gynecol Jul 1988;72(1):28-30.Google ScholarPubMed
ASRM. Uterine septum: a guideline. Fertil Steril Sep 1 2016;106(3):530540.CrossRefGoogle Scholar
Shuiqing, M, Xuming, B, Jinghe, L. Pregnancy and its outcome in women with malformed uterus. Chin Med Sci J Dec 2002;17(4):242245.Google ScholarPubMed
Acien, P. Reproductive performance of women with uterine malformations. Hum Reprod Jan 1993;8(1):122126.CrossRefGoogle ScholarPubMed
Venetis, CA, Papadopoulos, SP, Campo, R, et al. Clinical implications of congenital uterine anomalies: a meta-analysis of comparative studies. Reprod Biomed Online Dec 2014;29(6):665683.CrossRefGoogle ScholarPubMed
Homer, HA, Li, TC, Cooke, ID. The septate uterus: a review of management and reproductive outcome. Fertil Steril Jan 2000;73(1):114.CrossRefGoogle ScholarPubMed
Faivre, E, Fernandez, H, Deffieux, X, et al. Accuracy of three-dimensional ultrasonography in differential diagnosis of septate and bicornuate uterus compared with office hysteroscopy and pelvic magnetic resonance imaging. J Minim Invasive Gynecol Jan–Feb 2012;19(1):101106.CrossRefGoogle ScholarPubMed
Grimbizis, GF, Di Spiezio Sardo, A, Saravelos, SH, et al. The Thessaloniki ESHRE/ESGE consensus on diagnosis of female genital anomalies. Hum Reprod Jan 2016;31(1):27.CrossRefGoogle ScholarPubMed
Bettocchi, S, Ceci, O, Nappi, L, et al. Office hysteroscopic metroplasty: three “diagnostic criteria” to differentiate between septate and bicornuate uteri. J Minim Invasive Gynecol May–Jun 2007;14(3):324328.CrossRefGoogle ScholarPubMed
Zikopoulos, KA, Kolibianakis, EM, Tournaye, H, et al. Hysteroscopic septum resection using the Versapoint system in subfertile women. Reprod Biomed Online Oct 2003;7(3):365367.CrossRefGoogle ScholarPubMed
Salazar, CA, Isaacson, K, Morris, S. A comprehensive review of Asherman’s syndrome: causes, symptoms and treatment options. Curr Opin Obstet Gynecol Aug 2017;29(4):249256.CrossRefGoogle ScholarPubMed
Dabirashrafi, H, Moghadami-Tabrizi, N. Establishing the accuracy of ultrasound-guided transcervical metroplasty. Fertil Steril Jul 1991;56(1):152153.Google ScholarPubMed
Ludwin, A, Ludwin, I, Pitynski, K, Banas, T, Jach, R. Role of morphologic characteristics of the uterine septum in the prediction and prevention of abnormal healing outcomes after hysteroscopic metroplasty. Hum Reprod Jul 2014;29(7):14201431.CrossRefGoogle ScholarPubMed
Yang, JH, Chen, MJ, Chen, CD, et al. Optimal waiting period for subsequent fertility treatment after various hysteroscopic surgeries. Fertil Steril Jun 2013;99(7):20922096.e2093.CrossRefGoogle ScholarPubMed
Berkkanoglu, M, Isikoglu, M, Arici, F, Ozgur, K. What is the best time to perform intracytoplasmic sperm injection/embryo transfer cycle after hysteroscopic surgery for an incomplete uterine septum? Fertil Steril Dec 2008;90(6):21122115.CrossRefGoogle Scholar
Vercellini, P, Fedele, L, Arcaini, L, Rognoni, MT, Candiani, GB. Value of intrauterine device insertion and estrogen administration after hysteroscopic metroplasty. J Reprod Med Jul 1989;34(7):447450.Google ScholarPubMed
Guida, M, Acunzo, G, Di Spiezio Sardo, A, et al. Effectiveness of auto-crosslinked hyaluronic acid gel in the prevention of intrauterine adhesions after hysteroscopic surgery: a prospective, randomized, controlled study. Hum Reprod Jun 2004;19(6):14611464.CrossRefGoogle ScholarPubMed
Saygili-Yilmaz, E, Yildiz, S, Erman-Akar, M, Akyuz, G, Yilmaz, Z. Reproductive outcome of septate uterus after hysteroscopic metroplasty. Arch Gynecol Obstet Oct 2003;268(4):289292.CrossRefGoogle ScholarPubMed
Tomazevic, T, Ban-Frangez, H, Virant-Klun, I, et al. Septate, subseptate and arcuate uterus decrease pregnancy and live birth rates in IVF/ICSI. Reprod Biomed Online Nov 2010;21(5):700705.CrossRefGoogle ScholarPubMed
Nawroth, F, Rahimi, G, Nawroth, C, et al. Is there an association between septate uterus and endometriosis? Hum Reprod Feb 2006;21(2):542544.CrossRefGoogle ScholarPubMed
Fritsch, H. Ein fall von volligen schwund der gebaumutterhohle nach auskrat-zung [A case of total atrophy of the uterine cavity after scraping]. Zentralbl gynaekol 1894;1894(18):13371342.Google Scholar
Asherman, JG. Amenorrhoea traumatica (atretica). J Obstet Gynaecol Br Emp Feb 1948;55(1):2330.CrossRefGoogle ScholarPubMed
Schenker, JG, Margalioth, EJ. Intrauterine adhesions: an updated appraisal. Fertil Steril May 1982;37(5):593610.Google ScholarPubMed
Schenker, JG. Etiology of and therapeutic approach to synechia uteri. Eur J Obstet Gynecol Reprod Biol Mar 1996;65(1):109113.CrossRefGoogle ScholarPubMed
Al-Inany, H. Intrauterine adhesions. An update. Acta Obstet Gynecol Scand Nov 2001;80(11):986993.Google ScholarPubMed
Hooker, AB, Muller, LT, Paternotte, E, Thurkow, AL. Immediate and long-term complications of delayed surgical management in the postpartum period: a retrospective analysis. J Matern Fetal Neonatal Med Nov 2015;28(16):18841889.CrossRefGoogle ScholarPubMed
Buttram, VC JrTurati, G. Uterine synechiae: variations in severity and some conditions which may be conducive to severe adhesions. Int J Fertil 1977;22(2):98103.Google ScholarPubMed
Adoni, A, Palti, Z, Milwidsky, A, Dolberg, M. The incidence of intrauterine adhesions following spontaneous abortion. Int J Fertil 1982;27(2):117118.Google ScholarPubMed
Westendorp, IC, Ankum, WM, Mol, BW, Vonk, J. Prevalence of Asherman’s syndrome after secondary removal of placental remnants or a repeat curettage for incomplete abortion. Hum Reprod Dec 1998;13(12):33473350.CrossRefGoogle ScholarPubMed
Gilman, AR, Dewar, KM, Rhone, SA, Fluker, MR. Intrauterine adhesions following miscarriage: look and learn. JOGC May 2016;38(5):453457.Google ScholarPubMed
Yu, X, Yuhan, L, Dongmei, S, Enlan, X, Tinchiu, L. The incidence of post-operative adhesion following transection of uterine septum: a cohort study comparing three different adjuvant therapies. Eur J Obstet Gynecol Reprod Biol Jun 2016;201:6164.CrossRefGoogle ScholarPubMed
Touboul, C, Fernandez, H, Deffieux, X, et al. Uterine synechiae after bipolar hysteroscopic resection of submucosal myomas in patients with infertility. Fertil Steril Nov 2009;92(5):16901693.CrossRefGoogle ScholarPubMed
Hanstede, MM, van der Meij, E, Goedemans, L, Emanuel, MH. Results of centralized Asherman surgery, 2003–2013. Fertil Steril Dec 2015;104(6):15611568.e1561.CrossRefGoogle ScholarPubMed
Ventolini, G, Zhang, M, Gruber, J. Hysteroscopy in the evaluation of patients with recurrent pregnancy loss: a cohort study in a primary care population. Surg Endosc Dec 2004;18(12):17821784.CrossRefGoogle Scholar
Oosthuizen, AP, Wessels, PH, Hefer, JN. Tuberculosis of the female genital tract in patients attending an infertility clinic. S Ar Med J Jun 2 1990;77(11):562564.Google ScholarPubMed
Varma, TR. Genital tuberculosis and subsequent fertility. Int J Gynaecol Obstet May 1991;35(1):111.CrossRefGoogle ScholarPubMed
Magos, A. Hysteroscopic treatment of Asherman’s syndrome. Reprod Biomed Online 2002;4(Suppl 3):4651.CrossRefGoogle ScholarPubMed
Goldenberg, M, Schiff, E, Achiron, R, Lipitz, S, Mashiach, S. Managing residual trophoblastic tissue. Hysteroscopy for directing curettage. J Reprod Med Jan 1997;42(1):26-28.Google ScholarPubMed
Cohen, SB, Kalter-Ferber, A, Weisz, BS, et al. Hysteroscopy may be the method of choice for management of residual trophoblastic tissue. J Am Assoc Gynecol Laparosc May 2001;8(2):199202.CrossRefGoogle ScholarPubMed
Valle, RF. Hysteroscopy in the evaluation of female infertility. Am J Obstet Gynecol Jun 15 1980;137(4):425431.CrossRefGoogle ScholarPubMed
Raziel, A, Arieli, S, Bukovsky, I, Caspi, E, Golan, A. Investigation of the uterine cavity in recurrent aborters. Fertil Steril Nov 1994;62(5):10801082.CrossRefGoogle ScholarPubMed
Yu, D, Wong, YM, Cheong, Y, Xia, E, Li, TC. Asherman syndrome–one century later. Fertil Steril Apr 2008;89(4):759779.CrossRefGoogle ScholarPubMed
AAG Advancing Minimally Invasive Gynecology Worldwide. AAGL practice report: practice guidelines for management of intrauterine synechiae. J Minim Invasive Gynecol Jan–Feb 2010;17(1):17.CrossRefGoogle Scholar
Ismajovich, B, Lidor, A, Confino, E, David, MP. Treatment of minimal and moderate intrauterine adhesions (Asherman’s syndrome). J Reprod Med Oct 1985;30(10):769772.Google ScholarPubMed
Fernandez, H, Al-Najjar, F, Chauveaud-Lambling, A, Frydman, R, Gervaise, A. Fertility after treatment of Asherman’s syndrome stage 3 and 4. J Minim Invasive Gynecol Sep–Oct 2006;13(5):398-402.CrossRefGoogle ScholarPubMed
Johary, J, Xue, M, Zhu, X, Xu, D, Velu, PP. Efficacy of estrogen therapy in patients with intrauterine adhesions: systematic review. J Minim Invasive Gynecol Jan–Feb 2014;21(1):4454.CrossRefGoogle ScholarPubMed
Lin, XN, Zhou, F, Wei, ML, et al. Randomized, controlled trial comparing the efficacy of intrauterine balloon and intrauterine contraceptive device in the prevention of adhesion reformation after hysteroscopic adhesiolysis. Fertil Steril Jul 2015;104(1):235240.CrossRefGoogle ScholarPubMed
Cai, H, Qiao, L, Song, K, He, Y. Oxidized, regenerated cellulose adhesion barrier plus intrauterine device prevents recurrence after adhesiolysis for moderate to severe intrauterine adhesions. J Minim Invasive Gynecol Jan 1 2017;24(1):8088.CrossRefGoogle ScholarPubMed
Bosteels, J, Weyers, S, D’Hooghe, TM, et al. Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility. Cochrane Database Sys Rev Nov 27 2017;11:CD011110.Google ScholarPubMed

References

Deutinger, J, Reinthaller, A, Csaicsich, P, et al. Follicular aspiration for in vitro fertilization: sonographically guided transvaginal versus laparoscopic approach. Eur J Obstet Gynecol Reprod Biol 1987;26(2):127133.CrossRefGoogle ScholarPubMed
Lavy, G, Restrepo-Candelo, H, Diamond, M, et al. Laparoscopic and transvaginal ova recovery: the effect on ova quality. Fertil Steril 1988;49(6):10021006.CrossRefGoogle ScholarPubMed
Seifer, DB, Collins, RL, Paushter, RM, George, CR, Quigley, MM. Follicular aspiration: a comparison of an ultrasonic endovaginal transducer with fixed needle guide and other retrieval methods. Fertil Steril 1988;49(3):462467.CrossRefGoogle ScholarPubMed
Lopata, A, Johnston, IW, Leeton, JF, et al. Collection of human oocytes at laparoscopy and laparotomy. Fertil Steril 1974;25(12):10301038.CrossRefGoogle ScholarPubMed
Steptoe, PC, Edwards, RG. Laparoscopic recovery of preovulatory human oocytes after priming of ovaries with gonadotrophins. Lancet 1970;1(7649):683689.CrossRefGoogle ScholarPubMed
Renou, P, Trounson, AO, Wood, C, Leeton, JF. The collection of human oocytes for in vitro fertilization. I. An instrument for maximizing oocyte recovery rate. Fertil Steril 1981;35(4):409412.CrossRefGoogle ScholarPubMed
Wood, C, Leeton, J, Talbot, JM, Trounson, AO. Technique for collecting mature human oocytes for in vitro fertilization. Br J Obstet Gynaecol 1981;88(7):756760.CrossRefGoogle ScholarPubMed
Lenz, S, Lauritsen, JG. Ultrasonically guided percutaneous aspiration of human follicles under local anesthesia: a new method of collecting oocytes for in vitro fertilization. Fertil Steril 1982;38(6):673677.CrossRefGoogle ScholarPubMed
Wikland, M, Nilsson, L, Hansson, R, Hamberger, L, Janson, PO. Collection of human oocytes by the use of sonography. Fertil Steril 1983;39(5):603608.CrossRefGoogle ScholarPubMed
Cohen, J, Trounson, A, Dawson, K, et al. The early days of IVF outside the UK. Hum Reprod Update 2005;11(5):439459.CrossRefGoogle ScholarPubMed
Parsons, J, Riddle, A, Booker, M, et al. Oocyte retrieval for in-vitro fertilisation by ultrasonically guided needle aspiration via the urethra. Lancet 1985;1(8437):10761077.CrossRefGoogle ScholarPubMed
Dellenbach, P, Nisan, I, Moreau, L, et al. Transvaginal, sonographically controlled ovarian follicle puncture for egg retrieval. Lancet 1984;1(8392):1467.CrossRefGoogle ScholarPubMed
Gleicher, N, Friberg, J, Fullan, N, et al. EGG retrieval for in vitro fertilisation by sonographically controlled vaginal culdocentesis. Lancet 1983;2(8348):508509.CrossRefGoogle ScholarPubMed
Feichtinger, W, Kemeter, P. Transvaginal sector scan sonography for needle guided transvaginal follicle aspiration and other applications in gynecologic routine and research. Fertil Steril 1986;45(5):722725.CrossRefGoogle ScholarPubMed
Kemeter, P, Feichtinger, W. Trans-vaginal oocyte retrieval using a trans-vaginal sector scan probe combined with an automated puncture device. Hum Reprod 1986;1(1):2124.CrossRefGoogle ScholarPubMed
Wikland, M, Enk, L, Hamberger, L. Transvesical and transvaginal approaches for the aspiration of follicles by use of ultrasound. Ann N Y Acad Sci 1985;442:182194.CrossRefGoogle ScholarPubMed
Meldrum, DR. Antibiotics for vaginal oocyte aspiration. J In Vitro Fert Embryo Transf 1989;6(1):12.CrossRefGoogle ScholarPubMed
Soussis, I, Boyd, O, Paraschos, T, et al. Follicular fluid levels of midazolam, fentanyl, and alfentanil during transvaginal oocyte retrieval. Fertil Steril 1995;64(5):10031007.CrossRefGoogle ScholarPubMed
Levi-Setti, PE, Cirillo, F, Scolaro, V, et al. Appraisal of clinical complications after 23,827 oocyte retrievals in a large assisted reproductive technology program. Fertil Steril 2018;109(6):1038–1043 e1.CrossRefGoogle Scholar
Van Os, HC, Roozenburg, BJ, Janssen-Caspers, HA, et al. Vaginal disinfection with povidon iodine and the outcome of in-vitro fertilization. Hum Reprod 1992;7(3):349350.Google ScholarPubMed
Kwan, I, Bhatacharya, S, Knox, F, McNeil, A. Conscious sedation and analgesia for oocyte retrieval during in vitro fertilisation procedures. Cochrane Database Syst Rev 2005;(3):CD004829.Google ScholarPubMed
Trout, SW, Vallerand, AH, Kemmann, E. Conscious sedation for in vitro fertilization. Fertil Steril 1998;69(5):799808.CrossRefGoogle ScholarPubMed
Oliveira, GL Jr, Serralheiro, FC, Alfonso Fonseca, FL, et al. Randomized double-blind clinical trial comparing two anesthetic techniques for ultrasound-guided transvaginal follicular puncture. Einstein (Sao Paulo) 2016;14(3):305310.CrossRefGoogle ScholarPubMed
Leung, AS, Dahan, MH, Tan, SL, Techniques and technology for human oocyte collection. Expert Rev Med Devices 2016;13(8):701703.CrossRefGoogle ScholarPubMed
Awonuga, A, Waterston, J, Oyesanya, O, et al. A prospective randomized study comparing needles of different diameters for transvaginal ultrasound-directed follicle aspiration. Fertil Steril 1996;65(1):109113.CrossRefGoogle ScholarPubMed
Kumaran, A, Narayan, PK, Pai, PJ, et al. Oocyte retrieval at 140-mmHg negative aspiration pressure: a promising alternative to flushing and aspiration in assisted reproduction in women with low ovarian reserve. J Hum Reprod Sci 2015;8(2):98102.CrossRefGoogle ScholarPubMed
Papanikolaou, EG, Platteau, P, Albano, C, et al. Immature oocyte in-vitro maturation: clinical aspects. Reprod Biomed Online 2005;10(5):587592.CrossRefGoogle ScholarPubMed
Dessolle, L, Leperlier, F, Blau, DJ, et al. Proficiency in oocyte retrieval assessed by the learning curve cumulative summation test. Reprod Biomed Online 2014;29(2):187192.CrossRefGoogle ScholarPubMed
Goldman, KN, Moon, KS, Yauger, BJ, et al. Proficiency in oocyte retrieval: how many procedures are necessary for training? Fertil Steril 2011. 95(7):22792282.CrossRefGoogle ScholarPubMed
Waterstone, JJ, Parsons, JH. A prospective study to investigate the value of flushing follicles during transvaginal ultrasound-directed follicle aspiration. Fertil Steril 1992;57(1):221223.CrossRefGoogle ScholarPubMed
Kingsland, CR, Taylor, CT, Aziz, N, Bickerton, N. Is follicular flushing necessary for oocyte retrieval? A randomized trial. Hum Reprod 1991;6(3):382383.CrossRefGoogle ScholarPubMed
Knight, DC, Tyler, JP, Driscoll, GL. Follicular flushing at oocyte retrieval: a reappraisal. Aust N Z J Obstet Gynaecol 2001;41(2):210213.CrossRefGoogle ScholarPubMed
Scott, RT, Hofmann, GE, Muasher, SJ, et al. A prospective randomized comparison of single- and double-lumen needles for transvaginal follicular aspiration. J In Vitro Fert Embryo Transf 1989;6(2):98100.CrossRefGoogle ScholarPubMed
Tan, SL, Waterstone, J, Wren, M, Parsons, J. A prospective randomized study comparing aspiration only with aspiration and flushing for transvaginal ultrasound-directed oocyte recovery. Fertil Steril 1992;58(2):356360.CrossRefGoogle ScholarPubMed
Hill, MJ, Levens, ED. Is there a benefit in follicular flushing in assisted reproductive technology? Curr Opin Obstet Gynecol 2010;22(3):208212.CrossRefGoogle Scholar
Eftekhar, M, Aflatoonian, A, Mohammedian, F, Eftekhar, T. Adjuvant growth hormone therapy in antagonist protocol in poor responders undergoing assisted reproductive technology. Arch Gynecol Obstet 2013;287(5):10171021.CrossRefGoogle ScholarPubMed
Levens, ED, Whitcomb, BW, Payson, MD, Larsen, FW. Ovarian follicular flushing among low-responding patients undergoing assisted reproductive technology. Fertil Steril 2009;91(4 Suppl):13811384.CrossRefGoogle ScholarPubMed
Georgiou, EX, Melo, P, Cheong, YC, Granne, IE. Follicular flushing during oocyte retrieval in assisted reproductive techniques. Cochrane Database Syst Rev 2018;4:CD004634.Google ScholarPubMed
Malhotra, VS, Uppal, A, Malhotra, A. Improving patient engagement through patient portals. MGMA Connex 2017;17(1):34.Google ScholarPubMed
Xiao, Y, Wang, W, Wang, M, Liu, K. Follicular flushing increases the number of oocytes retrieved in poor ovarian responders undergoing in vitro fertilization: a retrospective cohort study. BMC Womens Health 2018;18(1):186.CrossRefGoogle ScholarPubMed
Damario, MA. Transabdominal-transperitoneal ultrasound-guided oocyte retrieval in a patient with mullerian agenesis. Fertil Steril 2002;78(1):189191.CrossRefGoogle Scholar
Steigrad, S, Hacker, N.F, Kolb, B. In vitro fertilization surrogate pregnancy in a patient who underwent radical hysterectomy followed by ovarian transposition, lower abdominal wall radiotherapy, and chemotherapy. Fertil Steril 2005;83(5):15471549.CrossRefGoogle Scholar
Wood, EG, Batzer, FR, Corson, SL. Ovarian response to gonadotrophins, optimal method for oocyte retrieval and pregnancy outcome in patients with vaginal agenesis. Hum Reprod 1999;14(5):11781181.CrossRefGoogle ScholarPubMed
Barton, SE, Politch, JA, Benson, CB, et al. Transabdominal follicular aspiration for oocyte retrieval in patients with ovaries inaccessible by transvaginal ultrasound. Fertil Steril 2011;95(5):17731776.CrossRefGoogle ScholarPubMed
Evers, JL, Larsen, JF, Gnany, GG, Sieck, UV. Complications and problems in transvaginal sector scan-guided follicle aspiration. Fertil Steril 1988;49(2):278282.CrossRefGoogle ScholarPubMed
Tureck, RW, Garcia, CR, Blasco, L Masatroianni, L Jr. Perioperative complications arising after transvaginal oocyte retrieval. Obstet Gynecol 1993;81(4):590593.Google ScholarPubMed
El-Shawarby, S, Margara, R, Trew, G, Lavery, S. A review of complications following transvaginal oocyte retrieval for in-vitro fertilization. Hum Fertil (Camb) 2004;7(2):127133.CrossRefGoogle ScholarPubMed
Bergh, T, Lundkvist, O. Clinical complications during in-vitro fertilization treatment. Hum Reprod 1992;7(5):625626.CrossRefGoogle ScholarPubMed
Azem, F, Wolf, Y, Botchan, A, et al. Massive retroperitoneal bleeding: a complication of transvaginal ultrasonography-guided oocyte retrieval for in vitro fertilization-embryo transfer. Fertil Steril 2000;74(2):405406.CrossRefGoogle ScholarPubMed
Bennett, SJ. Waterstone, JJ, Cheng, WC, Parsons, J. Complications of transvaginal ultrasound-directed follicle aspiration: a review of 2670 consecutive procedures. J Assist Reprod Genet 1993;10(1):7277.CrossRefGoogle ScholarPubMed

References

Brown, JA, Buckingham, K, Buckett, W, et al. Ultrasound versus “clinical touch” for catheter guidance during embryo transfer in women. Cochrane Database Sys Rev 2016;CD006107.Google Scholar
Kojima, K, Nomiyama, M, Kumamoto, T, et al. Transvaginal ultrasound-guided embryo transfer improves pregnancy and implantation rates after IVF. Hum Reprod 2001;16:25782582.CrossRefGoogle ScholarPubMed
Strickler, RC, Christianson, C, Crane, JP, et al. Ultrasound guidance for human embryo transfer. Fertil Steril 1985;43:5461.CrossRefGoogle ScholarPubMed
Woolcott, R, Stanger, J. Potentially important variables identified by transvaginal ultrasound-guided embryo transfer. Hum Reprod 1997;12:963966.CrossRefGoogle ScholarPubMed
Sallam, HN, Agameya, AF, Rahman, AF, et al. Ultrasound measurement of the uterocervical angle before embryo transfer: a prospective controlled study. Hum Reprod 2002;17:17671772.CrossRefGoogle ScholarPubMed
Ghazzawi, IM, Al-Hasani, S, Karaki, R, et al. Transfer technique and catheter choice influence the incidence of transcervical embryo expulsion and the outcome of IVF. Hum Reprod 1999;14:677682.CrossRefGoogle ScholarPubMed
Abou-Setta, AM, Al-Inany, HG, Mansour, RT, et al. Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis. Hum Reprod 2005;20:31143121.CrossRefGoogle ScholarPubMed
Buckett, WM. A review and meta-analysis of prospective trials comparing different catheters used for embryo transfer. Fertil Steril 2006;85;728734.CrossRefGoogle ScholarPubMed
Al-Shawaf, T, Dave, R, Harper, J, et al. Transfer of embryos into the uterus: how much do technical factors affect pregnancy rates? J Assist Reprod Genet 1993;10:3136.CrossRefGoogle ScholarPubMed
Letterie, GS, Marshall, L, Angle, M. A new coaxial catheter system with an echodense tip for ultrasonographically guided embryo transfer. Fertil Steril 1999;72:266268.Google ScholarPubMed
Urman, B, Aksoy, S, Alatas, C, et al. Comparing two embryo transfer catheters. J Reprod Med 2000;45:135138.Google ScholarPubMed
Karande, V, Hazlett, D, Vietzke, M, et al. A prospective randomized comparison of the Wallace catheter and the Cook Echotip® catheter for ultrasound-guided embryo transfer. Fertil Steril 2002;77:826830.CrossRefGoogle ScholarPubMed
Ata, B, Isiklar, A, Balaban, B, et al. Prospective randomized comparison of Wallace and Labotect embryo transfer catheters. Reprod BioMed Online 2007;14:471476.CrossRefGoogle ScholarPubMed
Aboulfotouh, I, Abou-Setta, AM, Khattab, S, et al. Firm versus soft embryo transfer catheters under ultrasound guidance: does catheter choice really influence the pregnancy rates? Fertil Steril 2008;89:12611262.CrossRefGoogle ScholarPubMed
El-Shawarby, SA, Ravhon, A, Skull, J, et al. A prospective randomized controlled trial of Wallace and Rocket embryo transfer catheters. Reprod Biomed Online 2008;17:549552.CrossRefGoogle ScholarPubMed
Coroleu, B, Barri, PN, Carreras, O, et al. Effect of using an echogenic catheter for ultrasound-guided embryo transfer in an IVF programme: a prospective, randomized, controlled study. Hum Reprod 2006;21:18091815.CrossRefGoogle Scholar
Allahbadia, GN, Kadam, K, Gandhi, G, et al. Embryo transfer using the SureView catheter-beacon in the womb. Fertil Steril 2010;93:344350.CrossRefGoogle ScholarPubMed
Henne, MB, Milki, AA. Uterine position at real embryo transfer compared with mock embryo transfer. Hum Reprod 2004;19:570572.CrossRefGoogle ScholarPubMed
Yang, W-J, Lee, RK-K, Sy, J-T, et al. Uterine position change between mock and real embryo transfers. Taiwan J Obstet Gynecol 2007;46:162165.CrossRefGoogle ScholarPubMed
Shamonki, MI, Schattman, GL, Spandorfer, SD, et al. Ultrasound-guided trial transfer may be beneficial in preparation for an IVF cycle. Hum Reprod 2005;20:28442849.CrossRefGoogle ScholarPubMed
Shamonki, MI, Spandorfer, SD, Rosenwaks, Z. Ultrasound-guided embryo transfer and the accuracy of trial embryo transfer. Hum Reprod 2005;20:709716.CrossRefGoogle ScholarPubMed
Miller, KL, Frattarelli, JL. The pre-cycle blind mock embryo transfer is an inaccurate predictor of anticipated embryo transfer depth. J Assist Reprod Genet 2007;24:7782.CrossRefGoogle Scholar
Mansour, R, Aboulghar, M, Serour, G. Dummy embryo transfer: a technique that minimizes the problems of embryo transfer and improves the pregnancy rate in human in vitro fertilization. Fertil Steril 1999;54:678681.CrossRefGoogle Scholar
Sharif, K, Afnan, M, Lenton, W. Mock embryo transfer with a full bladder immediately before the real transfer for in-vitro fertilization treatment: the Birmingham experience of 113 cases. Hum Reprod 1995;10:17151718.CrossRefGoogle ScholarPubMed
Lorusso, F, Depalo, R, Bettocchi, S, et al. Outcome of in vitro fertilization after transabdominal ultrasound-assisted embryo transfer with a full or empty bladder. Fertil Steril 2005;84:10461048.CrossRefGoogle ScholarPubMed
Wisanto, A, Janssens, R, Deschacht, J, et al. Performance of different embryo transfer catheters in a human in vitro fertilization program. Fertil Steril 1989;52:7984.CrossRefGoogle Scholar
de Camargo Martins, AMV, Baruffi, RLR, Mauri, AL, et al. Ultra-sound guidance is not necessary during easy transfers. J Assist Reprod Genet 2004;21:421425.CrossRefGoogle Scholar
Lindheim, SR, Cohen, MA, Sauer, MV. Ultrasound guided embryo transfer significantly improves pregnancy rates in women undergoing oocyte donation. Int J Gynaecol Obstet 1999;66:281284.CrossRefGoogle ScholarPubMed
Revelli, A, Rovei, V, Dalmasso, P, et al. Large randomized trial comparing transabdominal ultrasound-guided embryo transfer with a technique based on uterine length measurement before embryo transfer. Ultrasound Obstet Gynecol 2016;48:289295.CrossRefGoogle ScholarPubMed
Stanziano, A, Caringella, AM, Cantatore, C, et al. Evaluation of the cervix tissue homogeneity by ultrasound elastography in infertile women for the predictor of embryo transfer ease: a diagnostic accuracy study. Reprod Biol Endocrinol 2017;15:6470.CrossRefGoogle Scholar
Nabi, A, Awonuga, A, Birch, H, et al. Multiple attempts at embryo transfer: does this affect in-vitro fertilization treatment outcome? Hum Reprod 1997;12:11881190.CrossRefGoogle ScholarPubMed
Goudas, VT, Hammitt, DG, Damario, MA, et al. Blood on the embryo transfer catheter is associated with decreased rates of embryo implantation and clinical pregnancy with the use of in vitro fertilization-embryo transfer. Fertil Steril 1998;70:878882.CrossRefGoogle ScholarPubMed
Hearns-Stokes, RM, Miller, BT, Scott, L, et al. Pregnancy rates after embryo transfer depend on the provider at embryo transfer. Fertil Steril 2000;74:8086.CrossRefGoogle ScholarPubMed
Papageorgiou, TC, Hearns-Stokes, RM, Leondires, MP, et al. Training of providers in embryo transfer: what is the minimum number of transfers required for proficiency? Hum Reprod 2001;16:14151419.CrossRefGoogle Scholar
Barber, D, Egan, D, Ross, C, et al. Nurses performing embryo transfer: successful outcome of in-vitro fertilization. Hum Reprod 1996;11:105108.CrossRefGoogle ScholarPubMed
Harris, ID, Styer, AK, Petrozza, JC. Ultrasonographer experience does not impact outcomes following ultrasound-guided embryo transfer. Fertil Steril 2009;92:918922.CrossRefGoogle Scholar
Rinaldi, L, Floccari, A, Selman, H. Ultrasound guidance of embryo transfer: A role for midwife. Sex Reprod Healthc 2014;5:4749.CrossRefGoogle ScholarPubMed
Buckett, WM. A meta-analysis of ultrasound-guided versus clinical touch embryo transfer. Fertil Steril 2003;80:10371041.CrossRefGoogle ScholarPubMed
Flisser, E, Grifo, JA. Ultrasonography and the embryo transfer. In Nezhat, C, Nezhat, F, Nezhat, CH, eds. Nezhat’s Operative Gynecologic Laparoscopy and Hysteroscopy, 3rd ed. New York: Cambridge University Press; 2008: 115128.Google Scholar
Sallam, HN, Sadek, SS. Ultrasound-guided embryo transfer: a meta-analysis of randomized controlled trials. Fertil Steril 2003;80:10421046.CrossRefGoogle ScholarPubMed
Drakeley, AJ, Jorgensen, A, Sklavounos, J, et al. A randomized controlled clinical trial of 2295 ultrasound-guided embryo transfers. Hum Reprod 2008;23:11011106.CrossRefGoogle ScholarPubMed
Yovich, JL, Turner, SR, Murphy, AJ. Embryo transfer technique as a cause of ectopic pregnancies in in vitro fertilization. Fertil Steril 1985;44:318321.CrossRefGoogle ScholarPubMed
Pope, CS, Cook, EKD, Arny, M, et al. Influence of embryo transfer depth on in vitro fertilization and embryo transfer outcomes. Fertil Steril 2004;81:5158.CrossRefGoogle ScholarPubMed
Sieck, UV, Jaroudi, KA, Hollanders, JMG. Ultrasound guided embryo transfer does not prevent ectopic pregnancies after in vitro fertilization. Hum Reprod 1997;12:20812085.CrossRefGoogle ScholarPubMed
Egbase, PE, Al-Sharhan, M, Grudzinskas, JG. Influence of position and length of uterus on implantation and clinical pregnancy rates in IVF and embryo transfer treatment cycles. Hum Reprod 2000;15:19431946.CrossRefGoogle ScholarPubMed
Nazari, A, Askari, HA, Check, JH, et al. Embryo transfer technique as a cause of ectopic pregnancy in in vitro fertilization. Fertil Steril 1993;60:919921.CrossRefGoogle ScholarPubMed
Lesny, P, Killick, SR, Robinson, J, et al. Transcervical embryo transfer as a risk factor for ectopic pregnancy. Fertil Steril 1999;72:305309.CrossRefGoogle ScholarPubMed
Weinerman, RS, Mullin, C. Use of ultrasound-guided embryo transfer (US-ET). reduces the rate of extrauterine pregnancy. Fertil Steril 2011;96:S273.CrossRefGoogle Scholar
Baba, K, Ishihara, O, Hayashi, N, et al. Where does the embryo implant after embryo transfer in humans? Fertil Steril 2000;73:123125.CrossRefGoogle ScholarPubMed
Anderson, RE, Nugent, NL, Gregg, AT, et al. Transvaginal ultrasound-guided embryo transfer improves outcome in patients with previous failed in vitro fertilization cycles. Fertil Steril 2002;77:769775.CrossRefGoogle ScholarPubMed
Bodri, D, Colodrón, M, García, D, et al. Transvaginal versus transabdominal ultrasound guidance for embryo transfer in donor oocyte recipients: a randomized clinical trial. Fertil Steril 2011;95:22632268.CrossRefGoogle ScholarPubMed
Porat, N, Boehnlein, LM, Schouweiler, CM, et al. Interim analysis of a randomized clinical trial comparing abdominal versus transvaginal ultrasound-guided embryo transfer. J Obstet Gynecol Res 2010;36:384392Google ScholarPubMed
Karavani, GK, Ben-Meir, A, Shufaro, Y, et al. Transvaginal ultrasound to guide embryo transfer: a randomized controlled trial. Fertil Steril 2017;107:11591165.CrossRefGoogle ScholarPubMed
Letterie, GS. Three-dimensional ultrasound-guided embryo transfer: a preliminary study. Am J Obstet Gynecol 2005;192:19831987.CrossRefGoogle ScholarPubMed
Fang, L, Sun, Y, Sy, Y, et al. Advantages of 3-dimensional sonography in embryo transfer. J Ultrasound Med 2009;28:573578.CrossRefGoogle ScholarPubMed
Saravelos, S, Kong, GWS, Chung, JPWC, et al. A prospective randomized controlled trial of 3D versus 2D ultrasound-guided embryo transfer in women undergoing ART treatment. Hum Reprod 2016;31:22552260.CrossRefGoogle ScholarPubMed
Gergely, RZ, DeUgarte, CM, Danzer, H, et al. Three dimensional/four dimensional ultrasound-guided embryo transfer using the maximal implantation potential point. Fertil Steril 2005;84:500503.CrossRefGoogle ScholarPubMed
Hawkins, LK, Correia, KF, Srouji, SS, et al. Uterine length and fertility outcomes: a cohort study in the IVF population. Hum Reprod 2013;28:30003006.CrossRefGoogle ScholarPubMed
Chun, SS, Chung, MJ, Chong, GO, et al. Relationship between the length of the uterine cavity and clinical pregnancy rates after in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril 2010;93:663665.CrossRefGoogle ScholarPubMed
Cenksoy, PO, Ficicioglu, C, Yesiladali, M. The importance of the length of the uterine cavity, the position of the tip of the inner catheter and the distance between the fundal endometrial surface and the air bubbles as determinants of the pregnancy rate in IVF cycles. Eur J Obstet Gynecol Reprod Biol 2014;172:4650.CrossRefGoogle ScholarPubMed
Wu, Y, Gao, X, Lu, X, et al. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration. Reprod Biol Endocrinol 2014;12:96100.CrossRefGoogle ScholarPubMed
Noyes, N, Hampton, BS, Berkeley, A, et al. Factors useful in predicting the success of oocyte donation: a 3-year retrospective analysis. Fertil Steril 2001;76:9297.CrossRefGoogle ScholarPubMed
Riberio, VC, Santos-Ribeiro, S, De Munck, N, et al. Should we continue to measure endometrial thickness in modern-day medicine? The effect on live birth rates and birth weight. Reprod Biomed Online 2018;36:416426.CrossRefGoogle Scholar
Bu, Z, Wang, K, Dai, W, et al. Endometrial thickness significantly affects clinical pregnancy and live birth rates in frozen-thawed embryo transfer cycles. Gynecol Endocrinol 2016;32:524528.CrossRefGoogle ScholarPubMed
Dain, L, Bider, D, Levron, J, et al. Thin endometrium in donor oocyte recipients: enigma or obstacle for implantation? Fertil Steril 2013;100:12891295.CrossRefGoogle ScholarPubMed
Zhang, T, Li, Z, Ren, X, et al. Endometrial thickness as a predictor or the reproductive outcomes in fresh and frozen embryo transfer cycles. Medicine 2018;97:49.Google ScholarPubMed
Sundström, P. Establishment of a successful pregnancy following in-vitro fertilization with an endometrial thickness of no more than 4 mm. Hum Reprod 1998;13:15001552.CrossRefGoogle ScholarPubMed
Oron, G, Hiersch, L, Rona, S, et al. Endometrial thickness of less than 7.5mm is associated with obstetric complications in fresh IVF cycles: a retrospective cohort study. Reprod Biomed Online 2018;37:341348.CrossRefGoogle Scholar
Chen, S-L, Wu, F-R, Luo, C, et al. Combined analysis of endometrial thickness and pattern in predicting outcome of in vitro fertilization and embryo transfer: a retrospective cohort study. Reprod Biol Endocrinol 2010;8:3036.CrossRefGoogle ScholarPubMed
Youm, HS, Choi, SY, Hyuck, DH. In vitro fertilization and embryo transfer outcomes in relation to myometrial thickness. J Assist Reprod Genet 2011;28:11351140.CrossRefGoogle ScholarPubMed
He, R-H, Gao, H-J, Li, Y-Q, et al. The associated factors to endometrial cavity fluid and the relevant impact on the IVF-ET outcome. Reprod Biol Endocrinol 2010;8:4651.CrossRefGoogle ScholarPubMed
Chien, LW, Au, HK, Xiao, J, et al. Fluid accumulation within the uterine cavity reduces pregnancy rates in women undergoing IVF. Hum Reprod 2002;17:351356.CrossRefGoogle ScholarPubMed
Koo, HS, Park, CW, Cha, SH, et al. Serial evaluation of endometrial blood flow for prediction of pregnancy outcomes in patients who underwent controlled ovarian hyperstimulation and in vitro fertilization and embryo transfer. J Ultrasound Med 2018;37:851857.CrossRefGoogle ScholarPubMed
Zhang, T, He, Y, Wang, Y, et al. The role of three-dimensional power Doppler ultrasound parameters measured on hCG day in the prediction of pregnancy during in vitro fertilization treatment. Eur J Obstet Gynecol Reprod Biol 2016;203:6671.CrossRefGoogle Scholar
Nandi, A, Martins, WP, Jayaprakasan, K, et al. Assessment of endometrial and subendometrial blood flow in women undergoing frozen embryo transfer cycles. Reprod Biomed Online 2014;28:343351.CrossRefGoogle ScholarPubMed
Ng, EHY, Chan, CCW, Tang, OS, et al. Changes in endometrial and subendometrial blood flow in IVF. Reprod Biomed Online 2009;18:269275.CrossRefGoogle ScholarPubMed
Son, JB, Jeong, JE, Joo, JK, et al. Measurement of endometrial and uterine vascularity by transvaginal ultrasonography in predicting pregnancy outcome during frozen-thawed embryo transfer cycles. J Obstet Gynaecol Res 2014;40:16611667.CrossRefGoogle ScholarPubMed
Mansour, RT, Aboulghar, MA, Serour, GI, et al. Dummy embryo transfer using methylene blue dye. Hum Reprod 1994;9:12571259.CrossRefGoogle ScholarPubMed
Krampl, E, Zegermacher, G, Eichler, C, et al. Air in the uterine cavity after embryo transfer. Fertil Steril 1995;63:366370.CrossRefGoogle ScholarPubMed
Cavagna, M, Contart, P, Petersen, CG, et al. Implantation site after embryo transfer into the central area of the uterine cavity. Reprod BioMed Online 2006;4:541546.CrossRefGoogle Scholar
Lambers, MJ, Dogan, E, Lens, JW, et al. The position of transferred air bubbles after embryo transfer is related to pregnancy rate. Fertil Steril 2007;88:6873.CrossRefGoogle ScholarPubMed
Saravelos, SH, Wong, AWY, Chan, CPS, et al. Assessment of the embryo flash position and migration with 3D ultrasound within 60 min of embryo transfer. Hum Reprod 2016;31:591596.CrossRefGoogle ScholarPubMed
Ficicioglu, C, Ozcan, P, Kocer, MG, et al. Effect of air bubble localization and migration after embryo transfer on assisted reproductive technology outcome. Fertil Steril 2018;109: 310314.CrossRefGoogle ScholarPubMed
Tiras, B, Korucuoglu, U, Polat, M, et al. Effect of air bubble localization after transfer on embryo transfer outcomes. Eur J Obstet Gynecol Reprod Biol 2012;164:5254.CrossRefGoogle ScholarPubMed
Rosenlund, B, Sjöblom, P, Hillensjö, T. Pregnancy outcome related to the site of embryo deposition in the uterus. J Assist Reprod Genet 1996;13:511513.CrossRefGoogle Scholar
Saravelos, SH, Wong, AWY, Chan, CPS, et al. How often does the embryo implant at the location to which it was transferred? Ultrasound Obstet Gynecol 2016;48:106112.CrossRefGoogle ScholarPubMed
Soares, SR, Godinho, C, Nunes, S, et al. Air bubble location inside the uterus after transfer: is the embryo really there? Fertil Steril 2008;90:443.e1718.CrossRefGoogle Scholar
Confino, E, Zhang, J, Risquez, F. Air bubble migration is a random event post embryo transfer. J Assist Reprod Genet 2007;24:223226.CrossRefGoogle ScholarPubMed
Franco, JG Jr, Martins, AM, Baruffi, RL, et al. Best site for embryo transfer: the upper or lower half of endometrial cavity? Hum Reprod 2004;19:17851790.CrossRefGoogle ScholarPubMed
Coroleu, B, Barri, PN, Carreras, O, et al. The influence of the depth of embryo replacement into the uterine cavity on implantation rates after IVF: a controlled, ultrasound-guided study. Hum Reprod 2002;17:341346.CrossRefGoogle ScholarPubMed
Prapas, Y, Prapas, N, Hatziparasidou, A, et al. Ultrasound-guided embryo transfer maximizes the IVF results on day 3 and day 4 embryo transfer but has no impact on day 5. Hum Reprod 2001;16:19041908.CrossRefGoogle ScholarPubMed
Tiras, B, Polat, M, Korucuoglu, U, et al. Impact of embryo replacement depth on in vitro fertilization and embryo transfer outcomes. Fertil Steril 2010;94:13411345.CrossRefGoogle ScholarPubMed
Frankfurter, D, Silva, CP, Mota, F, et al. The transfer point is a novel measure of embryo placement. Fertil Steril 2003;79:14161421.CrossRefGoogle ScholarPubMed
Frankfurter, D, Trimarchi, JB, Silva, CP, et al. Middle to lower uterine segment embryo transfer improves implantation and pregnancy rates compared with fundal embryo transfer. Fertil Steril 2004;81:12731277.CrossRefGoogle ScholarPubMed
Rovei, V, Dalmasso, P, Gennarelli, G, et al. IVF outcome is optimized when embryos are replaced between 5 and 15 mm from the fundal endometrial surface: a prospective analysis on 1184 IVF cycles. Reprod Biol Endocrinol 2013;11:114120.CrossRefGoogle ScholarPubMed
Knutsen, V, Stratton, CJ, Sher, G, et al. Mock embryo transfer in early luteal phase, the cycle before in vitro fertilization and embryo transfer: a descriptive study. Fertil Steril 1992;57:156162.CrossRefGoogle Scholar
Lesny, P, Killick, SR, Tetlow, RL, et al. Embryo transfer – can we learn anything new from the observation of junctional zone contractions? Hum Reprod 1998;13:15401546.CrossRefGoogle ScholarPubMed
Lesny, P, Killick, SR, Robinson, J, et al. Junctional zone contractions and embryo transfer: it is safe to use a tenaculum? Hum Reprod 1999;14:23672370.CrossRefGoogle ScholarPubMed
Fanchin, R, Righini, C, Olivennes, F, et al. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod 1998;13:19681974.CrossRefGoogle ScholarPubMed
Woolcott, R, Stanger, J. Ultrasound tracking of the movement of embryo-associated air bubbles on standing after transfer. Hum Reprod 1998;13:21072109.CrossRefGoogle ScholarPubMed
Botta, G, Grudzinskas, G. Is a prolonged bed rest following embryo transfer useful? Hum Reprod 1997;12:24892492.CrossRefGoogle ScholarPubMed
Amarin, ZO, Obeidat, BR. Bed rest versus free mobilization following embryo transfer: a prospective randomized study. Br J Obstet Gynaecol 2004;111:12731276.CrossRefGoogle Scholar
Sharif, K, Afnan, M, Lashen, H, et al. Is bed rest following embryo transfer necessary? Fertil Steril 1998;69:478481.CrossRefGoogle Scholar
Bar-Hava, I, Kerner, R, Yoeli, R, et al. Immediate ambulation after embryo transfer: a prospective study. Fertil Steril 2005;83:594597.CrossRefGoogle ScholarPubMed
Leong, M, Leung, C, Tucker, M, et al. Ultrasound-assisted embryo transfer. J In Vitro Fert Embryo Transf 1986;3:383385.CrossRefGoogle ScholarPubMed
Martínez, F, Coroleu, B, Parriego, M, et al. Ultrasound-guided embryo transfer: immediate withdrawal of the catheter versus a 30 second wait. Hum Reprod 2001;16:871874.CrossRefGoogle ScholarPubMed
Lenz, S, Leeton, J. Evaluating the possibility of uterine transfer by ultrasonically guided transabdominal puncture. J In Vitro Fert Embryo Transf 1987;4:1822.CrossRefGoogle ScholarPubMed
Parsons, JH, Bolton, VN, Wilson, L, et al. Pregnancies following in vitro fertilization and ultrasound-directed surgical embryo transfer by periurethral and transvaginal techniques. Fertil Steril 1987;48:691693.CrossRefGoogle Scholar
Kato, O, Takatska, R, Asch, RH. Transvaginal–transmyometrial embryo transfer: the Towako method; experiences of 104 cases. Fertil Steril 1993;59:5153.CrossRefGoogle ScholarPubMed
Sharif, K, Afnan, M, Lenton, W, et al. Transmyometrial embryo transfer after difficult immediate mock transcervical transfer. Fertil Steril 1996;65:10711074.CrossRefGoogle ScholarPubMed
Groutz, A, Lessing, JB, Wolf, Y, et al. Comparison of transmyometrial and transcervical embryo transfer in patients with previously failed in vitro clinical touch alone? A systemic review and meta-analysis of prospective randomized trials. Fertil Steril 2007;88:333341.Google Scholar
Antilla, L, Penttilä, T-A, Suikkari, A-M. Successful pregnancy after in-vitro fertilization and transmyometrial embryo transfer in a patient with congenital atresia of cervix. Hum Reprod 1999;14:16471649.CrossRefGoogle Scholar
Suganuma, N, Furuhashi, M, Moriwaki, T, et al. Management of missed abortion in a patient with congenital cervical atresia. Fertil Steril 2002;77:10711073.CrossRefGoogle Scholar
Xu, C, Xu, J, Gao, H, et al. Triplet pregnancy and successful twin delivery in a patient with congenital cervical atresia who underwent transmyometrial embryo transfer and multifetal pregnancy reduction. Fertil Steril 2009:91:1958.e1e3.CrossRefGoogle Scholar
Lin, T-K, Lin, Y-R, Lai, T-H, et al. Transmyometrial blastocyst transfer in a patient with congenital cervical atresia. Taiwan J Obstet Gynecol 2010;49:366369.CrossRefGoogle Scholar
Jamal, W, Phillips, SJ, Hemmings, R, et al. Successful pregnancy following novel IVF protocol and transmyometrial embryo transfer after radical vaginal trachelectomy. Reprod Biomed Online 2009;18:700703.CrossRefGoogle ScholarPubMed
Pasqualini, RS, Quintans, CJ. Clinical practice of embryo transfer. Reprod Biomed Online 2001;4:8392.CrossRefGoogle Scholar
Sharif, K, Kato, O. Technique of transmyometrial embryo transfer. Middle East Fertil Soc J 1998;3:124129.Google Scholar
Lesny, P, Killick, SR, Robinson, J, et al. Ectopic pregnancy after transmyometrial embryo transfer: case report. Fertil Steril 1999;72:357359.CrossRefGoogle ScholarPubMed
Biervliet, FP, Lesny, P, Maguiness, SD, et al. Transmyometrial embryo transfer and junctional zone contractions. Hum Reprod 2002;17:347350.CrossRefGoogle ScholarPubMed
Sohan, K, Woodward, B, Ramsewak, SS. Successful use of transrectal ultrasound for embryo transfer in obese women. J Obstet Gynaecol 2004;24:839840.CrossRefGoogle ScholarPubMed

References

Zeyneloglu, HB, Arici, A, Olive, DL. Adverse effects of hydrosalpinx on pregnancy rates after in vitro fertilization embryo transfer. Fertil Steril 1998;70:492.CrossRefGoogle ScholarPubMed
Johnson, N, van Voorst, S, Sowter, MC, et al. Surgical treatment for tubal disease in women due to undergo in vitro fertilisation. Cochrane Database Sys Rev 2010:CD002125. doi: 10.1002/14651858.CD002125.pub3CrossRefGoogle Scholar
Pandian, Z, Akande, VA, Harrild, K, et al. Surgery for tubal infertility. Cochrane Database Sys Rev 2009:CD006415. doi: 10.1002/14651858.CD006415. pub2CrossRefGoogle Scholar
Kodaman, PH, Arici, A, Seli, E. Evidence-based diagnosis and management of tubal factor infertility. Curr Opin Obstet Gynecol 2004;16:221229.CrossRefGoogle ScholarPubMed
Sabatini, L, Colin, D. The management of hydrosalpinges: tubal surgery or salpingectomy? Curr Opin Obstet Gynecol 2005;17:323328.CrossRefGoogle ScholarPubMed
Nezhat, C, Hood, J, Winer, W, et al. Videolaseroscopy and laser laparoscopy in gynaecology. Br J Hosp Med 1987;38(3):219224.Google ScholarPubMed
Hajenius, PJ, Mol, F, Mol, BW, et al. Interventions for tubal ectopic pregnancy. Cochrane Database Syst Rev 2007:CD000324. doi: 10.1002/14651858.CD000324.pub2CrossRefGoogle Scholar
Royal College of Obstetricians and Gynaecologists. Greentop Guideline No. 21. The management of tubal pregnancy. 2010. www.rcog.org.uk/womens-health/clinical-guidance/management-tubal-pregnancy-21-may-2004Google Scholar
Nehzat, C, Nehzat, F, Winer, W. Salpingectomy via laparoscopy: a new surgical approach. J Laparosc Surg 1991;1:91.Google Scholar
Fujishita, A, Masuzaki, H, Khan, KN, et al. Laparoscopic salpingostomy with or without tubal suturing and salpingectomy. Hum Reprod 2004;19:11951200.CrossRefGoogle ScholarPubMed

References

Martin, JA, Hamilton, BE, Osterman, MJ, Curtain, SC, Matthews, TJ. Births: final data for 2013. Natl Vital Stat Rep 2015;64(1):165.Google ScholarPubMed
Donnez, O, Donnez, J, Orellana, R, Dolmans, M-M. Gynecologic and obstetric outcomes after laparoscopic repair of a cesarean scar defect in a series of 38 women. Fertility Steril 2017;107:289296.CrossRefGoogle Scholar
Setubal, A, Alves, J, Osório, F, et al. Treatment for uterine isthmocele, a pouchlike defect at the site of a cesarean section scar. J Minim Invasive Gynecol 2018;25 (1):3846.CrossRefGoogle ScholarPubMed
Raimondo, G, Grifone, G, Raimondo, D, et al. Hysteroscopic treatment of symptomatic cesarean induced isthmocele: a prospective study. J Minim Invasive Gynecol 2015;22:297301.CrossRefGoogle ScholarPubMed
Osser, OV, Valentin, L. Risk factors for incomplete healing of the uterine incision after caesarean section. BJOG 2010;117:11191126.CrossRefGoogle Scholar
Bujold, E, Goyet, M, Marcoux, S, et al. The role of uterine closure in the risk of uterine rupture. Obstet Gynecol 2010;116:4350.CrossRefGoogle ScholarPubMed
Roberge, S, Chaillet, N, Boutin, A, et al. Single- versus double-layer closure of the hysterotomy incision during cesarean delivery and risk of uterine rupture. Int J Gynaecol Obstet 2011;115:510.CrossRefGoogle ScholarPubMed
Bij de Vaate, AJ, van der Voet, LF, Naji, O, et al. Prevalence, potential risk factors for development and symptoms related to the presence of uterine niches following cesarean section: systematic review. Ultrasound Obstet Gynecol 2014;43:372382.CrossRefGoogle Scholar
Seyam, E, Ibrahim, EM, Youseff, AM, Khalifa, EM, Hefty, E. Laparoscopic management of adhesions developed after peritoneal nonclosure in primary cesarean section delivery. Obstet Gynecol Int 2018;6901764.CrossRefGoogle Scholar
Marotta, M, Donnez, J, Squifflet, J, et al. Instruments and techniques laparoscopic repair of post-cesarean section uterine scar defects diagnosed in nonpregnant women. J Minim Invasive Gyn 2013;20:37.Google Scholar
Tanimura, S, Funamoto, H, Hosono, T, et al. New diagnostic criteria and operative strategy for cesarean scar syndrome: endoscopic repair for secondary infertility caused by cesarean scar defect. J Obstet Gynaecol Res 2015:41(9):13631369.CrossRefGoogle ScholarPubMed
Antila-Långsjö, RA, Mäenpää, JU, Huhtala, HS. et al. Cesarean scar defect: a prospective study on risk factors. Am J Obstet Gynecol 2018;219(5):458.e1–458.e8.CrossRefGoogle ScholarPubMed
Jacobson, MT, Osias, J, Velasco, A, Charles, R, Nezhat, C. Laparoscopic repair of uteroperitoneal fistula. JSLS 2003;7:367369.Google ScholarPubMed
Tulandi, T, Cohen, A. Emerging manifestations of cesarean scar defect in reproductive-aged women. J Minim Invasive Gynecol 2016;23(6):893902.CrossRefGoogle ScholarPubMed
Nezhat, C, Grace, LA, Razavi, GM, Mihailide, C, Bamford, H. Reverse vesicouterine fold dissection for laparoscopic hysterectomy after prior cesarean deliveries. Obstet Gynecol 2016;128(3):629633.CrossRefGoogle ScholarPubMed
Tower, AM, Frishman, GN. Cesarean scar defects: an underrecognized cause of abnormal uterine bleeding and other gynecologic complications. J Minim Invasive Gynecol 2013;20(5):562572.CrossRefGoogle ScholarPubMed
van der Voet, LF, Vervoort, AJ, Veersema, S, et al. Minimally invasive therapy for gynaecological symptoms related to a niche in the caesarean scar: a systematic review. BJOG. 2014;121(2):145156.CrossRefGoogle ScholarPubMed
Api, M, Boza, A, Gorgen, H, Api, O. Should cesarean scar defect be treated laparoscopically? a case report and review of the literature. J Minim Invasive Gynecol 2015;22(7):11451152.CrossRefGoogle ScholarPubMed
Grace, L, Nezhat, A. Should cesarean scar defect be treated laparoscopically? A case report and review of the literature. J Minim Invasive Gynecol 2016;23(5):843.CrossRefGoogle ScholarPubMed
Nezhat, C, Grace, L, Soliemannjad, R, Razavi, G, Nezhat, A. Cesarean scar defect: what is it and how should it be treated? OBG Manag 2016;28(4):3453.Google Scholar
Nezhat, C, Falik, R, Li, A. Surgical management of niche, isthmocele, uteroperitoneal fistula, or cesarean scar defect: a critical rebirth in the medical literature. Fertil Steril 2017;107(1):6971.CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.0 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book conforms to version 2.0 of the Web Content Accessibility Guidelines (WCAG), ensuring core accessibility principles are addressed and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.

Structural and Technical Features

ARIA roles provided
You gain clarity from ARIA (Accessible Rich Internet Applications) roles and attributes, as they help assistive technologies interpret how each part of the content functions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Fertility
  • Edited by Camran R. Nezhat, Stanford University School of Medicine, California, Farr R. Nezhat, Nezhat Surgery for Gynecology/Oncology, New York, Ceana Nezhat, Nezhat Medical Center, Atlanta, Nisha Lakhi, Richmond University Medical Center, New York, Azadeh Nezhat, Nezhat Institute and Center for Special Minimally Invasive and Robotic Surgery, California
  • Book: Nezhat's Textbook of Minimally Invasive Surgery
  • Online publication: 06 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781108561440.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Fertility
  • Edited by Camran R. Nezhat, Stanford University School of Medicine, California, Farr R. Nezhat, Nezhat Surgery for Gynecology/Oncology, New York, Ceana Nezhat, Nezhat Medical Center, Atlanta, Nisha Lakhi, Richmond University Medical Center, New York, Azadeh Nezhat, Nezhat Institute and Center for Special Minimally Invasive and Robotic Surgery, California
  • Book: Nezhat's Textbook of Minimally Invasive Surgery
  • Online publication: 06 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781108561440.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Fertility
  • Edited by Camran R. Nezhat, Stanford University School of Medicine, California, Farr R. Nezhat, Nezhat Surgery for Gynecology/Oncology, New York, Ceana Nezhat, Nezhat Medical Center, Atlanta, Nisha Lakhi, Richmond University Medical Center, New York, Azadeh Nezhat, Nezhat Institute and Center for Special Minimally Invasive and Robotic Surgery, California
  • Book: Nezhat's Textbook of Minimally Invasive Surgery
  • Online publication: 06 November 2025
  • Chapter DOI: https://doi.org/10.1017/9781108561440.011
Available formats
×