Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T13:10:19.505Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  07 September 2018

Clifford M. Will
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., et al. 2016a. Binary black hole mergers in the first Advanced LIGO observing run. Phys. Rev. X, 6, 041015, ArXiv e-prints 1606.04856.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., et al. 2016b. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116, 241103, ArXiv e-prints 1606.04855.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., et al. 2016c. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102, ArXiv e-prints 1602.03837.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., et al. 2016d. Tests of general relativity with GW150914. Phys. Rev. Lett., 116, 221101, ArXiv e-prints 1602.03841.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., et al. 2017a. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. Lett., 848, L13, ArXiv e-prints 1710.05834.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., et al. 2017b. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett., 118, 221101, ArXiv e-prints 1706.01812.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., et al. 2017c. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett., 119, 141101, ArXiv e-prints 1709.09660.CrossRefGoogle ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., et al. 2017d. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119, 161101, ArXiv e-prints 1710.05832.Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., et al. 2017e. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett., 848, L12, ArXiv e-prints 1710.05833.Google Scholar
Abramowicz, M. A., and Fragile, P. C. 2013. Foundations of black hole accretion disk theory. Living Rev. Relativ., 16, 1, ArXiv e-prints 1104.5499.CrossRefGoogle ScholarPubMed
Adelberger, E. G. 2001. New tests of Einstein’s equivalence principle and Newton’s inverse-square law. Class. Quantum Grav., 18, 23972405.Google Scholar
Adelberger, E. G., Heckel, B. R., Stubbs, C. W., and Rogers, W. F. 1991. Searches for new macroscopic forces. Ann. Rev. Nucl. Particle Sci., 41, 269320.Google Scholar
Adelberger, E. G., Heckel, B. R., and Nelson, A. E. 2003. Tests of the gravitational inverse-square law. Ann. Rev. Nucl. Particle Sci., 53, 77121, ArXiv e-prints hep-ph/0307284.CrossRefGoogle Scholar
Adelberger, E. G., Heckel, B. R., Hoedl, S., Hoyle, C. D., et al. 2007. Particle-physics implications of a recent test of the gravitational inverse-square law. Phys. Rev. Lett., 98, 131104, ArXiv e-prints hep-ph/0611223.Google Scholar
Agathos, M., Del Pozzo, W., Li, T. G. F., Van Den Broeck, C., et al. 2014. TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Phys. Rev. D, 89, 082001, ArXiv e-prints 1311.0420.Google Scholar
Alexander, S., and Yunes, N. 2009. Chern-Simons modified general relativity. Phys. Rep., 480, 155, ArXiv e-prints 0907.2562.Google Scholar
Ali-Haïmoud, Y., and Chen, Y. 2011. Slowly rotating stars and black holes in dynamical Chern-Simons gravity. Phys. Rev. D, 84, 124033, ArXiv e-prints 1110.5329.Google Scholar
Alsing, J., Berti, E., Will, C. M., and Zaglauer, H. 2012. Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity. Phys. Rev. D, 85, 064041, ArXiv e-prints 1112.4903.Google Scholar
Altschul, B. 2009. Bounding isotropic Lorentz violation using synchrotron losses at LEP. Phys. Rev. D, 80, 091901, ArXiv e-prints 0905.4346.CrossRefGoogle Scholar
Altschul, B., Bailey, Q. G., Blanchet, L., Bongs, K., et al. 2015. Quantum tests of the Einstein Equivalence Principle with the STE-QUEST space mission. Adv. Space Res., 55, 501524, ArXiv e-prints 1404.4307.Google Scholar
Alväger, T., Farley, F. J. M., Kjellman, J., and Wallin, L. 1964. Test of the second postulate of special relativity in the GeV region. Phys. Lett., 12, 260262.CrossRefGoogle Scholar
Alves, M. E. D. S., and Tinto, M. 2011. Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity. Phys. Rev. D, 83, 123529, ArXiv e-prints 1102.4824.Google Scholar
Amaro-Seoane, P., Aoudia, S., Babak, S., Binétruy, P., et al. 2012. Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Grav., 29, 124016, ArXiv e-prints 1202.0839.Google Scholar
Amin, M. A., Wagoner, R. V., and Blandford, R. D. 2008. A subhorizon framework for probing the relationship between the cosmological matter distribution and metric perturbations. Mon. Not. R. Astron. Soc., 390, 131142, ArXiv e-prints 0708.1793.Google Scholar
Anderson, D., and Yunes, N. 2017. Solar system constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field. Phys. Rev. D, 96, 064037, ArXiv e-prints 1705.06351.Google Scholar
Anderson, D., Yunes, N., and Barausse, E. 2016. Effect of cosmological evolution on solar system constraints and on the scalarization of neutron stars in massless scalar-tensor theories. Phys. Rev. D, 94, 104064, ArXiv e-prints 1607.08888.CrossRefGoogle Scholar
Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., et al. 1998. Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett., 81, 28582861, ArXiv e-prints gr-qc/9808081.Google Scholar
Anderson, J. L. 1987. Gravitational radiation damping in systems with compact components. Phys. Rev. D, 36, 23012313.CrossRefGoogle ScholarPubMed
Andersson, N., and Comer, G. L. 2007. Relativistic fluid dynamics: Physics for many different scales. Living Rev. Relativ., 10, 1, ArXiv e-prints gr-qc/0605010.Google Scholar
Anninos, P., Hobill, D., Seidel, E., Smarr, L., and Suen, W.-M. 1993. Collision of two black holes. Phys. Rev. Lett., 71, 28512854, ArXiv e-prints gr-qc/9309016.Google Scholar
Antia, H. M., Chitre, S. M., and Gough, D. O. 2008. Temporal variations in the Sun’s rotational kinetic energy. Astron. Astrophys., 477, 657663, ArXiv e-prints 0711.0799.Google Scholar
Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S., and Dvali, G. 1998. New dimensions at a millimeter to a fermi and superstrings at a TeV. Phys. Lett. B, 436, 257263, ArXiv e-prints hep-ph/9804398.CrossRefGoogle Scholar
Antoniadis, J., Freire, P. C. C., Wex, N., Tauris, T. M., et al. 2013. A massive pulsar in a compact relativistic binary. Science, 340, 448, ArXiv e-prints 1304.6875.CrossRefGoogle Scholar
Antonini, P., Okhapkin, M., Göklü, E., and Schiller, S. 2005. Test of constancy of speed of light with rotating cryogenic optical resonators. Phys. Rev. A, 71, 050101, ArXiv e-prints gr-qc/0504109.Google Scholar
Arkani-Hamed, N., Dimopoulos, S., and Dvali, G. 1998. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B, 429, 263272, ArXiv e-prints hep-ph/9803315.Google Scholar
Armano, M., Audley, H., Auger, G., Baird, J. T., et al. 2016. Sub-femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results. Phys. Rev. Lett., 116, 231101.CrossRefGoogle ScholarPubMed
Armstrong, J. W., Estabrook, F. B., and Tinto, M. 1999. Time-delay interferometry for space-based gravitational wave searches. Astrophys. J., 527, 814826.Google Scholar
Arnett, W. D., and Bowers, R. L. 1977. A microscopic interpretation of neutron star structure. Astrophys. J. Suppl., 33, 415.Google Scholar
Arun, K. G., and Will, C. M. 2009. Bounding the mass of the graviton with gravitational waves: Effect of higher harmonics in gravitational waveform templates. Class. Quantum Grav., 26, 155002, ArXiv e-prints 0904.1190.Google Scholar
Arun, K. G., Iyer, B. R., Qusailah, M. S. S., and Sathyaprakash, B. S. 2006a. Letter to the editor: Testing post-Newtonian theory with gravitational wave observations. Class. Quantum Grav., 23, L37L43, ArXiv e-prints gr-qc/0604018.CrossRefGoogle Scholar
Arun, K. G., Iyer, B. R., Qusailah, M. S. S., and Sathyaprakash, B. S. 2006b. Probing the nonlinear structure of general relativity with black hole binaries. Phys. Rev. D, 74, 024006, ArXiv e-prints gr-qc/0604067.CrossRefGoogle Scholar
Ashby, N. 2002. Relativity and the Global Positioning System. Physics Today, 55, 4147.Google Scholar
Ashby, N. 2003. Relativity in the Global Positioning System. Living Rev. Relativ., 6, 1.Google Scholar
Ashby, N., Bender, P. L., and Wahr, J. M. 2007. Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter. Phys. Rev. D, 75, 022001.Google Scholar
Baade, W., and Zwicky, F. 1934. On super-novae. Proc. Nat. Acad. Sci. (US), 20, 254259.Google Scholar
Babichev, E., and Langlois, D. 2009. Relativistic stars in f(R) gravity. Phys. Rev. D, 80, 121501, ArXiv e-prints 0904.1382.Google Scholar
Babichev, E., and Langlois, D. 2010. Relativistic stars in f(R) and scalar-tensor theories. Phys. Rev. D, 81, 124051, ArXiv e-prints 0911.1297.Google Scholar
Baeßler, S., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., et al. 1999. Improved test of the equivalence principle for gravitational self-energy. Phys. Rev. Lett., 83, 35853588.Google Scholar
Baierlein, R. 1967. Testing general relativity with laser ranging to the Moon. Phys. Rev., 162, 12751287.Google Scholar
Bainbridge, M. B., and Webb, J. K. 2017. Artificial intelligence applied to the automatic analysis of absorption spectra: Objective measurement of the fine structure constant. Mon. Not. R. Astron. Soc., 468, 16391670, ArXiv e-prints 1606.07393.Google Scholar
Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., et al. 2006. Gravitational-wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett., 96, 111102, ArXiv e-prints gr-qc/0511103.Google Scholar
Baker, T., Ferreira, P. G., and Skordis, C. 2013. The parameterized post-Friedmann framework for theories of modified gravity: Concepts, formalism, and examples. Phys. Rev. D, 87, 024015, ArXiv e-prints 1209.2117.Google Scholar
Balick, B., and Brown, R. L. 1974. Intense sub-arcsecond structure in the galactic center. Astrophys. J., 194, 265270.Google Scholar
Bambi, C., Giannotti, M., and Villante, F. L. 2005. Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate. Phys. Rev. D, 71, 123524, ArXiv e-prints astro-ph/0503502.CrossRefGoogle Scholar
Barausse, E., and Sotiriou, T. P. 2013a. Black holes in Lorentz-violating gravity theories. Class. Quantum Grav., 30, 244010, ArXiv e-prints 1307.3359.Google Scholar
Barausse, E., and Sotiriou, T. P. 2013b. Slowly rotating black holes in Hořava-Lifshitz gravity. Phys. Rev. D, 87, 087504, ArXiv e-prints 1212.1334.CrossRefGoogle Scholar
Barausse, E., Jacobson, T., and Sotiriou, T. P. 2011. Black holes in Einstein-Æther and Hořava-Lifshitz gravity. Phys. Rev. D, 83, 124043, ArXiv e-prints 1104.2889.CrossRefGoogle Scholar
Barausse, E., Palenzuela, C., Ponce, M., and Lehner, L. 2013. Neutron-star mergers in scalar-tensor theories of gravity. Phys. Rev. D, 87, 081506, ArXiv e-prints 1212.5053.Google Scholar
Barausse, E., Sotiriou, T. P., and Vega, I. 2016. Slowly rotating black holes in EinsteinÆther theory. Phys. Rev. D, 93, 044044, ArXiv e-prints 1512.05894.Google Scholar
Barker, B. M., and O’Connell, R. F. 1974. Nongeodesic motion in general relativity. Gen. Relativ. Gravit., 5, 539554.Google Scholar
Bartel, N., Bietenholz, M. F., Lebach, D. E., Ransom, R. R., et al. 2015. VLBI for Gravity Probe B: The guide star, IM Pegasi. Class. Quantum Grav., 32, 224021, ArXiv e-prints 1509.07529.Google Scholar
Bartlett, D. F., and van Buren, D. 1986. Equivalence of active and passive gravitational mass using the moon. Phys. Rev. Lett., 57, 2124.Google Scholar
Bauch, A., and Weyers, S. 2002. New experimental limit on the validity of local position invariance. Phys. Rev. D, 65, 081101.Google Scholar
Baumgarte, T. W., and Shapiro, S. L. 2010. Numerical Relativity: Solving Einstein’s Equations on the Computer. Cambridge: Cambridge University Press.Google Scholar
Baym, G., and Pethick, C. 1979. Physics of neutron stars. Ann. Rev. Astron. Astrophys., 17, 415443.Google Scholar
Bekenstein, J. D. 2004. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D, 70, 083509, ArXiv e-prints astro-ph/0403694.Google Scholar
Belinfante, F. J., and Swihart, J. C. 1957a. Phenomenological linear theory of gravitation: Part I. Classical mechanics. Ann. Phys. (N.Y.), 1, 168195.CrossRefGoogle Scholar
Belinfante, F. J., and Swihart, J. C. 1957b. Phenomenological linear theory of gravitation: Part II. Interaction with the maxwell field. Ann. Phys. (N.Y.), 1, 196212.Google Scholar
Belinfante, F. J., and Swihart, J. C. 1957c. Phenomenological linear theory of gravitation: Part III: Interaction with the spinning electron. Ann. Phys. (N.Y.), 2, 8199.Google Scholar
Bell, J. F., and Damour, T. 1996. A new test of conservation laws and Lorentz invariance in relativistic gravity. Class. Quantum Grav., 13, 31213127, ArXiv e-prints gr-qc/9606062.Google Scholar
Benacquista, M., and Jr. Nordtvedt, K. 1988. A many-body Lagrangian for celestial body dynamics to second post-Newtonian linear field order. Astrophys. J., 328, 588593.CrossRefGoogle Scholar
Benacquista, M. J. 1992. Second-order parametrized-post-Newtonian Lagrangian. Phys. Rev. D, 45, 11631173.Google Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., et al. 2010. BepiColombo— Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220.Google Scholar
Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., et al. 2013. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. Astrophys. J. Suppl., 208, 20, ArXiv e-prints 1212.5225.Google Scholar
Berry, C. P. L., and Gair, J. R. 2011. Linearized f(R) gravity: Gravitational radiation and solar system tests. Phys. Rev. D, 83, 104022, ArXiv e-prints 1104.0819.Google Scholar
Berti, E., Buonanno, A., and Will, C. M. 2005. Estimating spinning binary parameters and testing alternative theories of gravity with LISA. Phys. Rev. D, 71, 084025, ArXiv e-prints gr-qc/0411129.CrossRefGoogle Scholar
Berti, E., Barausse, E., Cardoso, V., Gualtieri, L., et al. 2015. Testing general relativity with present and future astrophysical observations. Class. Quantum Grav., 32, 243001, ArXiv e-prints 1501.07274.Google Scholar
Bertotti, B., Brill, D. R., and Krotkov, R. 1962. Experiments on gravitation. Pages 1–48 in Witten, L. (ed), Gravitation: An Introduction to Current Research. New York: Wiley.Google Scholar
Bertotti, B., Iess, L., and Tortora, P. 2003. A test of general relativity using radio links with the Cassini spacecraft. Nature, 425, 374376.Google Scholar
Bessel, F. 1832. Versuche über die Kraft, mit welcher die Erde Körper von verschiedener Beschaffenheit anzieht. Ann. Phys. (Leipzig), 101, 401417.Google Scholar
Bezerra, V. B., Klimchitskaya, G. L., Mostepanenko, V. M., and Romero, C. 2011. Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations. Phys. Rev. D, 83, 075004, ArXiv e-prints 1103.0993.Google Scholar
Bhat, N. D. R., Bailes, M., and Verbiest, J. P. W. 2008. Gravitational-radiation losses from the pulsar white-dwarf binary PSR J1141–6545. Phys. Rev. D, 77, 124017, ArXiv e-prints 0804.0956.Google Scholar
Bi, X.-J., Cao, Z., Li, Y., and Yuan, Q. 2009. Testing Lorentz invariance with the ultrahigh energy cosmic ray spectrum. Phys. Rev. D, 79, 083015, ArXiv e-prints 0812.0121.Google Scholar
Biller, S. D., Breslin, A. C., Buckley, J., Catanese, M., et al. 1999. Limits to quantum gravity effects on energy dependence of the speed of light from observations of TeV flares in active galaxies. Phys. Rev. Lett., 83, 21082111, ArXiv e-prints gr-qc/9810044.Google Scholar
Bize, S., Diddams, S. A., Tanaka, U., Tanner, C. E., et al. 2003. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Phys. Rev. Lett., 90, 150802, ArXiv e-prints physics/0212109.Google Scholar
Blanchet, L. 2014. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ., 17, 2, ArXiv e-prints 1310.1528.Google Scholar
Blanchet, L., and Novak, J. 2011a. External field effect of modified Newtonian dynamics in the solar system. Mon. Not. R. Astron. Soc., 412, 25302542, ArXiv e-prints 1010.1349.Google Scholar
Blanchet, L., and Novak, J. 2011b. Testing MOND in the solar system, ArXiv e-prints 1105.5815.Google Scholar
Blanchet, L., Damour, T., Iyer, B. R., Will, C. M., et al. 1995a. Gravitational-radiation damping of compact binary systems to second post-Newtonian order. Phys. Rev. Lett., 74, 35153518, ArXiv e-prints gr-qc/9501027.Google Scholar
Blanchet, L., Damour, T., and Iyer, B. R. 1995b. Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order. Phys. Rev. D, 51, 53605386, ArXiv e-prints gr-qc/9501029.Google Scholar
Blandford, R., and Teukolsky, S. A. 1976. Arrival-time analysis for a pulsar in a binary system. Astrophys. J., 205, 580591.Google Scholar
Blas, D., Pujolàs, O., and Sibiryakov, S. 2010. Consistent extension of Hořava gravity. Phys. Rev. Lett., 104, 181302, ArXiv e-prints 0909.3525.Google Scholar
Blas, D., Pujolàs, O., and Sibiryakov, S. 2011. Models of non-relativistic quantum gravity: The good, the bad and the healthy. J. High Energy Phys., 4, 18, ArXiv e-prints 1007.3503.Google Scholar
Blatt, S., Ludlow, A. D., Campbell, G. K., Thomsen, J. W., et al. 2008. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Phys. Rev. Lett., 100, 140801, ArXiv e-prints 0801.1874.Google Scholar
Blázquez-Salcedo, J. L., Cardoso, V., Ferrari, V., Gualtieri, L., et al. 2017. Black holes in Einstein-Gauss-Bonnet-dilaton theory. Pages 265–272 in New Frontiers in Black Hole Astrophysics, Proceedings of the International Astronomical Union Symposium, vol. 324.Google Scholar
Bollini, C. G., Giambiagi, J. J., and Tiomno, J. 1970. A linear theory of gravitation. Lett. Nuovo Cimento, 3, 6570.Google Scholar
Bolton, A. S., Rappaport, S., and Burles, S. 2006. Constraint on the post-Newtonian parameter γ on galactic size scales. Phys. Rev. D, 74, 061501, ArXiv e-prints astro-ph/0607657.Google Scholar
Bolton, C. T. 1972. Identification of Cygnus X-1 with HDE 226868. Nature, 235, 271273.Google Scholar
Bondi, H. 1957. Negative mass in general relativity. Rev. Mod. Phys., 29, 423428.Google Scholar
Braginsky, V. B., and Panov, V. I. 1972. Verification of the equivalence of inertial and gravitational mass. J. Exp. Theor. Phys., 34, 463.Google Scholar
Brans, C., and Dicke, R. H. 1961. Mach’s Principle and a relativistic theory of gravitation. Phys. Rev., 124, 925935.Google Scholar
Brault, J. W. 1962. The gravitational red shift in the Solar spectrum. Ph.D. thesis, Princeton University.Google Scholar
Brecher, K. 1977. Is the speed of light independent of the velocity of the source. Phys. Rev. Lett., 39, 10511054.Google Scholar
Breton, R. P., Kaspi, V. M., Kramer, M., McLaughlin, M. A., et al. 2008. Relativistic spin precession in the double pulsar. Science, 321, 104, ArXiv e-prints 0807.2644.Google Scholar
Brillet, A., and Hall, J. L. 1979. Improved laser test of the isotropy of space. Phys. Rev. Lett., 42, 549552.Google Scholar
Jr. Brune, R. A., Cobb, C. L., Dewitt, B. S., Dewitt-Morette, C., et al. 1976. Gravitational deflection of light: Solar eclipse of 30 June 1973. I. Description of procedures and final result. Astron. J., 81, 452454.Google Scholar
Brunetti, M., Coccia, E., Fafone, V., and Fucito, F. 1999. Gravitational wave radiation from compact binary systems in the Jordan-Brans-Dicke theory. Phys. Rev. D, 59, 044027, ArXiv e-prints gr-qc/9805056.Google Scholar
Bruns, D. 2018. Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse. Class. Quantum Grav., 35, 075009, ArXiv e-prints 1802.00343.Google Scholar
Buonanno, A., and Damour, T. 1999. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D, 59, 084006, ArXiv e-prints gr-qc/9811091.Google Scholar
Burgay, M. 2012. The double pulsar system in its 8th anniversary, ArXiv e-prints 1210.0985.Google Scholar
Burgay, M., D’Amico, N., Possenti, A., Manchester, R. N., et al. 2003. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 426, 531533, ArXiv e-prints astro-ph/0312071.Google Scholar
Burrage, C., and Sakstein, J. 2017. Tests of Chameleon Gravity. Living Rev. Relativ., 21, 1, ArXiv e-prints 1709.09071.Google Scholar
Campanelli, M., Lousto, C. O., Marronetti, P., and Zlochower, Y. 2006. Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett., 96, 111101, ArXiv e-prints gr-qc/0511048.Google Scholar
Caves, C. M. 1980. Gravitational radiation and the ultimate speed in Rosen’s bimetric theory of gravity. Ann. Phys. (N.Y.), 125, 3552.Google Scholar
Celotti, A., Miller, J. C., and Sciama, D. W. 1999. Astrophysical evidence for the existence of black holes. Class. Quantum Grav., 16, A3A21, ArXiv e-prints astro-ph/9912186.CrossRefGoogle Scholar
Chamberlin, S. J., and Siemens, X. 2012. Stochastic backgrounds in alternative theories of gravity: Overlap reduction functions for pulsar timing arrays. Phys. Rev. D, 85, 082001, ArXiv e-prints 1111.5661.CrossRefGoogle Scholar
Champeney, D. C., Isaak, G. R., and Khan, A. M. 1963. An “aether drift” experiment based on the Mössbauer effect. Phys. Lett., 7, 241243.Google Scholar
Chand, H., Petitjean, P., Srianand, R., and Aracil, B. 2005. Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample. Astron. Astrophys., 430, 4758, ArXiv e-prints astro-ph/0408200.Google Scholar
Chandrasekhar, S. 1965. The post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J., 142, 1488.Google Scholar
Chandrasekhar, S., and Contopoulos, G. 1967. On a post-Galilean transformation appropriate to the post-Newtonian theory of Einstein, Infeld and Hoffmann. Proc. R. Soc. A, 298, 123141.Google Scholar
Chatziioannou, K., Yunes, N., and Cornish, N. 2012. Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content. Phys. Rev. D, 86, 022004, ArXiv e-prints 1204.2585.Google Scholar
Chiaverini, J., Smullin, S. J., Geraci, A. A., Weld, D. M., et al. 2003. New experimental constraints on non-Newtonian forces below 100 μm. Phys. Rev. Lett., 90, 151101, ArXiv e-prints hep-ph/0209325.Google Scholar
Chou, C. W., Hume, D. B., Rosenband, T., and Wineland, D. J. 2010. Optical clocks and relativity. Science, 329, 16301633.Google Scholar
Christodoulou, D. M., and Kazanas, D. 2017. New bound closed orbits in spherical potentials. ArXiv e-prints, ArXiv e-prints 1707.04937.Google Scholar
Chupp, T. E., Hoare, R. J., Loveman, R. A., Oteiza, E. R., et al. 1989. Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne. Phys. Rev. Lett., 63, 15411545.Google Scholar
Ciufolini, I. 1986. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett., 56, 278281.Google Scholar
Ciufolini, I. 2000. The 1995–99 measurements of the Lense-Thirring effect using laser-ranged satellites. Class. Quantum Grav., 17, 23692380.Google Scholar
Ciufolini, I., Chieppa, F., Lucchesi, D., and Vespe, F. 1997. Test of Lense-Thirring orbital shift due to spin. Class. Quantum Grav., 14, 27012726.Google Scholar
Ciufolini, I., Pavlis, E., Chieppa, F., Fernandes-Vieira, E., et al. 1998. Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science, 279, 2100.Google Scholar
Ciufolini, I., Paolozzi, A., Pavlis, E. C., Ries, J., et al. 2011. Testing gravitational physics with satellite laser ranging. Eur. Phys. J. Plus, 126, 72.Google Scholar
Ciufolini, I., Paolozzi, A., Pavlis, E. C., Koenig, R., et al. 2016. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. C, 76, 120, ArXiv e-prints 1603.09674.Google Scholar
Clifton, T., Barrow, J. D., and Scherrer, R. J. 2005. Constraints on the variation of G from primordial nucleosynthesis. Phys. Rev. D, 71, 123526, ArXiv e-prints astro-ph/0504418.Google Scholar
Coc, A., Olive, K. A., Uzan, J.-P., and Vangioni, E. 2006. Big bang nucleosynthesis constraints on scalar-tensor theories of gravity. Phys. Rev. D, 73, 083525, ArXiv e-prints astro-ph/0601299.Google Scholar
Cocconi, G., and Salpeter, E. 1958. A search for anisotropy of inertia. Nuovo Cimento, 10, 646651.Google Scholar
Colladay, D., and Kostelecký, V. A. 1997. CPT violation and the standard model. Phys. Rev. D, 55, 67606774, ArXiv e-prints hep-ph/9703464.Google Scholar
Colladay, D., and Kostelecký, V. A. 1998. Lorentz-violating extension of the standard model. Phys. Rev. D, 58, 116002, ArXiv e-prints hep-ph/9809521.Google Scholar
Cook, G. B., Shapiro, S. L., and Teukolsky, S. A. 1994. Rapidly rotating neutron stars in general relativity: Realistic equations of state. Astrophys. J., 424, 823845.Google Scholar
Cooney, A., Dedeo, S., and Psaltis, D. 2010. Neutron stars in f(R) gravity with perturbative constraints. Phys. Rev. D, 82, 064033, ArXiv e-prints 0910.5480.Google Scholar
Copi, C. J., Davis, A. N., and Krauss, L. M. 2004. New nucleosynthesis constraint on the variation of G. Phys. Rev. Lett., 92, 171301, ArXiv e-prints astro-ph/0311334.Google Scholar
Corinaldesi, E., and Papapetrou, A. 1951. Spinning test-particles in general relativity. II. Proc. R. Soc. A, 209, 259268.Google Scholar
Creighton, J., and Anderson, W. 2011. Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis. Weinheim, Germany: Wiley-VCH.Google Scholar
Crelinsten, J. 2006. Einstein’s Jury: The Race to Test Relativity. Princeton: Princeton University Press.Google Scholar
Creminelli, P., Nicolis, A., Papucci, M., and Trincherini, E. 2005. Ghosts in massive gravity. J. High Energy Phys., 9, 003, ArXiv e-prints hep-th/0505147.Google Scholar
Cutler, C. 1998. Angular resolution of the LISA gravitational wave detector. Phys. Rev. D, 57, 70897102, ArXiv e-prints gr-qc/9703068.Google Scholar
Cutler, C., and Flanagan, É. É. 1994. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D, 49, 26582697, ArXiv e-prints gr-qc/9402014.Google Scholar
Cutler, C., Apostolatos, T. A., Bildsten, L., Finn, L. S., et al. 1993. The last three minutes -Issues in gravitational-wave measurements of coalescing compact binaries. Phys. Rev. Lett., 70, 29842987, ArXiv e-prints astro-ph/9208005.Google Scholar
Damour, T. 1987. The problem of motion in Newtonian and Einsteinian gravity. Pages 128198 in Hawking, S. W., and Israel, W. (eds), Three Hundred Years of Gravitation. New York: Cambridge University Press.Google Scholar
Damour, T., and Deruelle, N. 1986. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula. Ann. Inst. Henri Poincaré A, 44, 263292.Google Scholar
Damour, T., and Dyson, F. 1996. The Oklo bound on the time variation of the fine-structure constant revisited. Nucl. Phys. B, 480, 3754, ArXiv e-prints hep-ph/9606486.Google Scholar
Damour, T., and Esposito-Farèse, G. 1992a. Tensor-multi-scalar theories of gravitation. Class. Quantum Grav., 9, 20932176.Google Scholar
Damour, T., and Esposito-Farèse, G. 1992b. Testing local Lorentz invariance of gravity with binary-pulsar data. Phys. Rev. D, 46, 41284132.Google Scholar
Damour, T., and Esposito-Farèse, G. 1993. Nonperturbative strong-field effects in tensor-scalar theories of gravitation. Phys. Rev. Lett., 70, 22202223.Google Scholar
Damour, T., and Esposito-Farèse, G. 1996. Tensor-scalar gravity and binary-pulsar experiments. Phys. Rev. D, 54, 14741491, ArXiv e-prints gr-qc/9602056.Google Scholar
Damour, T., and Esposito-Farèse, G. 1998. Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D, 58, 042001, ArXiv e-prints gr-qc/9803031.Google Scholar
Damour, T., and Jr. Nordtvedt, K. 1993a. General relativity as a cosmological attractor of tensor-scalar theories. Phys. Rev. Lett., 70, 22172219.Google Scholar
Damour, T., and Jr. Nordtvedt, K. 1993b. Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D, 48, 34363450.Google Scholar
Damour, T., and Pichon, B. 1999. Big bang nucleosynthesis and tensor-scalar gravity. Phys. Rev. D, 59, 123502, ArXiv e-prints astro-ph/9807176.Google Scholar
Damour, T., and Polyakov, A. M. 1994. The string dilation and a least coupling principle. Nucl. Phys. B, 423, 532558, ArXiv e-prints hep-th/9401069.Google Scholar
Damour, T., and Ruffini, R. 1974. Certain new verifications of general relativity made possible by the discovery of a pulsar belonging to a binary system. C. R. Acad. Sci. Ser. A, 279, 971973.Google Scholar
Damour, T., and Schaefer, G. 1991. New tests of the Strong Equivalence Principle using binary-pulsar data. Phys. Rev. Lett., 66, 25492552.Google Scholar
Damour, T., and Taylor, J. H. 1992. Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D, 45, 18401868.Google Scholar
Damour, T., Piazza, F., and Veneziano, G. 2002a. Runaway dilaton and equivalence principle violations. Phys. Rev. Lett., 89, 081601, ArXiv e-prints gr-qc/0204094.Google Scholar
Damour, T., Piazza, F., and Veneziano, G. 2002b. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D, 66, 046007, ArXiv e-prints hep-th/0205111.Google Scholar
Daniel, S. F., Linder, E. V., Smith, T. L., Caldwell, R. R., et al. 2010. Testing general relativity with current cosmological data. Phys. Rev. D, 81, 123508, ArXiv e-prints 1002.1962.Google Scholar
De Felice, A., and Tsujikawa, S. 2010. f(R) theories. Living Rev. Relativ., 13, 3, ArXiv e-prints 1002.4928.Google Scholar
de Rham, C. 2014. Massive gravity. Living Rev. Relativ., 17, 7, ArXiv e-prints 1401.4173.Google Scholar
de Sitter, W. 1916. On Einstein’s theory of gravitation and its astronomical consequences. Second paper. Mon. Not. R. Astron. Soc., 77, 155184.Google Scholar
D’Eath, P. D. 1975. Interaction of two black holes in the slow-motion limit. Phys. Rev. D, 12, 21832199.Google Scholar
Deffayet, C., Dvali, G., Gabadadze, G., and Vainshtein, A. 2002. Nonperturbative continuity in graviton mass versus perturbative discontinuity. Phys. Rev. D, 65, 044026, ArXiv e-prints hep-th/0106001.Google Scholar
Deller, A. T., Verbiest, J. P. W., Tingay, S. J., and Bailes, M. 2008. Extremely high precision VLBI astrometry of PSR J0437–4715 and implications for theories of gravity. Astrophys. J. Lett., 685, L67L70, ArXiv e-prints 0808.1594.Google Scholar
Delva, P., Hees, A., Bertone, S., Richard, E., et al. 2015. Test of the gravitational redshift with stable clocks in eccentric orbits: Application to Galileo satellites 5 and 6. Class. Quantum Grav., 32, 232003, ArXiv e-prints 1508.06159.Google Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., et al. 2010. A two-solar-mass neutron star measured using Shapiro delay. Nature, 467, 10811083, ArXiv e-prints 1010.5788.Google Scholar
Deser, S. 1970. Self-interaction and gauge invariance. Gen. Relativ. Gravit., 1, 918, ArXiv e-prints gr-qc/0411023.Google Scholar
Deser, S., and Laurent, B. E. 1968. Gravitation without self-interaction. Ann. Phys. (N.Y.), 50, 76101.Google Scholar
Dicke, R. H. 1964. Experimental relativity. In: DeWitt, C., and DeWitt, B. (eds), Relativity, Groups and Topology. New York: Gordon and Breach.Google Scholar
Dicke, R. H. 1964. Remarks on the observational basis of general relativity. Pages 116 in Chiu, H.-Y., and Hoffman, W. F. (eds), Gravitation and Relativity. NewYork: Benjamin.Google Scholar
Dicke, R. H. 1969. Gravitation and the Universe. Philadelphia: American Philosophical Society.Google Scholar
Dicke, R. H., and Goldenberg, H. M. 1974. The oblateness of the Sun. Astrophys. J. Suppl., 27, 131.Google Scholar
Dickey, J. O., Bender, P. L., Faller, J. E., Newhall, X X, et al. 1994. Lunar laser ranging: A continuing legacy of the Apollo Program. Science, 265, 482490.Google Scholar
Dixon, W. G. 1979. Extended bodies in general relativity: Their description and motion. Pages 156219 in Ehlers, J. (ed), Isolated Gravitating Systems in General Relativity. Amsterdam: North-Holland.Google Scholar
Doeleman, S., Agol, E., Backer, D., Baganoff, F., et al. 2009. Imaging an event horizon: Submm-VLBI of a supermassive black hole. Page 68 in Astro2010: The Astronomy and Astrophysics Decadal Survey. Washington, DC: National Academy Press.Google Scholar
Doser, M., Amsler, C., Belov, A., Bonomi, G., et al. 2012. Exploring the WEP with a pulsed cold beam of antihydrogen. Class. Quantum Grav., 29, 184009.Google Scholar
Dossett, J. N., and Ishak, M. 2012. Spatial curvature and cosmological tests of general relativity. Phys. Rev. D, 86, 103008, ArXiv e-prints 1205.2422.Google Scholar
Dossett, J. N., Ishak, M., and Moldenhauer, J. 2011. Testing general relativity at cosmological scales: Implementation and parameter correlations. Phys. Rev. D, 84, 123001, ArXiv e-prints 1109.4583.Google Scholar
Drever, R. W. P. 1961. A search for anisotropy of inertial mass using a free precession technique. Philos. Mag., 6, 683687.Google Scholar
Droste, J. 1917. The field of N moving centres in Einstein’s theory of gravitation. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 19, 447455.Google Scholar
Dyda, S., Flanagan, É. É., and Kamionkowski, M. 2012. Vacuum instability in Chern-Simons gravity. Phys. Rev. D, 86, 124031, ArXiv e-prints 1208.4871.Google Scholar
Dyson, F. J. 1972. The fundamental constants and their time variation. Pages 213236 in Salam, A., and Wigner, E. P. (eds), Aspects of Quantum Theory. Cambridge: Cambridge University Press.Google Scholar
Dyson, F. W., Eddington, A. S., and Davidson, C. 1920. A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Phil. Trans. R. Soc. A, 220, 291333Google Scholar
Eardley, D. M. 1975. Observable effects of a scalar gravitational field in a binary pulsar. Astrophys. J. Lett., 196, L59L62.Google Scholar
Eardley, D. M., Lee, D. L., Lightman, A. P., Wagoner, R. V., et al. 1973a. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. Lett., 30, 884886.Google Scholar
Eardley, D. M., Lee, D. L., and Lightman, A. P. 1973b. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. D, 8, 33083321.Google Scholar
Earman, J., and Glymour, C. 1980. Relativity and eclipses: The British eclipse expeditions of 1919 and their predecessors. Historical Studies in the Physical Sciences, 11, 4985.Google Scholar
Eckart, A., and Genzel, R. 1996. Observations of stellar proper motions near the galactic centre. Nature, 383, 415417.Google Scholar
Eddington, A. S. 1922. The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.Google Scholar
Eddington, A. S. 1922. The propagation of gravitational waves. Proc. R. Soc. A, 102, 268282.Google Scholar
Eddington, A. S., and Clark, G. L. 1938. The problem of N bodies in general relativity theory. Proc. R. Soc. A, 166, 465475.Google Scholar
Ehlers, J. 1971. General relativity and kinetic theory. Pages 170 in Sachs, R. K. (ed), General Relativity and Cosmology: Proceedings of Course 47 of the International School of Physics “Enrico Fermi”. New York: Academic Press.Google Scholar
Ehlers, J., Rosenblum, A., Goldberg, J. N., and Havas, P. 1976. Comments on gravitational radiation damping and energy loss in binary systems. Astrophys. J. Lett., 208, L77L81.Google Scholar
Einstein, A. 1908. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411 – 62.Google Scholar
Einstein, A. 1916. Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 688–696.Google Scholar
Einstein, A. 1918. Über Gravitationswellen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), Seite 154–167., 154–167.Google Scholar
Einstein, A., and Rosen, N. 1937. On gravitational waves. J. Franklin Inst., 223, 4354.Google Scholar
Einstein, A., Infeld, L., and Hoffmann, B. 1938. The gravitational equations and the problem of motion. Ann. Math., 39, 65100.Google Scholar
Eisenstaedt, J. 2006. The Curious History of Relativity: How Einstein’s Theory Was Lost and Found Again. Princeton: Princeton University Press.Google Scholar
Eling, C., and Jacobson, T. 2004. Static post-Newtonian equivalence of general relativity and gravity with a dynamical preferred frame. Phys. Rev. D, 69, 064005, ArXiv e-prints gr-qc/0310044.Google Scholar
Eling, C., and Jacobson, T. 2006. Spherical solutions in Einstein-Æther theory: Static Æther and stars. Class. Quantum Grav., 23, 56255642, ArXiv e-prints gr-qc/0603058.Google Scholar
Eling, C., Jacobson, T., and Miller, M. C. 2007. Neutron stars in Einstein-Æther theory. Phys. Rev. D, 76, 042003, ArXiv e-prints 0705.1565.Google Scholar
Elliott, J. W., Moore, G. D., and Stoica, H. 2005. Constraining the new aether: Gravitational Čerenkov radiation. Journal of High Energy Physics, 8, 066, ArXiv e-prints hep-ph/0505211.Google Scholar
Eötvös, R. V., Pekár, D., and Fekete, E. 1922. Beiträge zum Gesetze der Proportionalität von Trägheit und Gravität. Ann. Phys. (Leipzig), 373, 1166.Google Scholar
Epstein, R. 1977. The binary pulsar—Post-Newtonian timing effects. Astrophys. J., 216, 92100.Google Scholar
Epstein, R., and Shapiro, I. I. 1980. Post-post-Newtonian deflection of light by the Sun. Phys. Rev. D, 22, 29472949.Google Scholar
Epstein, R., and Wagoner, R. V. 1975. Post-Newtonian generation of gravitational waves. Astrophys. J., 197, 717723.Google Scholar
Everitt, C. W. F., Debra, D. B., Parkinson, B. W., Turneaure, J. P., and et al. 2011. Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett., 106, 221101, ArXiv e-prints 1105.3456.Google Scholar
Everitt, C. W. F., Muhlfelder, B., DeBra, D. B., Parkinson, B. W., et al. 2015. The Gravity Probe B test of general relativity. Class. Quantum Grav., 32, 224001.Google Scholar
Faber, J. A., and Rasio, F. A. 2012. Binary neutron star mergers. Living Rev. Relativ., 15, 8, ArXiv e-prints 1204.3858.Google Scholar
Famaey, B., and McGaugh, S. S. 2012. Modified Newtonian Dynamics (MOND): Observational phenomenology and relativistic extensions. Living Rev. Relativ., 15, ArXiv e-prints 1112.3960.Google Scholar
Farley, F. J. M., Bailey, J., Brown, R. C. A., Giesch, M., et al. 1966. The anomalous magnetic moment of the negative muon. Nuovo Cimento A, 45, 281286.Google Scholar
Fienga, A., Laskar, J., Kuchynka, P., Manche, H., et al. 2011. The INPOP10a planetary ephemeris and its applications in fundamental physics. Cel. Mech. Dyn. Astron., 111, 363385, ArXiv e-prints 1108.5546.Google Scholar
Fienga, A., Laskar, J., Exertier, P., Manche, H., et al. 2015. Numerical estimation of the sensitivity of INPOP planetary ephemerides to general relativity parameters. Cel. Mech. Dyn. Astron., 123, 325349.Google Scholar
Finkelstein, D. 1958. Past-future asymmetry of the gravitational field of a point particle. Phys. Rev., 110, 965967.Google Scholar
Finn, L. S., and Chernoff, D. F. 1993. Observing binary inspiral in gravitational radiation: One interferometer. Phys. Rev. D, 47, 21982219, ArXiv e-prints gr-qc/9301003.Google Scholar
Fischbach, E., and Freeman, B. S. 1980. Second-order contribution to the gravitational deflection of light. Phys. Rev. D, 22, 29502952.Google Scholar
Fischbach, E., and Talmadge, C. 1992. Six years of the fifth force. Nature, 356, 207215.Google Scholar
Fischbach, E., and Talmadge, C. L. 1999. The Search for Non-Newtonian Gravity. New York: Springer-Verlag.Google Scholar
Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., et al. 1986. Reanalysis of the Eötvös experiment. Phys. Rev. Lett., 56, 36.Google Scholar
Fischbach, E., Gillies, G. T., Krause, D. E., Schwan, J. G., et al. 1992. Non-Newtonian gravity and new weak forces: An index of measurements and theory. Metrologia, 29, 213260.Google Scholar
Fischer, M., Kolachevsky, N., Zimmermann, M., Holzwarth, R., et al. 2004. New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett., 92, 230802, ArXiv e-prints physics/0312086.Google Scholar
Fock, V. A. 1964. The Theory of Space, Time and Gravitation. New York: Macmillan.Google Scholar
Foffa, S., and Sturani, R. 2014. Effective field theory methods to model compact binaries. Class. Quantum Grav., 31, 043001, ArXiv e-prints 1309.3474.Google Scholar
Fomalont, E. B., Kopeikin, S. M., Lanyi, G., and Benson, J. 2009. Progress in measurements of the gravitational bending of radio waves using the VLBA. Astrophys. J., 699, 13951402, ArXiv e-prints 0904.3992.Google Scholar
Foster, B. Z. 2007. Strong field effects on binary systems in Einstein-Æther theory. Phys. Rev. D, 76, 084033, ArXiv e-prints 0706.0704.Google Scholar
Foster, B. Z., and Jacobson, T. 2006. Post-Newtonian parameters and constraints on Einstein-Æther theory. Phys. Rev. D, 73, 064015, ArXiv e-prints gr-qc/0509083.Google Scholar
Fragile, P. C., and Mathews, G. J. 2000. Reconstruction of stellar orbits close to Sagittarius A*: Possibilities for testing general relativity. Astrophys. J., 542, 328333, ArXiv e-prints astro-ph/9904177.Google Scholar
Freire, P. C. C., Kramer, M., and Wex, N. 2012. Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quantum Grav., 29, 184007, ArXiv e-prints 1205.3751.Google Scholar
Freire, P. C. C., Wex, N., Esposito-Farèse, G., Verbiest, J. P. W., et al. 2012. The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity. Mon. Not. R. Astron. Soc., 423, 33283343, ArXiv e-prints 1205.1450.Google Scholar
Froeschlé, M., Mignard, F., and Arenou, F. 1997. Determination of the PPN parameter γ with the Hipparcos data. Pages 4952 in Bonnet, R. M., Høg, E., Bernacca, P. L., Emiliani, L., et al. (ed), Proceedings of the Hipparcos Venice Symposium, vol. 402. Noordwijk, Netherlands: ESA.Google Scholar
Fujii, Y. 2004. Oklo constraint on the time-variability of the fine-structure constant. Pages 167185 in Karshenboim, S. G., and Peik, E. (eds), Astrophysics, Clocks and Fundamental Constants. Lecture Notes in Physics, Berlin Springer Verlag, vol. 648.Google Scholar
Fujii, Y., and Maeda, K.-I. 2007. The Scalar-Tensor Theory of Gravitation. Cambridge: Cambridge University Press.Google Scholar
Gabriel, M. D., and Haugan, M. P. 1990. Testing the Einstein Equivalence Principle: Atomic clocks and Local Lorentz Invariance. Phys. Rev. D, 41, 29432955.Google Scholar
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., Brown, A. G. A., et al. 2016. The Gaia mission. Astron. Astrophys., 595, A1, ArXiv e-prints 1609.04153.Google Scholar
Gasperini, M. 1999. On the response of gravitational antennas to dilatonic waves. Phys. Lett. B, 470, 6772, ArXiv e-prints gr-qc/9910019.Google Scholar
Genzel, R., Eisenhauer, F., and Gillessen, S. 2010. The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys., 82, 31213195, ArXiv e-prints 1006.0064.Google Scholar
Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J., et al. 2008. Improved constraints on non-Newtonian forces at 10 microns. Phys. Rev. D, 78, 022002, ArXiv e-prints 0802.2350.Google Scholar
Ghez, A. M., Klein, B. L., Morris, M., and Becklin, E. E. 1998. High proper-motion stars in the vicinity of Sagittarius A*: Evidence for a supermassive black hole at the center of our galaxy. Astrophys. J., 509, 678686, ArXiv e-prints astro-ph/9807210.Google Scholar
Ghez, A. M., Duchêne, G., Matthews, K., Hornstein, S. D., et al. 2003. The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: A paradox of youth. Astrophys. J. Lett., 586, L127L131, ArXiv e-prints astro-ph/0302299.Google Scholar
Giannios, D. 2005. Spherically symmetric, static spacetimes in a tensor-vector-scalar theory. Phys. Rev. D, 71, 103511, ArXiv e-prints gr-qc/0502122.Google Scholar
Gibbons, G., and Will, C. M. 2008. On the multiple deaths of Whitehead’s theory of gravity. Studies Hist. Philos. Mod. Phys., 39, 4161, ArXiv e-prints gr-qc/0611006.Google Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., et al. 2009. Monitoring stellar orbits around the massive black hole in the galactic center. Astrophys. J., 692, 10751109, ArXiv e-prints 0810.4674.Google Scholar
Gleiser, R. J., and Kozameh, C. N. 2001. Astrophysical limits on quantum gravity motivated birefringence. Phys. Rev. D, 64, 083007, ArXiv e-prints gr-qc/0102093.Google Scholar
Godone, A., Novero, C., and Tavella, P. 1995. Null gravitational redshift experiment with nonidentical atomic clocks. Phys. Rev. D, 51, 319323.Google Scholar
Goldberger, W. D., and Rothstein, I. Z. 2006. Effective field theory of gravity for extended objects. Phys. Rev. D, 73, 104029, ArXiv e-prints hep-th/0409156.Google Scholar
Goldhaber, A. S., and Nieto, M. M. 1974. Mass of the graviton. Phys. Rev. D, 9, 11191121.Google Scholar
Gonzalez, M. E., Stairs, I. H., Ferdman, R. D., Freire, P. C. C., et al. 2011. High-precision timing of five millisecond pulsars: Space velocities, binary evolution, and equivalence principles. Astrophys. J., 743, 102, ArXiv e-prints 1109.5638.Google Scholar
Gralla, S. E. 2010. Motion of small bodies in classical field theory. Phys. Rev. D, 81, 084060, ArXiv e-prints 1002.5045.Google Scholar
Gralla, S. E. 2013. Mass, charge, and motion in covariant gravity theories. Phys. Rev. D, 87, 104020, ArXiv e-prints 1303.0269.Google Scholar
GRAVITY Collaboration, Abuter, R., Accardo, M., Amorim, A., et al. 2017. First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astron. Astrophys., 602, A94, ArXiv e-prints 1705.02345.Google Scholar
Greenstein, J. L., and Matthews, T. A. 1963. Redshift of the radio source 3C 48. Astron. J., 68, 279.Google Scholar
Grieb, J. N., Sánchez, A. G., Salazar-Albornoz, S., Scoccimarro, R., et al. 2017. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample. Mon. Not. R. Astron. Soc., 467, 20852112, ArXiv e-prints 1607.03143.Google Scholar
Guéna, J., Abgrall, M., Rovera, D., Rosenbusch, P., et al. 2012. Improved tests of Local Position Invariance using 87Rb and 133Cs fountains. Phys. Rev. Lett., 109, 080801, ArXiv e-prints 1205.4235.Google Scholar
Guenther, D. B., Krauss, L. M., and Demarque, P. 1998. Testing the constancy of the gravitational constant using helioseismology. Astrophys. J., 498, 871876.Google Scholar
Hafele, J. C., and Keating, R. E. 1972a. Around-the-world atomic clocks: Observed relativistic time gains. Science, 177, 168170.Google Scholar
Hafele, J. C., and Keating, R. E. 1972b. Around-the-world atomic clocks: Predicted relativistic time gains. Science, 177, 166168.Google Scholar
Hahn, S. G., and Lindquist, R. W. 1964. The two-body problem in geometrodynamics. Ann. Phys. (N.Y.), 29, 304331.Google Scholar
Hare, M. G. 1973. Mass of the graviton. Can. J. Phys., 51, 431.Google Scholar
Harvey, G. M. 1979. Gravitational deflection of light. The Observatory, 99, 195198.Google Scholar
Haugan, M. P. 1978. Foundations of gravitation theory: The principle of equivalence. Ph.D. thesis, Stanford Univ., CA.Google Scholar
Haugan, M. P. 1979. Energy conservation and the principle of equivalence. Ann. Phys. (N.Y.), 118, 156186.Google Scholar
Haugan, M. P. 1985. Post-Newtonian arrival-time analysis for a pulsar in a binary system. Astrophys. J., 296, 112.Google Scholar
Haugan, M. P., and Will, C. M. 1976. Weak interactions and Eötvös experiments. Phys. Rev. Lett., 37, 14.Google Scholar
Haugan, M. P., and Will, C. M. 1977. Principles of equivalence, Eötvös experiments, and gravitational redshift experiments—The free fall of electromagnetic systems to post-post-Coulombian order. Phys. Rev. D, 15, 27112720.Google Scholar
Haugan, M. P., and Will, C. M. 1987. Modern tests of special relativity. Phys. Today, 40, 6986.Google Scholar
Havas, P. 1989. The early history of the “problem of motion” in general relativity. Pages 234276 in Howard, D., and Stachel, J. (eds), Einstein and the History of General Relativity. Birkhäuser.Google Scholar
Hawking, S. W. 1972. Black holes in the Brans-Dicke theory of gravitation. Commun. Math. Phys., 25, 167171.Google Scholar
Hees, A., Folkner, W. M., Jacobson, R. A., and Park, R. S. 2014. Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D, 89, 102002, ArXiv e-prints 1402.6950.Google Scholar
Hees, A., Do, T., Ghez, A. M., Martinez, G. D., et al. 2017. Testing general relativity with stellar orbits around the supermassive black hole in our galactic center. Phys. Rev. Lett., 118, 211101, ArXiv e-prints 1705.07902.Google Scholar
Helbig, T. 1991. Gravitational effects of light scalar particles. Astrophys. J., 382, 223232.Google Scholar
Hellings, R. W., and Jr. Nordtvedt, K. 1973. Vector-metric theory of gravity. Phys. Rev. D, 7, 35933602.Google Scholar
Herrmann, S., Dittus, H., Lämmerzahl, C., and the QUANTUS and PRIMUS Teams. 2012. Testing the equivalence principle with atomic interferometry. Class. Quantum Grav., 29, 184003.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., et al. 1968. Observation of a rapidly pulsating radio source. Nature, 217, 709713.Google Scholar
Hiida, K., and Yamaguchi, Y. 1965. Gravitation physics. Prog. Theor. Phys. Suppl., 65, 261297.Google Scholar
Hillebrandt, W., and Heintzmann, H. 1974. Neutron stars and incompressible fluid spheres in the Jordan-Brans-Dicke theory of gravitation. Gen. Relativ. Gravit., 5, 663672.Google Scholar
Hinterbichler, K. 2012. Theoretical aspects of massive gravity. Rev. Mod. Phys., 84, 671710, ArXiv e-prints 1105.3735.Google Scholar
Hofmann, F., Müller, J., and Biskupek, L. 2010. Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. Astron. Astrophys., 522, L5.Google Scholar
Hojjati, A., Zhao, G.-B., Pogosian, L., Silvestri, A., et al. 2012. Cosmological tests of general relativity: A principal component analysis. Phys. Rev. D, 85, 043508, ArXiv e-prints 1111.3960.Google Scholar
Horbatsch, M. W., and Burgess, C. P. 2011. Semi-analytic stellar structure in scalar-tensor gravity. J. Cosmol. Astropart. Phys., 8, 027, ArXiv e-prints 1006.4411.Google Scholar
Hořava, P. 2009. Quantum gravity at a Lifshitz point. Phys. Rev. D, 79, 084008, ArXiv e-prints 0901.3775.Google Scholar
Hoyle, C. D., Schmidt, U., Heckel, B. R., Adelberger, E. G., et al. 2001. Submillimeter test of the gravitational inverse-square law: A search for “large” extra dimensions. Phys. Rev. Lett., 86, 14181421, ArXiv e-prints hep-ph/0011014.Google Scholar
Hoyle, C. D., Kapner, D. J., Heckel, B. R., Adelberger, E. G., et al. 2004. Submillimeter tests of the gravitational inverse-square law. Phys. Rev. D, 70, 042004, ArXiv e-prints hep-ph/0405262.Google Scholar
Hughes, V. W., Robinson, H. G., and Beltran-Lopez, V. 1960. Upper limit for the anisotropy of inertial mass from nuclear resonance experiments. Phys. Rev. Lett., 4, 342344.Google Scholar
Hulse, R. A., and Taylor, J. H. 1975. Discovery of a pulsar in a binary system. Astrophys. J. Lett., 195, L51L53.Google Scholar
Imperi, L., and Iess, L. 2017. The determination of the post-Newtonian parameter γ during the cruise phase of BepiColombo. Class. Quantum Grav., 34, 075002.Google Scholar
Ishak, M. 2018. Testing general relativity on cosmological scales. Living Rev. Relativ., to be published.Google Scholar
Israel, W. 1987. Dark stars: The evolution of an idea. Pages 199276 in Hawking, S. W., and Israel, W. (eds), Three Hundred Years of Gravitation. Cambridge: Cambridge University Press.Google Scholar
Itoh, Y., Futamase, T., and Asada, H. 2000. Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian order, and multipole terms. Phys. Rev. D, 62, 064002, ArXiv e-prints gr-qc/9910052.Google Scholar
Ives, H. E., and Stilwell, G. R. 1938. An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am., 28, 215.Google Scholar
Jackiw, R., and Pi, S.-Y. 2003. Chern-Simons modification of general relativity. Phys. Rev. D, 68, 104012, ArXiv e-prints gr-qc/0308071.Google Scholar
Jacobson, T. 2014. Undoing the twist: The Hořava limit of Einstein-Æther theory. Phys. Rev. D, 89, 081501, ArXiv e-prints 1310.5115.Google Scholar
Jacobson, T., and Mattingly, D. 2001. Gravity with a dynamical preferred frame. Phys. Rev. D, 64, 024028, ArXiv e-prints gr-qc/0007031.Google Scholar
Jacobson, T., and Mattingly, D. 2004. Einstein-Æther waves. Phys. Rev. D, 70, 024003, ArXiv e-prints gr-qc/0402005.Google Scholar
Jaime, L. G., Patiño, L., and Salgado, M. 2011. Robust approach to f(R) gravity. Phys. Rev. D, 83, 024039, ArXiv e-prints 1006.5747.Google Scholar
Jaroszynski, M. 1998. Relativistic effects in proper motions of stars surrounding the galactic center. Acta Astron., 48, 653665, ArXiv e-prints astro-ph/9812314.Google Scholar
Jaseja, T. S., Javan, A., Murray, J., and Townes, C. H. 1964. Test of special relativity or of the isotropy of space by use of infrared masers. Phys. Rev., 133, 12211225.Google Scholar
Johannsen, T. 2016. Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. Class. Quantum Grav., 33, 124001, ArXiv e-prints 1602.07694.Google Scholar
Johannsen, T., Wang, C., Broderick, A. E., Doeleman, S. S., et al. 2016a. Testing general relativity with accretion-flow imaging of SgrA . Phys. Rev. Lett., 117, 091101, ArXiv e-prints 1608.03593.Google Scholar
Johannsen, T., Broderick, A. E., Plewa, P. M., Chatzopoulos, S., et al. 2016b. Testing general relativity with the shadow size of SgrA . Phys. Rev. Lett., 116, 031101, ArXiv e-prints 1512.02640.Google Scholar
Jones, B. F. 1976. Gravitational deflection of light: Solar eclipse of 30 June 1973. II. Plate reductions. Astron. J., 81, 455463.Google Scholar
Kanekar, N., Langston, G. I., Stocke, J. T., Carilli, C. L., et al. 2012. Constraining fundamental constant evolution with H I and OH lines. Astrophys. J. Lett., 746, L16L20, ArXiv e-prints 1201.3372.Google Scholar
Kapner, D. J., Cook, T. S., Adelberger, E. G., Gundlach, J. H., et al. 2007. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett., 98, 021101, ArXiv e-prints hep-ph/0611184.Google Scholar
Kates, R. E. 1980. Motion of a small body through an external field in general relativity calculated by matched asymptotic expansions. Phys. Rev. D, 22, 18531870.Google Scholar
Katz, J. I. 1999. Comment on “Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration.” Phys. Rev. Lett., 83, 1892, ArXiv e-prints gr-qc/9809070.Google Scholar
Kennefick, D. 2005. Einstein versus the Physical Review. Phys. Today, 58, 43.Google Scholar
Kennefick, D. 2007. Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves. Princeton; Woodstock, UK: Princeton University Press.Google Scholar
Kennefick, D. 2009. Testing relativity from the 1919 eclipse – A question of bias. Phys. Today, 62, 37.Google Scholar
Kerr, R. P. 1963. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett., 11, 237238.Google Scholar
Khoury, J., and Weltman, A. 2004. Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett., 93, 171104, ArXiv e-prints astro-ph/0309300.Google Scholar
Kidder, L. E. 1995. Coalescing binary systems of compact objects to (post)5/2 -Newtonian order. V. Spin effects. Phys. Rev. D, 52, 821847, ArXiv e-prints gr-qc/9506022.Google Scholar
Kidder, L. E., Will, C. M., and Wiseman, A. G. 1993. Spin effects in the inspiral of coalescing compact binaries. Phys. Rev. D, 47, R4183R4187, ArXiv e-prints gr-qc/9211025.Google Scholar
King, J. A., Webb, J. K., Murphy, M. T., Flambaum, V. V., et al. 2012. Spatial variation in the fine-structure constant: New results from VLT/UVES. Mon. Not. R. Astron. Soc., 422, 33703414, ArXiv e-prints 1202.4758.Google Scholar
Kleihaus, B., Kunz, J., and Radu, E. 2011. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory. Phys. Rev. Lett., 106, 151104, ArXiv e-prints 1101.2868.Google Scholar
Klimchitskaya, G. L., Mohideen, U., and Mostepanenko, V. M. 2013. Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces. Phys. Rev. D, 87, 125031, ArXiv e-prints 1306.4979.Google Scholar
Klinkhamer, F. R., and Risse, M. 2008. Addendum: Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory. Phys. Rev. D, 77, 117901, ArXiv e-prints 0806.4351.Google Scholar
Klinkhamer, F. R., and Schreck, M. 2008. New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory. Phys. Rev. D, 78, 085026, ArXiv e-prints 0809.3217.Google Scholar
Kobayashi, T., and Maeda, K.-I. 2008. Relativistic stars in f(R) gravity, and absence thereof. Phys. Rev. D, 78, 064019, ArXiv e-prints 0807.2503.Google Scholar
Konno, K., Matsuyama, T., and Tanda, S. 2009. Rotating black hole in extended Chern-Simons modified gravity. Prog. Theor. Phys., 122, 561568, ArXiv e-prints 0902.4767.Google Scholar
Konopliv, A. S., Asmar, S. W., Folkner, W. M., Karatekin, Ö., et al. 2011. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus, 211, 401428.Google Scholar
Kormendy, J., and Richstone, D. 1995. Inward bound—The search for supermassive black holes in galactic nuclei. Ann. Rev. Astron. Astrophys., 33, 581.Google Scholar
Kostelecký, V. A., and Mewes, M. 2002. Signals for Lorentz violation in electrodynamics. Phys. Rev. D, 66, 056005, ArXiv e-prints hep-ph/0205211.Google Scholar
Kostelecký, V. A., and Russell, N. 2011. Data tables for Lorentz and CPT violation. Rev. Mod. Phys., 83, 1132, ArXiv e-prints 0801.0287.Google Scholar
Kostelecký, V. A., and Samuel, S. 1989. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D, 40, 18861903.Google Scholar
Kramer, M. 1998. Determination of the geometry of the PSR B1913+16 system by geodetic precession. Astrophys. J., 509, 856860, ArXiv e-prints astro-ph/9808127.Google Scholar
Kramer, M., Stairs, I. H., Manchester, R. N., McLaughlin, M. A., et al. 2006. Tests of general relativity from timing the double pulsar. Science, 314, 97102, ArXiv e-prints arXiv:astro-ph/0609417.Google Scholar
Kraniotis, G. V. 2007. Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr de Sitter black hole spacetimes. Class. Quantum Grav., 24, 17751808, ArXiv e-prints gr-qc/0602056.Google Scholar
Kreuzer, L. B. 1968. Experimental measurement of the equivalence of active and passive gravitational mass. Phys. Rev., 169, 10071012.Google Scholar
Krisher, T. P., Anderson, J. D., and Campbell, J. K. 1990a. Test of the gravitational redshift effect at Saturn. Phys. Rev. Lett., 64, 13221325.Google Scholar
Krisher, T. P., Maleki, L., Lutes, G. F., Primas, L. E., et al. 1990b. Test of the isotropy of the one-way speed of light using hydrogen-maser frequency standards. Phys. Rev. D, 42, 731734.Google Scholar
Krisher, T. P., Morabito, D. D., and Anderson, J. D. 1993. The Galileo solar redshift experiment. Phys. Rev. Lett., 70, 22132216.Google Scholar
Kruskal, M. D. 1960. Maximal extension of Schwarzschild metric. Phys. Rev., 119, 17431745.Google Scholar
Lambert, S. B., and Le Poncin-Lafitte, C. 2009. Determining the relativistic parameter γ using very long baseline interferometry. Astron. Astrophys., 499, 331335, ArXiv e-prints 0903.1615.Google Scholar
Lambert, S. B., and Le Poncin-Lafitte, C. 2011. Improved determination of γ by VLBI. Astron. Astrophys., 529, A70.Google Scholar
Lamoreaux, S. K., Jacobs, J. P., Heckel, B. R., Raab, F. J., et al. 1986. New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg. Phys. Rev. Lett., 57, 31253128.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1962. The Classical Theory of Fields. Reading, Massachusetts: Addison-Wesley.Google Scholar
Lang, R. N. 2014. Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order. Phys. Rev. D, 89, 084014, ArXiv e-prints 1310.3320.Google Scholar
Lang, R. N. 2015. Compact binary systems in scalar-tensor gravity. III. Scalar waves and energy flux. Phys. Rev. D, 91, 084027, ArXiv e-prints 1411.3073.Google Scholar
Laplace, P. S. 1799. Beweis des Satzes, dass die anziehende Kraft bey einem Weltkörper so groß seyn könne, dass das Licht davon nicht ausströmen kann. Allgemeine Geographis-che Ephemeriden, Vol. 4, Issue 1, p. 1–6, 4, 16.Google Scholar
Laplace, P. S. 1808. Exposition du Système du Monde. Part II. 3rd edn. Courcier.Google Scholar
Lasky, P. D. 2009. Black holes and neutron stars in the generalized tensor-vector-scalar theory. Phys. Rev. D, 80, 081501, ArXiv e-prints 0910.0240.Google Scholar
Lasky, P. D., Sotani, H., and Giannios, D. 2008. Structure of neutron stars in tensor-vector-scalar theory. Phys. Rev. D, 78, 104019, ArXiv e-prints 0811.2006.Google Scholar
Lattimer, J. M., and Prakash, M. 2007. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep., 442, 109165, ArXiv e-prints astro-ph/0612440.Google Scholar
Lazaridis, K., Wex, N., Jessner, A., Kramer, M., et al. 2009. Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant. Mon. Not. R. Astron. Soc., 400, 805814, ArXiv e-prints 0908.0285.Google Scholar
Lebach, D. E., Corey, B. E., Shapiro, I. I., Ratner, M. I., et al. 1995. Measurement of the solar gravitational deflection of radio waves using Very-Long-Baseline Interferometry. Phys. Rev. Lett., 75, 14391442.Google Scholar
Lee, D. L. 1974. Conservation laws, gravitational waves, and mass losses in the Dicke-Brans-Jordan theory of gravity. Phys. Rev. D, 10, 23742383.Google Scholar
Lee, D. L., Lightman, A. P., and Ni, W.-T. 1974. Conservation laws and variational principles in metric theories of gravity. Phys. Rev. D, 10, 16851700.Google Scholar
Lee, D. L., Ni, W.-T., Caves, C. M., and Will, C. M. 1976. Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen’s theory. Astrophys. J., 206, 555558.Google Scholar
Lee, K. J., Jenet, F. A., and Price, R. H. 2008. Pulsar timing as a probe of non-Einsteinian polarizations of gravitational waves. Astrophys. J., 685, 13041319.Google Scholar
Leefer, N., Weber, C. T. M., Cingöz, A., Torgerson, J. R., and Budker, D. 2013. New limits on variation of the fine-structure constant using atomic Dysprosium. Phys. Rev. Lett., 111, 060801, ArXiv e-prints 1304.6940.Google Scholar
Lentati, L., Carilli, C., Alexander, P., Maiolino, R., et al. 2013. Variations in the fundamental constants in the QSO host J1148+5251 at z = 6.4 and the BR1202–0725 system at z = 4.7. Mon. Not. R. Astron. Soc., 430, 24542463, ArXiv e-prints 1211.3316.Google Scholar
Levi-Civita, T. 1937. Astronomical consequences of the relativistic two-body problem. Am. J. Math., 59, 225334.Google Scholar
Levi-Civita, T. 1965. The n-Body Problem in General Relativity. Dordrecht, Holland: D. Reidel.Google Scholar
Li, T. G. F., Del Pozzo, W., Vitale, S., Van Den Broeck, C., et al. 2012. Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence. Phys. Rev. D, 85, 082003, ArXiv e-prints 1110.0530.Google Scholar
Liberati, S. 2013. Tests of Lorentz invariance: A 2013 update. Class. Quantum Grav., 30, 133001, ArXiv e-prints 1304.5795.Google Scholar
Lightman, A. P., and Lee, D. L. 1973. Restricted proof that the Weak Equivalence Principle implies the Einstein Equivalence Principle. Phys. Rev. D, 8, 364376.Google Scholar
Lipa, J. A., Nissen, J. A., Wang, S., Stricker, D. A., et al. 2003. New limit on signals of Lorentz violation in electrodynamics. Phys. Rev. Lett., 90, 060403, ArXiv e-prints physics/0302093.Google Scholar
Liu, K., Wex, N., Kramer, M., Cordes, J. M., et al. 2012. Prospects for probing the spacetime of SgrA* with pulsars. Astrophys. J., 747, 1, ArXiv e-prints 1112.2151.Google Scholar
Long, J. C., Chan, H. W., and Price, J. C. 1999. Experimental status of gravitational-strength forces in the sub-centimeter regime. Nucl. Phys. B, 539, 2334, ArXiv e-prints hep-ph/9805217.Google Scholar
Long, J. C., Chan, H. W., Churnside, A. B., Gulbis, E. A., et al. 2003. Upper limits to submillimetre-range forces from extra space-time dimensions. Nature, 421, 922925, ArXiv e-prints hep-ph/0210004.Google Scholar
LoPresto, J. C., Schrader, C., and Pierce, A. K. 1991. Solar gravitational redshift from the infrared oxygen triplet. Astrophys. J., 376, 757760.Google Scholar
Lorentz, H. A., and Droste, J. 1917. The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory. Versl. K. Akad. Wetensch. Amsterdam, 26, 392. English translation in Lorentz, H. A. 1937. Collected papers, Vol. 5, edited by Zeeman, P. and Fokker, A. D. Martinus Nijhoff.Google Scholar
Lorimer, D. R., and Kramer, M. 2012. Handbook of Pulsar Astronomy. Cambridge: Cambridge University Press.Google Scholar
Lucchesi, D. M., and Peron, R. 2010. Accurate measurement in the field of the Earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-Newtonian gravity. Phys. Rev. Lett., 105, 231103, ArXiv e-prints 1106.2905.Google Scholar
Lucchesi, D. M., and Peron, R. 2014. LAGEOS II pericenter general relativistic precession (1993–2005): Error budget and constraints in gravitational physics. Phys. Rev. D, 89, 082002.Google Scholar
Lynch, R. S., Boyles, J., Ransom, S. M., Stairs, I. H., et al. 2013. The Green Bank Telescope 350 MHz drift-scan survey II: Data analysis and the timing of 10 new pulsars, including a relativistic binary. Astrophys. J., 763, 81, ArXiv e-prints 1209.4296.Google Scholar
Lynden-Bell, D., and Rees, M. J. 1971. On quasars, dust and the galactic centre. Mon. Not. R. Astron. Soc., 152, 461.Google Scholar
Lyne, A. G., Burgay, M., Kramer, M., Possenti, A., et al. 2004. A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics. Science, 303, 11531157, ArXiv e-prints astro-ph/0401086.Google Scholar
MacArthur, D. W. 1986. Special relativity: Understanding experimental tests and formulations. Phys. Rev. A, 33, 15.Google Scholar
Maeda, K.-I. 1988. On time variation of fundamental constants in superstring theories. Mod. Phys. Lett. A, 3, 243249.Google Scholar
Maggiore, M. 2007. Gravitational Waves. Volume 1: Theory and Experiments. Oxford: Oxford University Press.Google Scholar
Magueijo, J. 2003. New varying speed of light theories. Rep. Prog. Phys., 66, 20252068, ArXiv e-prints astro-ph/0305457.Google Scholar
Malaney, R. A., and Mathews, G. J. 1993. Probing the early universe: A review of primordial nucleosynthesis beyond the standard big bang. Phys. Rep., 229, 145219.Google Scholar
Manchester, R. N. 2015. Pulsars and gravity. Int. J. Mod. Phys. D, 24, 1530018, ArXiv e-prints 1502.05474.Google Scholar
Mansouri, R., and Sexl, R. U. 1977a. A test theory of special relativity. I - Simultaneity and clock synchronization. Gen. Relativ. Gravit., 8, 497513.Google Scholar
Mansouri, R., and Sexl, R. U. 1977b. A test theory of special relativity: II. First order tests. Gen. Relativ. Gravit., 8, 515524.Google Scholar
Mansouri, R., and Sexl, R. U. 1977c. A test theory of special relativity: III. Second-order tests. Gen. Relativ. Gravit., 8, 809814.Google Scholar
Marion, H., Pereira Dos Santos, F., Abgrall, M., Zhang, S., et al. 2003. Search for variations of fundamental constants using atomic fountain clocks. Phys. Rev. Lett., 90, 150801, ArXiv e-prints physics/0212112.Google Scholar
Martins, C. J. A. P. 2017. The status of varying constants: A review of the physics, searches and implications, ArXiv e-prints 1709.02923.Google Scholar
Mathisson, M. 1937. Neue Mechanik materieller Systeme. Acta Phys. Polon., 6, 163200.Google Scholar
Matthews, T. A., and Sandage, A. R. 1963. Optical identification of 3C 48, 3C 196, and 3C 286 with stellar sbjects. Astrophys. J., 138, 30.Google Scholar
Mattingly, D. 2005. Modern tests of Lorentz invariance. Living Rev. Relativ., 8, 5, ArXiv e-prints gr-qc/0502097.Google Scholar
Mattingly, D., and Jacobson, T. 2002. Relativistic gravity with a dynamical preferred frame. Pages 331335 in Kostelecký, V. A. (ed), CPT and Lorentz Symmetry. Singapore: World Scientific.Google Scholar
Matzner, R. A., Seidel, H. E., Shapiro, S. L., Smarr, L., et al. 1995. Geometry of a black hole collision. Science, 270, 941947.Google Scholar
Mecheri, R., Abdelatif, T., Irbah, A., Provost, J., et al. 2004. New values of gravitational moments J2 and J4 deduced from helioseismology. Solar Phys., 222, 191197, ArXiv e-prints 0911.5055.Google Scholar
Mercuri, S., and Taveras, V. 2009. Interaction of the Barbero-Immirzi field with matter and pseudoscalar perturbations. Phys. Rev. D, 80, 104007, ArXiv e-prints 0903.4407.Google Scholar
Merlet, S., Bodart, Q., Malossi, N., Landragin, A., et al. 2010. Comparison between two mobile absolute gravimeters: Optical versus atomic interferometers. Metrologia, 47, L9L11, ArXiv e-prints 1005.0357.Google Scholar
Merritt, D., Alexander, T., Mikkola, S., and Will, C. M. 2010. Testing properties of the galactic center black hole using stellar orbits. Phys. Rev. D, 81, 062002, ArXiv e-prints 0911.4718.Google Scholar
Meyer, L., Ghez, A. M., Schödel, R., Yelda, S., et al. 2012. The shortest-known-period star orbiting our galaxy’s supermassive black hole. Science, 338, 84, ArXiv e-prints 1210.1294.Google Scholar
Meylan, G., Jetzer, P., North, P., Schneider, P., et al. (eds). 2006. Gravitational Lensing: Strong, Weak and Micro. Berlin: Springer-Verlag.Google Scholar
Michell, J. 1784. On the means of discovering the distance, magnitude, etc. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose. Philos. Trans. R. Soc. London, 74, 35 – 57.Google Scholar
Michelson, A. A., and Morley, E. W. 1887. On the relative motion of the Earth and the luminiferous ether. Am. J. Science, 34, 333.Google Scholar
Mignard, F., and Klioner, S. A. 2010. GAIA: Relativistic modelling and testing. Pages 306314 in Klioner, S. A., Seidelmann, P. K., and Soffel, M. H. (eds), Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis. IAU Symposium, vol. 261. Cambridge: Cambridge University Press.Google Scholar
Milani, A., Vokrouhlický, D., Villani, D., Bonanno, C., et al. 2002. Testing general relativity with the BepiColombo radio science experiment. Phys. Rev. D, 66, 082001.Google Scholar
Milgrom, M. 1983. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J., 270, 365370.Google Scholar
Milgrom, M. 2009. MOND effects in the inner solar system. Mon. Not. R. Astron. Soc., 399, 474486, ArXiv e-prints 0906.4817.Google Scholar
Miller, M. C., and Miller, J. M. 2015. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep., 548, 134, ArXiv e-prints 1408.4145.Google Scholar
Mirshekari, S., and Will, C. M. 2013. Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order. Phys. Rev. D, 87, 084070, ArXiv e-prints 1301.4680.Google Scholar
Mirshekari, S., Yunes, N., and Will, C. M. 2012. Constraining Lorentz-violating, modified dispersion relations with gravitational waves. Phys. Rev. D, 85, 024041, ArXiv e-prints 1110.2720.Google Scholar
Mishra, C. K., Arun, K. G., Iyer, B. R., and Sathyaprakash, B. S. 2010. Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope. Phys. Rev. D, 82, 064010, ArXiv e-prints 1005.0304.Google Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. San Francisco. W.H. Freeman and Co.Google Scholar
Mitchell, T., and Will, C. M. 2007. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. Evidence for the Strong Equivalence Principle to second post-Newtonian order. Phys. Rev. D, 75, 124025, ArXiv e-prints 0704.2243.Google Scholar
Modenini, D., and Tortora, P. 2014. Pioneer 10 and 11 orbit determination analysis shows no discrepancy with Newton-Einstein laws of gravity. Phys. Rev. D, 90, 022004, ArXiv e-prints 1311.4978.Google Scholar
Moffat, J. W. 2006. Scalar tensor vector gravity theory. J. Cosmol. Astropart. Phys., 3, 004, ArXiv e-prints gr-qc/0506021.Google Scholar
Mohr, P. J., and Taylor, B. N. 2005. CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod. Phys., 77, 1107.Google Scholar
Møller, C. 1952. The Theory of Relativity. Oxford: Oxford University Press.Google Scholar
Montgomery, C., Orchiston, W., and Whittingham, I. 2009. Michell, Laplace and the origin of the black hole concept. J. Astron. Hist. Heritage, 12, 9096.Google Scholar
Moura, F., and Schiappa, R. 2007. Higher-derivative-corrected black holes: Perturbative stability and absorption cross section in heterotic string theory. Class. Quantum Grav., 24, 361386, ArXiv e-prints hep-th/0605001.Google Scholar
Mukherjee, R., and Sounda, S. 2017. Single particle closed orbits in Yukawa potential. Indian J. Phys., Online First, Sept., ArXiv e-prints 1705.02444.Google Scholar
Müller, H., Herrmann, S., Braxmaier, C., Schiller, S., et al. 2003. Modern Michelson-Morley experiment using cryogenic optical resonators. Phys. Rev. Lett., 91, 020401, ArXiv e-prints physics/0305117.Google Scholar
Müller, H., Peters, A., and Chu, S. 2010. A precision measurement of the gravitational redshift by the interference of matter waves. Nature, 463, 926929.Google Scholar
Müller, J., Jr. Nordtvedt, K., and Vokrouhlický, D. 1996. Improved constraint on the α 1 PPN parameter from lunar motion. Phys. Rev. D, 54, R5927R5930.Google Scholar
Müller, J., Schneider, M., Jr. Nordtvedt, K., and Vokrouhlický, D. 1999. What can LLR provide to relativity? Page 1151 in Piran, T., and Ruffini, R. (eds), Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories. Singapore: World Scientific.Google Scholar
Müller, J., Williams, J. G., and Turyshev, S. G. 2008. Lunar laser ranging contributions to relativity and geodesy. Page 457 in Dittus, H., Lammerzahl, C., and Turyshev, S. G. (eds), Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Astrophysics and Space Science Library, vol. 349.Google Scholar
Murphy, M. T., Webb, J. K., Flambaum, V. V., Dzuba, V. A., et al. 2001. Possible evidence for a variable fine-structure constant from QSO absorption lines: Motivations, analysis and results. Mon. Not. R. Astron. Soc., 327, 12081222, ArXiv e-prints astro-ph/0012419.Google Scholar
Murphy, T. W., Adelberger, E. G., Battat, J. B. R., Hoyle, C. D., et al. 2011. Laser ranging to the lost Lunokhod 1 reflector. Icarus, 211, 11031108, ArXiv e-prints 1009.5720.Google Scholar
Jr. Murphy, T. W., Adelberger, E. G., Battat, J. B. R., Hoyle, C. D., et al. 2012. APOLLO: Millimeter lunar laser ranging. Class. Quantum Grav., 29, 184005.Google Scholar
Narayan, R., and McClintock, J. E. 2008. Advection-dominated accretion and the black hole event horizon. New Astron. Rev., 51, 733751, ArXiv e-prints 0803.0322.Google Scholar
Newman, E., and Penrose, R. 1962. An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., 3, 566578.Google Scholar
Newton, I. 1686. Philosophiae Naturalis Principia Mathematica. London: Benjamin Motte.Google Scholar
Ni, W.-T. 1973. A new theory of gravity. Phys. Rev. D, 7, 28802883.Google Scholar
Ni, W.-T. 1977. Equivalence principles and electromagnetism. Phys. Rev. Lett., 38, 301304.Google Scholar
Niebauer, T. M., McHugh, M. P., and Faller, J. E. 1987. Galilean test for the fifth force. Phys. Rev. Lett., 59, 609612.Google Scholar
Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S., et al. 2009. Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys. Rev. D, 79, 082002, ArXiv e-prints 0903.0528.Google Scholar
Nishizawa, A., Taruya, A., and Kawamura, S. 2010. Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1–1 Hz. Phys. Rev. D, 81, 104043, ArXiv e-prints 0911.0525.Google Scholar
Nobili, A. M., and Will, C. M. 1986. The real value of Mercury’s perihelion advance. Nature, 320, 3941.Google Scholar
Nobili, A. M., Shao, M., Pegna, R., Zavattini, G., et al. 2012. “Galileo Galilei” (GG): Space test of the Weak Equivalence Principle to 1017 and laboratory demonstrations. Class. Quantum Grav., 29, 184011.Google Scholar
Nordström, G. 1913. Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips. Ann. Phys. (Leipzig), 347, 533554.Google Scholar
Jr. Nordtvedt, K. 1968a. Equivalence principle for massive bodies. I. Phenomenology. Phys. Rev., 169, 10141016.Google Scholar
Jr. Nordtvedt, K. 1968b. Equivalence principle for massive bodies. II. Theory. Phys. Rev., 169, 10171025.Google Scholar
Jr. Nordtvedt, K. 1968c. Testing relativity with laser ranging to the Moon. Phys. Rev., 170, 11861187.Google Scholar
Jr. Nordtvedt, K. 1970. Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences. Astrophys. J., 161, 1059.Google Scholar
Jr. Nordtvedt, K. 1975. Quantitative relationship between clock gravitational’red-shift’ violations and nonuniversality of free-fall rates in nonmetric theories of gravity. Phys. Rev. D, 11, 245247.Google Scholar
Jr. Nordtvedt, K. 1985. A post-Newtonian gravitational Lagrangian formalism for celestial body dynamics in metric gravity. Astrophys. J., 297, 390404.Google Scholar
Jr. Nordtvedt, K. 1987. Probing gravity to the second post-Newtonian order and to one part in 107 using the spin axis of the sun. Astrophys. J., 320, 871874.Google Scholar
Jr. Nordtvedt, K. 1990. Ġ/G and a cosmological acceleration of gravitationally compact bodies. Phys. Rev. Lett., 65, 953956.Google Scholar
Jr. Nordtvedt, K. 2001. Testing Newton’s third law using lunar laser ranging. Class. Quantum Grav. Lett., 18, L133L137.Google Scholar
Jr. Nordtvedt, K., and Will, C. M. 1972. Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity. Astrophys. J., 177, 775.Google Scholar
Nutku, Y. 1969. The energy-momentum complex in the Brans-Dicke theory. Astrophys. J., 158, 991.Google Scholar
Olive, K. A., Pospelov, M., Qian, Y.-Z., Manhès, G., et al. 2004. Reexamination of the 187 Re bound on the variation of fundamental couplings. Phys. Rev. D, 69, 027701, ArXiv e-prints astro-ph/0309252.Google Scholar
Oppenheimer, J. R., and Snyder, H. 1939. On continued gravitational contraction. Phys. Rev., 56, 455459.Google Scholar
Overduin, J., Everitt, F., Worden, P., and Mester, J. 2012. STEP and fundamental physics. Class. Quantum Grav., 29, 184012, ArXiv e-prints 1401.4784.Google Scholar
Palenzuela, C., Barausse, E., Ponce, M., and Lehner, L. 2014. Dynamical scalarization of neutron stars in scalar-tensor gravity theories. Phys. Rev. D, 89, 044024, ArXiv e-prints 1310.4481.Google Scholar
Pani, P., and Cardoso, V. 2009. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-Dilaton-Gauss-Bonnet black holes. Phys. Rev. D, 79, 084031, ArXiv e-prints 0902.1569.Google Scholar
Pani, P., Berti, E., Cardoso, V., and Read, J. 2011. Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity. Phys. Rev. D, 84, 104035, ArXiv e-prints 1109.0928.Google Scholar
Papapetrou, A. 1951. Spinning Test-Particles in General Relativity. I. Proc. R. Soc. A, 209, 248258.Google Scholar
Pati, M. E., and Will, C. M. 2000. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations. Phys. Rev. D, 62, 124015, ArXiv e-prints gr-qc/0007087.Google Scholar
Pati, M. E., and Will, C. M. 2002. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation reaction to 3.5 post-Newtonian order. Phys. Rev. D, 65, 104008, ArXiv e-prints gr-qc/0201001.Google Scholar
Peik, E., Lipphardt, B., Schnatz, H., Schneider, T., et al., 2004. Limit on the present temporal variation of the fine structure constant. Phys. Rev. Lett., 93, 170801, ArXiv e-prints physics/0402132.Google Scholar
Peil, S., Crane, S., Hanssen, J. L., Swanson, T. B., and Ekstrom, C. R. 2013. Tests of local position invariance using continuously running atomic clocks. Phys. Rev. A, 87, 010102, ArXiv e-prints 1301.6145.Google Scholar
Penrose, R. 1960. A spinor approach to general relativity. Ann. Phys. (N.Y.), 10, 171201.Google Scholar
Perez, P., and Sacquin, Y. 2012. The GBAR experiment: Gravitational behaviour of antihydrogen at rest. Class. Quantum Grav., 29, 184008.Google Scholar
Peters, P. C., and Mathews, J. 1963. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev., 131, 435440.Google Scholar
Petrov, Y. V., Nazarov, A. I., Onegin, M. S., Petrov, V. Y., et al. 2006. Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core. Phys. Rev. C, 74, 064610, ArXiv e-prints hep-ph/0506186.Google Scholar
Pitjeva, E. V. 2005. Relativistic effects and solar oblateness from radar observations of planets and spacecraft. Astron. Lett., 31, 340349.Google Scholar
Pitjeva, E. V., and Pitjev, N. P. 2013. Relativistic effects and dark matter in the solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc., 432, 34313437, ArXiv e-prints 1306.3043.Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., Alves, M. I. R., et al. 2014. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys., 571, A1, ArXiv e-prints 1303.5062.Google Scholar
Poisson, E., and Will, C. M. 1995. Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. Phys. Rev. D, 52, 848855, ArXiv e-prints gr-qc/9502040.Google Scholar
Poisson, E., and Will, C. M. 2014. Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge: Cambridge University Press.Google Scholar
Potter, Harold H. 1923. Some experiments on the proportionality of mass and weight. Proc. R. Soc. A, 104, 588610.Google Scholar
Pound, R. V., and Rebka, G. A. 1960. Apparent weight of photons. Phys. Rev. Lett., 4, 337341.Google Scholar
Pound, R. V., and Snider, J. L. 1965. Effect of gravity on gamma radiation. Phys. Rev., 140, 788803.Google Scholar
Prestage, J. D., Bollinger, J. J., Itano, W. M., and Wineland, D. J. 1985. Limits for spatial anisotropy by use of nuclear-spin-polarized 9Be+ ions. Phys. Rev. Lett., 54, 23872390.Google Scholar
Prestage, J. D., Tjoelker, R. L., and Maleki, L. 1995. Atomic clocks and variations of the fine structure constant. Phys. Rev. Lett., 74, 35113514.Google Scholar
Pretorius, F. 2005. Evolution of binary black-hole spacetimes. Phys. Rev. Lett., 95, 121101, ArXiv e-prints gr-qc/0507014.Google Scholar
Psaltis, D. 2008. Probes and tests of strong-field gravity with observations in the electromagnetic spectrum. Living Rev. Relativ., 11, ArXiv e-prints 0806.1531.Google Scholar
Psaltis, D., Wex, N., and Kramer, M. 2016. A quantitative test of the no-hair theorem with SgrA* using stars, pulsars, and the Event Horizon Telescope. Astrophys. J., 818, 121, ArXiv e-prints 1510.00394.Google Scholar
Quast, R., Reimers, D., and Levshakov, S. A. 2004. Probing the variability of the fine-structure constant with the VLT/UVES. Astron. Astrophys., 415, L7L11, ArXiv e-prints astro-ph/0311280.Google Scholar
Randall, L., and Sundrum, R. 1999a. An alternative to compactification. Phys. Rev. Lett., 83 , 4690–4693, ArXiv e-prints hep-th/9906064.Google Scholar
Randall, L., and Sundrum, R. 1999b. Large mass hierarchy from a small extra dimension. Phys. Rev. Lett., 83, 33703373, ArXiv e-prints hep-ph/9905221.Google Scholar
Ransom, S. M., Stairs, I. H., Archibald, A. M., Hessels, J. W. T., et al. 2014. A millisecond pulsar in a stellar triple system. Nature, 505, 520524, ArXiv e-prints 1401.0535.Google Scholar
Reasenberg, R. D., Shapiro, I. I., MacNeil, P. E., Goldstein, R. B., et al. 1979. Viking relativity experiment—Verification of signal retardation by solar gravity. Astrophys. J. Lett., 234, L219L221.Google Scholar
Reasenberg, R. D., Patla, B. R., Phillips, J. D., and Thapa, R. 2012. Design and characteristics of a WEP test in a sounding-rocket payload. Class. Quantum Grav., 29, 184013, ArXiv e-prints 1206.0028.Google Scholar
Reeves, H. 1994. On the origin of the light elements (Z < 6). Rev. Mod. Phys., 66, 193216.Google Scholar
Reynaud, S., Salomon, C., and Wolf, P. 2009. Testing general relativity with atomic clocks. Space Sci. Rev., 148, 233247, ArXiv e-prints 0903.1166.Google Scholar
Reynolds, C. S. 2013. The spin of supermassive black holes. Class. Quantum Grav., 30, 244004, ArXiv e-prints 1307.3246.Google Scholar
Richter, G. W., and Matzner, R. A. 1982. Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism. Phys. Rev. D, 26, 12191224.Google Scholar
Rievers, B., and Lämmerzahl, C. 2011. High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly. Ann. Phys. (Berlin), 523, 439449, ArXiv e-prints 1104.3985.Google Scholar
Riis, E., Andersen, L.-U. A., Bjerre, N., Poulsen, O., et al. 1988. Test of the isotropy of the speed of light using fast-beam laser spectroscopy. Phys. Rev. Lett., 60, 8184.Google Scholar
Robertson, H. P. 1938. The two-body problem in general relativity. Ann. Math., 39, 101104.Google Scholar
Robertson, H. P. 1962. Relativity and cosmology. Page 228 in Deutsch, A. J., and Klemperer, W. B. (eds), Space Age Astronomy. New York: Academic Press.Google Scholar
Roca Cortés, T., and Pallé, P. L. 2014. The Mark-I helioseismic experiment—I. Measurements of the solar gravitational redshift (1976–2013). Mon. Not. R. Astron. Soc., 443, 18371848, ArXiv e-prints 1406.5944.Google Scholar
Rohlf, J. W. 1994. Modern Physics from α to Z0 . New York: Wiley.Google Scholar
Roll, P. G., Krotkov, R., and Dicke, R. H. 1964. The equivalence of inertial and passive gravitational mass. Ann. Phys. (N.Y.), 26, 442517.Google Scholar
Rosen, N. 1973. A bi-metric theory of gravitation. Gen. Relativ. Gravit., 4, 435447.Google Scholar
Rosen, N. 1974. A theory of gravitation. Ann. Phys. (N.Y.), 84, 455473.Google Scholar
Rosen, N. 1977. Bimetric gravitation and cosmology. Astrophys. J., 211, 357360.Google Scholar
Rossi, B., and Hall, D. B. 1941. Variation of the rate of decay of mesotrons with momentum. Phys. Rev., 59, 223228.Google Scholar
Rozelot, J.-P., and Damiani, C. 2011. History of solar oblateness measurements and interpretation. Eur. Phys. J. H, 36, 407436.Google Scholar
Rubilar, G. F., and Eckart, A. 2001. Periastron shifts of stellar orbits near the galactic center. Astron. Astrophys., 374, 95104.Google Scholar
Rudolph, E., and Börner, G. 1978a. The importance of gravitational self-field effects in binary systems with compact objects. I. The “static two-body problem” and the attraction law in a post-Newtonian approximation of general relativity. Gen. Relativ. Gravit., 9, 809820.Google Scholar
Rudolph, E., and Börner, G. 1978b. The importance of gravitational self-field effects in binary systems with compact objects. II. The “static two-body problem” and the attraction law in a post-post-Newtonian approximation of general relativity. Gen. Relativ. Gravit., 9, 821833.Google Scholar
Sadeghian, L., and Will, C. M. 2011. Testing the black hole no-hair theorem at the galactic center: Perturbing effects of stars in the surrounding cluster. Class. Quantum Grav., 28, 225029, ArXiv e-prints 1106.5056.Google Scholar
Sagi, E. 2009. Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization. Phys. Rev. D, 80, 044032, ArXiv e-prints 0905.4001.Google Scholar
Sagi, E. 2010. Propagation of gravitational waves in the generalized tensor-vector-scalar theory. Phys. Rev. D, 81, 064031, ArXiv e-prints 1001.1555.Google Scholar
Salgado, M., Bonazzola, S., Gourgoulhon, E., and Haensel, P. 1994. High precision rotating neutron star models. I. Analysis of neutron star properties. Astron. Astrophys., 291, 155170.Google Scholar
Salmona, A. 1967. Effect of gravitational scalar field on high-density star structure. Phys. Rev., 154, 12181223.Google Scholar
Sanghai, V. A. A., and Clifton, T. 2017. Parametrized post-Newtonian cosmology. Class. Quantum Grav., 34, 065003, ArXiv e-prints 1610.08039.Google Scholar
Santiago, D. I., Kalligas, D., and Wagoner, R. V. 1997. Nucleosynthesis constraints on scalar-tensor theories of gravity. Phys. Rev. D, 56, 76277637, ArXiv e-prints gr-qc/9706017.Google Scholar
Sarmiento, A. F. 1982. Parametrized post-post-Newtonian (PP2 N) formalism for the solar system. Gen. Relativ. Gravit., 14, 793805.Google Scholar
Sathyaprakash, B. S., and Schutz, B. F. 2009. Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ., 12, ArXiv e-prints 0903.0338.Google Scholar
Saulson, P. R. 1994. Fundamentals of Interferometric Gravitational Wave Detectors. Singapore: World Scientific.Google Scholar
Schiff, L. I. 1960. On experimental tests of the general theory of relativity. Am. J. Phys., 28, 340343.Google Scholar
Schiff, L. I. 1967. Comparison of theory and observation in general relativity. Page 105 in Ehlers, J. (ed), Relativity Theory and Astrophysics. Vol. 1: Relativity and Cosmology. Providence, RI: American Mathematical Society.Google Scholar
Schilpp, P.A. (ed). 1949. Albert Einstein: Philosopher—Scientist. Evanston: Library of Living Philosophers.Google Scholar
Schlamminger, S., Choi, K.-Y., Wagner, T. A., Gundlach, J. H., et al. 2008. Test of the equivalence principle using a rotating torsion balance. Phys. Rev. Lett., 100, 041101, ArXiv e-prints 0712.0607.Google Scholar
Schmidt, M. 1963. 3C 273: A star-like object with large redshift. Nature, 197, 1040.Google Scholar
Schödel, R., Ott, T., Genzel, R., Hofmann, R., et al. 2002. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694696, ArXiv e-prints astro-ph/0210426.Google Scholar
Schutz, B. F. 2009. A First Course in General Relativity. Cambridge: Cambridge University Press.Google Scholar
Schwarzschild, K. 1916. Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 1916, Seite 189–196.Google Scholar
Sennett, N., Marsat, S., and Buonanno, A. 2016. Gravitational waveforms in scalar-tensor gravity at 2PN relative order. Phys. Rev. D, 94, 084003, ArXiv e-prints 1607.01420.Google Scholar
Shankland, R. S., McCuskey, S. W., Leone, F. C., and Kuerti, G. 1955. New analysis of the interferometer observations of Dayton C. Miller. Rev. Mod. Phys., 27, 167178.Google Scholar
Shao, L. 2016. Testing the Strong Equivalence Principle with the triple pulsar PSR J 0337 +1715. Phys. Rev. D, 93, 084023, ArXiv e-prints 1602.05725.Google Scholar
Shao, L., and Wex, N. 2012. New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars. Class. Quantum Grav., 29, 215018, ArXiv e-prints 1209.4503.Google Scholar
Shao, L., and Wex, N. 2013. New limits on the violation of local position invariance of gravity. Class. Quantum Grav., 30, 165020, ArXiv e-prints 1307.2637.Google Scholar
Shao, L., Caballero, R. N., Kramer, M., Wex, N., Champion, D. J., and Jessner, A. 2013. A new limit on local Lorentz invariance violation of gravity from solitary pulsars. Class. Quantum Grav., 30, 165019, ArXiv e-prints 1307.2552.Google Scholar
Shapiro, I. I. 1964. Fourth test of general relativity. Phys. Rev. Lett., 13, 789791.Google Scholar
Shapiro, I. I., Pettengill, G. H., Ash, M. E., Stone, M. L., et al. 1968. Fourth test of general relativity: Preliminary results. Phys. Rev. Lett., 20, 12651269.Google Scholar
Shapiro, I. I., Ash, M. E., Ingalls, R. P., Smith, W. B., et al. 1971. Fourth test of general relativity: New radar result. Phys. Rev. Lett., 26, 11321135.Google Scholar
Shapiro, S. S., Davis, J. L., Lebach, D. E., and Gregory, J. S. 2004. Measurement of the solar gravitational deflection of radio waves using geodetic very-long-baseline interferometry data, 1979–1999. Phys. Rev. Lett., 92, 121101.Google Scholar
Shibata, M., and Taniguchi, K. 2011. Coalescence of black hole-neutron star binaries. Living Rev. Relativ., 14, 6.Google Scholar
Shibata, M., Taniguchi, K., Okawa, H., and Buonanno, A. 2014. Coalescence of binary neutron stars in a scalar-tensor theory of gravity. Phys. Rev. D, 89, 084005, ArXiv e-prints 1310.0627.Google Scholar
Shlyakhter, A. I. 1976. Direct test of the constancy of fundamental nuclear constants. Nature, 264, 340.Google Scholar
Skordis, C. 2008. Generalizing tensor-vector-scalar cosmology. Phys. Rev. D, 77, 123502, ArXiv e-prints 0801.1985.Google Scholar
Skordis, C. 2009. The tensor-vector-scalar theory and its cosmology. Class. Quantum Grav., 26, 143001, ArXiv e-prints 0903.3602.Google Scholar
Smarr, L. 1977 (Dec.). Space-time generated by computers: Black holes with gravitational radiation. Page 569 in Papagiannis, M. D. (ed), Eighth Texas Symposium on Relativistic Astrophysics. Ann. N.Y. Acad. Sci., vol. 302.Google Scholar
Smarr, L., Čadež, A., Dewitt, B., and Eppley, K. 1976. Collision of two black holes: Theoretical framework. Phys. Rev. D, 14, 24432452.Google Scholar
Smiciklas, M., Brown, J. M., Cheuk, L. W., Smullin, S. J., and Romalis, M. V. 2011. New test of Local Lorentz Invariance using a 21Ne-Rb-K comagnetometer. Phys. Rev. Lett., 107, 171604, ArXiv e-prints 1106.0738.Google Scholar
Smith, W. B. 1963. Radar observations of Venus, 1961 and 1959. Astron. J., 68, 15.Google Scholar
Snider, J. L. 1972. New measurement of the solar gravitational redshift. Phys. Rev. Lett., 28, 853856.Google Scholar
Sotiriou, T. P., and Faraoni, V. 2010. f(R) theories of gravity. Rev. Mod. Phys., 82, 451497, ArXiv e-prints 0805.1726.Google Scholar
Sotiriou, T. P., and Faraoni, V. 2012. Black holes in scalar-tensor gravity. Phys. Rev. Lett., 108, 081103, ArXiv e-prints 1109.6324.Google Scholar
Srianand, R., Chand, H., Petitjean, P., and Aracil, B. 2004. Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. Phys. Rev. Lett., 92, 121302, ArXiv e-prints astro-ph/0402177.Google Scholar
St. John, C. E. 1917. The principle of generalized relativity and the displacement of Fraunhofer lines toward the red. Astrophys. J., 46, 249.Google Scholar
Stairs, I. H., Faulkner, A. J., Lyne, A. G., Kramer, M., et al. 2005. Discovery of three wide-orbit binary pulsars: Implications for binary evolution and equivalence principles. Astrophys. J., 632, 10601068, ArXiv e-prints astro-ph/0506188.Google Scholar
Stanwix, P. L., Tobar, M. E., Wolf, P., Susli, M., et al. 2005. Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators. Phys. Rev. Lett., 95, 040404, ArXiv e-prints hep-ph/0506074.Google Scholar
Stavridis, A., and Will, C. M. 2009. Bounding the mass of the graviton with gravitational waves: Effect of spin precessions in massive black hole binaries. Phys. Rev. D, 80, 044002, ArXiv e-prints 0906.3602.Google Scholar
Stecker, F. W., and Scully, S. T. 2009. Searching for new physics with ultrahigh energy cosmic rays. New J. Phys., 11, 085003, ArXiv e-prints 0906.1735.Google Scholar
Stergioulas, N. 2003. Rotating stars in relativity. Living Rev. Relativ., 6, 3, ArXiv e-prints gr-qc/0302034.Google Scholar
Su, Y., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., et al. 1994. New tests of the universality of free fall. Phys. Rev. D, 50, 36143636.Google Scholar
Sushkov, A. O., Kim, W. J., Dalvit, D. A. R., and Lamoreaux, S. K. 2011. New experimental limits on non-Newtonian forces in the micrometer range. Phys. Rev. Lett., 107, 171101, ArXiv e-prints 1108.2547.Google Scholar
Synge, J. L. 1960. Relativity: The General Theory. Amsterdam: North-Holland.Google Scholar
Talmadge, C., Berthias, J.-P., Hellings, R. W., and Standish, E. M. 1988. Model-independent constraints on possible modifications of Newtonian gravity. Phys. Rev. Lett., 61, 11591162.Google Scholar
Tamaki, T., and Miyamoto, U. 2008. Generic features of Einstein-Æther black holes. Phys. Rev. D, 77, 024026, ArXiv e-prints 0709.1011.Google Scholar
Taveras, V., and Yunes, N. 2008. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity? Phys. Rev. D, 78, 064070, ArXiv e-prints 0807.2652.Google Scholar
Taylor, J. H. 1975. Discovery of a pulsar in a binary system. Pages 490492 in Bergman, P. G., Fenyves, E. J., and Motz, L. (eds), Seventh Texas Symposium on Relativistic Astrophysics. Annals of the New York Academy of Sciences, vol. 262.Google Scholar
Taylor, J. H. 1987. Astronomical and space experiments to test relativity. Page 209 in MacCallum, M. A. H. (ed), General Relativity and Gravitation. New York: Cambridge University Press.Google Scholar
Taylor, J. H., and McCulloch, P. M. 1980 (Feb.). Evidence for the existence of gravitational radiation from measurements of the binary pulsar PSR 1913+16. Pages 442–446 in Ehlers, J., Perry, J. J., and Walker, M. (eds), Ninth Texas Symposium on Relativistic Astrophysics. Ann. N.Y. Acad. Sci., vol. 336.Google Scholar
Taylor, J. H., Hulse, R. A., Fowler, L. A., Gullahorn, G. E., et al. 1976. Further observations of the binary pulsar PSR 1913+16. Astrophys. J. Lett., 206, L53–L58.Google Scholar
Taylor, J. H., Fowler, L. A., and McCulloch, P. M. 1979. Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature, 277, 437440.Google Scholar
Taylor, S., and Poisson, E. 2008. Nonrotating black hole in a post-Newtonian tidal environment. Phys. Rev. D, 78, 084016, ArXiv e-prints 0806.3052.Google Scholar
Taylor, T. R., and Veneziano, G. 1988. Dilaton couplings at large distances. Phys. Lett. B, 213, 450454.Google Scholar
Thorne, K. S. 1980. Multipole expansions of gravitational radiation. Rev. Mod. Phys., 52, 299340.Google Scholar
Thorne, K. S., and Dykla, J. J. 1971. Black holes in the Dicke-Brans theory of gravity. Astrophys. J. Lett., 166, L35L38.Google Scholar
Thorne, K. S., and Hartle, J. B. 1985. Laws of motion and precession for black holes and other bodies. Phys. Rev. D, 31, 18151837.Google Scholar
Thorne, K. S., Lee, D. L., and Lightman, A. P. 1973. Foundations for a theory of gravitation theories. Phys. Rev. D, 7, 35633578.Google Scholar
Tinto, M., and Alves, M. E. D. S. 2010. LISA sensitivities to gravitational waves from relativistic metric theories of gravity. Phys. Rev. D, 82, 122003, ArXiv e-prints 1010.1302.Google Scholar
Touboul, P., Métris, G., Rodrigues, M., André, Y., et al. 2017. The MICROSCOPE mission: First results of a space test of the equivalence principle. Phys. Rev. Lett., 119, 231101, ArXiv e-prints 1712.01176.Google Scholar
Trautman, A. 1962. Conservation laws in general relativity. Pages 169198 in Witten, L. (ed), Gravitation: An Introduction to Current Research. New York: Wiley.Google Scholar
Tu, L.-C., Guan, S.-G., Luo, J., Shao, C.-G., et al. 2007. Null test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum. Phys. Rev. Lett., 98, 201101.Google Scholar
Turneaure, J. P., Will, C. M., Farrell, B. F., Mattison, E. M., et al. 1983. Test of the principle of equivalence by a null gravitational redshift experiment. Phys. Rev. D, 27, 17051714.Google Scholar
Turyshev, S. G., and Toth, V. T. 2010. The Pioneer anomaly. Living Rev. Relativ., 13, ArXiv e-prints 1001.3686.Google Scholar
Turyshev, S. G., Toth, V. T., Kinsella, G., Lee, S.-C., et al. 2012. Support for the thermal origin of the Pioneer anomaly. Phys. Rev. Lett., 108, 241101, ArXiv e-prints 1204.2507.Google Scholar
Upadhye, A., and Hu, W. 2009. Existence of relativistic stars in f(R) gravity. Phys. Rev. D, 80, 064002, ArXiv e-prints 0905.4055.Google Scholar
Uzan, J.-P. 2011. Varying constants, gravitation and cosmology. Living Rev. Relativ., 14, 2, ArXiv e-prints 1009.5514.Google Scholar
Vainshtein, A. I. 1972. To the problem of nonvanishing gravitation mass. Phys. Lett. B, 39, 393394.Google Scholar
van Dam, H., and Veltman, M. 1970. Massive and mass-less Yang-Mills and gravitational fields. Nucl. Phys. B, 22, 397411.Google Scholar
van Flandern, T. C. 1975. A determination of the rate of change of G. Mon. Not. R. Astron. Soc., 170, 333342.Google Scholar
van Patten, R. A., and Everitt, C. W. F. 1976. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein’s general theory of relativity and improved measurements in geodesy. Phys. Rev. Lett., 36, 629632.Google Scholar
Verma, A. K., Fienga, A., Laskar, J., Manche, H., et al. 2014. Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. Astron. Astrophys., 561, A115, ArXiv e-prints 1306.5569.Google Scholar
Vessot, R. F. C., Levine, M. W., Mattison, E. M., Blomberg, E. L., et al. 1980. Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett., 45, 20812084.Google Scholar
Visser, M. 1998. Mass for the graviton. Gen. Relativ. Gravit., 30, 17171728, ArXiv e-prints gr-qc/9705051.Google Scholar
von Klüber, H. 1960. The determination of Einstein’s light-deflection in the gravitational field of the Sun. Vistas in Astronomy, 3, 4777.Google Scholar
Wagner, T. A., Schlamminger, S., Gundlach, J. H., and Adelberger, E. G. 2012. Torsion-balance tests of the Weak Equivalence Principle. Class. Quantum Grav., 29, 184002, ArXiv e-prints 1207.2442.Google Scholar
Wagoner, R. V. 1970. Scalar-tensor theory and gravitational waves. Phys. Rev. D, 1, 32093216.Google Scholar
Wagoner, R. V. 1975. Test for the existence of gravitational radiation. Astrophys. J. Lett., 196, L63L65.Google Scholar
Wagoner, R. V., and Kalligas, D. 1997. Scalar-tensor theories and gravitational radiation. Pages 433446 in Marck, J.-A., and Lasota, J.-P. (eds), Relativistic Gravitation and Gravitational Radiation. Cambridge: Cambridge University Press.Google Scholar
Wagoner, R. V., and Will, C. M. 1976. Post-Newtonian gravitational radiation from orbiting point masses. Astrophys. J., 210, 764775.Google Scholar
Wainstein, L.A., and Zubakov, V.D. 1962. Extraction of Signals from Noise. Englewood Cliffs, NJ: Prentice–Hall.Google Scholar
Walsh, D., Carswell, R. F., and Weymann, R. J. 1979. 0957 + 561 A, B - Twin quasistellar objects or gravitational lens. Nature, 279, 381384.Google Scholar
Warburton, R. J., and Goodkind, J. M. 1976. Search for evidence of a preferred reference frame. Astrophys. J., 208, 881886.Google Scholar
Webb, J. K., Flambaum, V. V., Churchill, C. W., Drinkwater, M. J., et al. 1999. Search for time variation of the fine structure constant. Phys. Rev. Lett., 82, 884887, ArXiv e-prints astro-ph/9803165.Google Scholar
Webster, B. L., and Murdin, P. 1972. Cygnus X-1: A spectroscopic binary with a heavy companion? Nature, 235, 3738.Google Scholar
Weinberg, N. N., Milosavljević, M., and Ghez, A. M. 2005. Stellar dynamics at the galactic center with an Extremely Large Telescope. Astrophys. J., 622, 878891, ArXiv e-prints astro-ph/0404407.Google Scholar
Weinberg, S. 1965. Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev., 138, 9881002.Google Scholar
Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: Wiley.Google Scholar
Weinberg, S. 2008. Effective field theory for inflation. Phys. Rev. D, 77, 123541, ArXiv e-prints 0804.4291.Google Scholar
Weisberg, J. M., and Huang, Y. 2016. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astrophys. J., 829, 55, ArXiv e-prints 1606.02744.Google Scholar
Weisberg, J. M., and Taylor, J. H. 2002. General relativistic geodetic spin precession in binary pulsar B1913+16: Mapping the emission beam in two dimensions. Astrophys. J., 576, 942949, ArXiv e-prints astro-ph/0205280.Google Scholar
Weisberg, J. M., Nice, D. J., and Taylor, J. H. 2010. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J., 722, 10301034, ArXiv e-prints 1011.0718.Google Scholar
Wen, L., and Schutz, B. F. 2005. Coherent network detection of gravitational waves: The redundancy veto. Class. Quantum Grav., 22, S1321S1335, ArXiv e-prints gr-qc/0508042.Google Scholar
Wex, N. 2000. Small-eccentricity binary pulsars and relativistic gravity. Page 113 in Kramer, M., Wex, N., and Wielebinski, R. (eds), IAU Colloq. 177: Pulsar Astronomy -2000 and Beyond. Astronomical Society of the Pacific Conference Series, vol. 202. San Francisco: Astronomical Society of the Pacific.Google Scholar
Wex, N., and Kopeikin, S. M. 1999. Frame dragging and other precessional effects in black hole pulsar binaries. Astrophys. J., 514, 388401, ArXiv e-prints astro-ph/9811052.Google Scholar
Whitrow, G. J., and Morduch, G. E. 1965. Relativistic theories of gravitation: A comparative analysis with particular reference to astronomical tests. Vistas Astron., 6, 167.Google Scholar
Will, C. M. 1971a. Relativistic gravity in the solar system. I. Effect of an anisotropic gravitational mass on the Earth-Moon distance. Astrophys. J., 165, 409.Google Scholar
Will, C. M. 1971b. Relativistic gravity in the solar system. II. Anisotropy in the Newtonian gravitational constant. Astrophys. J., 169, 141.Google Scholar
Will, C. M. 1971c. Theoretical frameworks for testing relativistic gravity. II. Parametrized post-Newtonian hydrodynamics, and the Nordtvedt effect. Astrophys. J., 163, 611.Google Scholar
Will, C. M. 1971d. Theoretical frameworks for testing relativistic gravity. III. Conservation laws, Lorentz invariance, and values of the PPN parameters. Astrophys. J., 169, 125.Google Scholar
Will, C. M. 1973. Relativistic gravity in the solar system. III. Experimental disproof of a class of linear theories of gravitation. Astrophys. J., 185, 3142.Google Scholar
Will, C. M. 1974. Gravitational redshift measurements as tests of nonmetric theories of gravity. Phys. Rev. D, 10, 23302337.Google Scholar
Will, C. M. 1976a. A test of post-Newtonian conservation laws in the binary system PSR 1913+16. Astrophys. J., 205, 861867.Google Scholar
Will, C. M. 1976b. Active mass in relativistic gravity: Theoretical interpretation of the Kreuzer experiment. Astrophys. J., 204, 224234.Google Scholar
Will, C. M. 1977. Gravitational radiation from binary systems in alternative metric theories of gravity: Dipole radiation and the binary pulsar. Astrophys. J., 214, 826839.Google Scholar
Will, C. M. 1986. Was Einstein Right? Putting General Relativity to the Test. New York: Basic Books.Google Scholar
Will, C. M. 1990. Twilight time for the fifth force? Sky and Telescope, 80, 472.Google Scholar
Will, C. M. 1992a. Clock synchronization and isotropy of the one-way speed of light. Phys. Rev. D, 45, 403411.Google Scholar
Will, C. M. 1992b. Is momentum conserved? A test in the binary system PSR 1913+16. Astrophys. J. Lett., 393, L59L61.Google Scholar
Will, C. M. 1994. Testing scalar-tensor gravity with gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D, 50, 60586067, ArXiv e-prints gr-qc/9406022.Google Scholar
Will, C. M. 1998. Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D, 57, 20612068, ArXiv e-prints gr-qc/9709011.Google Scholar
Will, C. M. 2000. Einstein’s relativity and everyday life. Physics Central: American Physical Society, http://physicscentral.com/explore/writers/will.cfm.Google Scholar
Will, C. M. 2005. Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies. Phys. Rev. D, 71, 084027, ArXiv e-prints gr-qc/0502039.Google Scholar
Will, C. M. 2006. Special relativity: A centenary perspective. Page 33 in Damour, T., Darrigol, O., Duplantier, B., and Rivasseau, V. (eds), Einstein, 1905–2005: Poincaré Seminar 2005. Basel: Birkhäuser Verlag.Google Scholar
Will, C. M. 2008. Testing the general relativistic “no-hair” theorems using the galactic center black hole Sagittarius A. Astrophys. J. Lett., 674, L25, ArXiv e-prints 0711.1677.Google Scholar
Will, C. M. 2011. On the unreasonable effectiveness of the post-Newtonian approximation in gravitational physics. Proc. Nat. Acad. Sci. (US), 108, 59385945, ArXiv e-prints 1102.5192.Google Scholar
Will, C. M., and Eardley, D. M. 1977. Dipole gravitational radiation in Rosen’s theory of gravity: Observable effects in the binary system PSR 1913+16. Astrophys. J. Lett., 212, L91L94.Google Scholar
Will, C. M., and Jr. Nordtvedt, K. 1972. Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended ppn formalism. Astrophys. J., 177, 757.Google Scholar
Will, C. M., and Wiseman, A. G. 1996. Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. Phys. Rev. D, 54, 48134848, ArXiv e-prints gr-qc/9608012.Google Scholar
Will, C. M., and Zaglauer, H. W. 1989. Gravitational radiation, close binary systems, and the Brans-Dicke theory of gravity. Astrophys. J., 346, 366377.Google Scholar
Williams, J. G., Newhall, X X, and Dickey, J. O. 1996. Relativity parameters determined from lunar laser ranging. Phys. Rev. D, 53, 67306739.Google Scholar
Williams, J. G., Turyshev, S. G., and Murphy, T. W. 2004a. Improving LLR Tests of gravitational theory. Int. J. Mod. Phys. D, 13, 567582, ArXiv e-prints gr-qc/0311021.Google Scholar
Williams, J. G., Turyshev, S. G., and Boggs, D. H. 2004b. Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett., 93, 261101, ArXiv e-prints gr-qc/0411113.Google Scholar
Williams, J. G., Turyshev, S. G., and Boggs, D. H. 2009. Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D, 18, 11291175, ArXiv e-prints gr-qc/0507083.Google Scholar
Wiseman, A. G., and Will, C. M. 1991. Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation. Phys. Rev. D, 44, R2945R2949.Google Scholar
Wolf, P., and Blanchet, L. 2016. Analysis of Sun/Moon gravitational redshift tests with the STE-QUEST space mission. Class. Quantum Grav., 33, 035012, ArXiv e-prints 1509.02854.Google Scholar
Wolf, P., Bize, S., Clairon, A., Luiten, A. N., et al. 2003. Tests of Lorentz invariance using a microwave resonator. Phys. Rev. Lett., 90, 060402, ArXiv e-prints gr-qc/0210049.Google Scholar
Wolf, P., Chapelet, F., Bize, S., and Clairon, A. 2006. Cold atom clock test of Lorentz invariance in the matter sector. Phys. Rev. Lett., 96, 060801, ArXiv e-prints hep-ph/0601024.Google Scholar
Wolf, P., Blanchet, L., Bordé, C. J., Reynaud, S., et al. 2011. Does an atom interferometer test the gravitational redshift at the Compton frequency? Class. Quantum Grav., 28, 145017, ArXiv e-prints 1012.1194.Google Scholar
Wolfe, A. M., Brown, R. L., and Roberts, M. S. 1976. Limits on the variation of fundamental atomic quantities over cosmic time scales. Phys. Rev. Lett., 37, 179181.Google Scholar
Yagi, K., and Yunes, N. 2013. I-Love-Q: Unexpected universal relations for neutron stars and quark stars. Science, 341, 365368, ArXiv e-prints 1302.4499.Google Scholar
Yagi, K., Yunes, N., and Tanaka, T. 2012. Slowly rotating black holes in dynamical Chern-Simons gravity: Deformation quadratic in the spin. Phys. Rev. D, 86, 044037, ArXiv e-prints 1206.6130.Google Scholar
Yagi, K., Stein, L. C., Yunes, N., and Tanaka, T. 2013. Isolated and binary neutron stars in dynamical Chern-Simons gravity. Phys. Rev. D, 87, 084058, ArXiv e-prints 1302.1918.Google Scholar
Yagi, K., Blas, D., Barausse, E., and Yunes, N. 2014a. Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Phys. Rev. D, 89, 084067, ArXiv e-prints 1311.7144.Google Scholar
Yagi, K., Blas, D., Yunes, N., and Barausse, E. 2014b. Strong binary pulsar constraints on Lorentz violation in gravity. Phys. Rev. Lett., 112, 161101, ArXiv e-prints 1307.6219.Google Scholar
Yang, S.-Q., Zhan, B.-F., Wang, Q.-L., Shao, C.-G., et al. 2012. Test of the gravitational inverse square law at millimeter ranges. Phys. Rev. Lett., 108, 081101.Google Scholar
Yunes, N., and Pretorius, F. 2009. Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation. Phys. Rev. D, 79, 084043, ArXiv e-prints 0902.4669.Google Scholar
Yunes, N., and Pretorius, F. 2009. Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework. Phys. Rev. D, 80, 122003, ArXiv e-prints 0909.3328.Google Scholar
Yunes, N., and Stein, L. C. 2011. Nonspinning black holes in alternative theories of gravity. Phys. Rev. D, 83, 104002, ArXiv e-prints 1101.2921.Google Scholar
Yunes, N., Psaltis, D., Özel, F., and Loeb, A. 2010. Constraining parity violation in gravity with measurements of neutron-star moments of inertia. Phys. Rev. D, 81, 064020, ArXiv e-prints 0912.2736.Google Scholar
Yunes, N., Yagi, K., and Pretorius, F. 2016. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D, 94, 084002, ArXiv e-prints 1603.08955.Google Scholar
Zaglauer, H. W. 1990. Phenomenological aspects of scalar fields in astrophysics, cosmology and particle physics. Ph.D. thesis, Washington Univ., St. Louis.Google Scholar
Zaglauer, H. W. 1992. Neutron stars and gravitational scalars. Astrophys. J., 393, 685696.Google Scholar
Zakharov, V. I. 1970. Linearized gravitation theory and the graviton mass. Sov. Phys. JETP Lett., 12, 312.Google Scholar
Zucker, S., Alexander, T., Gillessen, S., Eisenhauer, F., et al. 2006. Probing post-Newtonian physics near the galactic black hole with stellar redshift measurements. Astrophys. J. Lett., 639, L21L24, ArXiv e-prints astro-ph/0509105.Google Scholar
Zuntz, J., Baker, T., Ferreira, P. G., and Skordis, C. 2012. Ambiguous tests of general relativity on cosmological scales. J. Cosm. Astropart. Phys., 6, 32, ArXiv e-prints 1110.3830.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Clifford M. Will, University of Florida
  • Book: Theory and Experiment in Gravitational Physics
  • Online publication: 07 September 2018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Clifford M. Will, University of Florida
  • Book: Theory and Experiment in Gravitational Physics
  • Online publication: 07 September 2018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Clifford M. Will, University of Florida
  • Book: Theory and Experiment in Gravitational Physics
  • Online publication: 07 September 2018
Available formats
×