Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:26:43.407Z Has data issue: false hasContentIssue false

5 - Rheology of Colloidal Glasses and Gels

Published online by Cambridge University Press:  07 April 2021

Norman J. Wagner
Affiliation:
University of Delaware
Jan Mewis
Affiliation:
KU Leuven, Belgium
Get access

Summary

When the particle concentration and/or the interparticle forces are sufficiently increased, structures with a solid-like response will develop in colloidal systems. This is dealt with in this chapter, mainly for simple systems, comprised of hard or nearly hard spheres with interparticle attractions. Models have been developed for their state diagrams and have been confirmed by a range of experimental techniques. Gel and glass phases can be distinguished. Glasses occur more commonly at sufficiently concentrated suspensions of hard spheres, but also for suspensions of particles with weak attractions. Gelation occurs at lower volume fractions for suspensions with interparticle attractions, which results in either homogeneous (or equilibrium) gels or heterogeneous gels depending on the nature of the forces. The complex rheology of gels and glasses includes nonlinear viscoelasticity, creep, transient start-up shear, yield strain, and stress. Their nonequilibrium nature has significant consequences for their rheology, including time and shear rate effects. Applying shear causes a change in the microstructure, which recovers when the flow is arrested. For glasses this is known as rejuvenation and aging, respectively. Time and shear effects are stronger in gels where more complex microstructures are involved, leading to a more variable, time-dependent, rheological response.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mewis, J, Wagner, NJ. Colloidal Suspension Rheology. Cambridge: Cambridge University Press; 2012. 393 p.Google Scholar
Likos, CN. Soft matter with soft particles. Soft Matter. 2006;2(6):478498.CrossRefGoogle ScholarPubMed
Poon, W. Colloids as big atoms. Science. 2004;304(5672):830831.CrossRefGoogle ScholarPubMed
Pusey, PN, van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature. 1986;320(6060):340342.CrossRefGoogle Scholar
Pusey, PN, Zaccarelli, E, Valeriani, C, Sanz, E, Poon, WCK, Cates, ME. Hard spheres: Crystallization and glass formation. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences. 2009;367(1909):49935011.CrossRefGoogle ScholarPubMed
Weeks, ER, Crocker, JC, Levitt, AC, Schofield, A, Weitz, DA. Three dimensional imaging of structural relaxation near the colloidal glass transtion. Science. 2000;287(5453):627.CrossRefGoogle Scholar
Pusey, PN. Liquids, freezing and the glass transition. In: Lesvesque, D, Hansen, JP, Zinn-Justin, J (eds.) Les Houches Session 51. Amsterdam: North-Holland; 1991, pp. 328.Google Scholar
Pusey, PN, van Megen, W. Observation of a glass transition of spherical colloidal particles. Physical Review Letters. 1987;59(18):2083.CrossRefGoogle Scholar
Pham, KN, Puertas, AM, Bergenholtz, J, Egelhaaf, SU, Moussaïd, A, Pusey, PN, et al. Multiple glassy states in a simple model system. Science. 2002;296(5565):104106.CrossRefGoogle Scholar
Eckert, T, Bartsch, E. Re-entrant glass transition in a colloid-polymer mixture with depletion attractions. Physical Review Letters. 2002;89(12):125701.CrossRefGoogle Scholar
Russel, WB, Saville, DA, Schowalter, WR. Colloidal Dispersions. Cambridge: Cambridge University Press; 1989.CrossRefGoogle Scholar
Kegel, WK, van Blaaderen, A. Direct observation of dynamical hetergeneities in colloidal hard sphere suspensions. Science. 2000;287(5451):290.CrossRefGoogle ScholarPubMed
Brambilla, G, El Masri, D, Pierno, M, Berthier, L, Cipelletti, L, Petekidis, G, et al. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Physical Review Letters. 2009;102(8):085703.CrossRefGoogle ScholarPubMed
Kobelev, V, Schweizer, KS. Strain softening, yielding, and shear thining in glassy colloidal suspensions. Phys. Rev. E. 2005;71(2 Pt 1):021401.CrossRefGoogle Scholar
Ballesta, P, Petekidis, G. Creep and aging of hard-sphere glasses under constant stress. Physical Review E. 2016;93(4):042613.CrossRefGoogle ScholarPubMed
Zaccarelli, E. Colloidal gels: Equilibrium and non-equilibrium routes. Journal of Physics: Condensed Matter. 2007;19(32):323101.Google Scholar
Laurati, M, Petekidis, G, Koumakis, N, Cardinaux, F, Schofield, AB, Brader, JM, et al. Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels. Journal of Chemical Physics. 2009;130(13):134907.CrossRefGoogle ScholarPubMed
Lu, PJ, Zaccarelli, E, Ciulla, F, Schofield, AB, Sciortino, F, Weitz, DA. Gelation of particles with short-range attraction. Nature. 2008;453(7194):499503.CrossRefGoogle ScholarPubMed
Eberle, APR, Wagner, NJ, Castaneda-Priego, R. Dynamical arrest transition in nanoparticle dispersions with short-range interactions. Physical Review Letters. 2011;106(10):105704.CrossRefGoogle ScholarPubMed
Pham, KN, Egelhaaf, SU, Pusey, PN, Poon, WCK. Glasses in hard spheres with short-range attraction. Physical Review E. 2004;69(1):011503-1.CrossRefGoogle ScholarPubMed
Poon, WCK, Pham, KN, Egelhaaf, SU, Pusey, PN. “Unsticking” a colloidal glass, and sticking it again. Journal of Physics Condensed Matter. 2003;15(1):S269S275.CrossRefGoogle Scholar
Krishnamurthy, LN, Wagner, NJ. Letter to the editor: Comment on “Effect of attractions on shear thickening in dense suspensions”. Journal of Rheology. 48, 1321 (2004). Journal of Rheology. 2005;49(3):799803.CrossRefGoogle Scholar
Zaccarelli, E, Poon, WCK. Colloidal glasses and gels: The interplay of bonding and caging. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(36):1520315208.CrossRefGoogle ScholarPubMed
Lin, MY, Lindsay, HM, Weitz, DA, Ball, RC, Klein, R, Meakin, P. Universality in colloid aggregation. Nature. 1989;339(6223):360362.CrossRefGoogle Scholar
Carpineti, M, Giglio, M. Spinodal-type dynamics in fractal aggregation of colloidal clusters. Physical Review Letters. 1992;68(22):33273330.CrossRefGoogle ScholarPubMed
Poon, WCK, Haw, MD. Mesoscopic structure formation in colloidal aggregation and gelation. Advances in Colloid and Interface Science. 1997;73:71126.CrossRefGoogle Scholar
Kim, JM, Fang, J, Eberle, APR, Castaneda-Priego, R, Wagner, NJ. Gel transition in adhesive hard-sphere colloidal dispersions: The role of gravitational effects. Physical Review Letters. 2013;110(20):208302.CrossRefGoogle ScholarPubMed
Phan, S-E, Russel, WB, Cheng, ZD, Zhu, JX, Chaikin, PM, Dunsmuir, JH, et al. Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Physical Review E. 1996;54(6):66336645.CrossRefGoogle ScholarPubMed
Hunter, GL, Weeks, ER. The physics of the colloidal glass transition. Reports on Progress in Physics. 2012;75(6):066501.CrossRefGoogle ScholarPubMed
Joshi, YM, Petekidis, G. Yield stress fluids and ageing. Rheologica Acta. 2018;57(6–7):521549.CrossRefGoogle Scholar
Reynaert, S, Moldenaers, P, Vermant, J. Interfacial rheology of stable and weakly aggregated two-dimensional suspensions. Physical Chemistry Chemical Physics. 2007;9(48):64636475.CrossRefGoogle ScholarPubMed
Winter, HH, Chambon, F. Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. Journal of Rheology. 1986;30(2):367382.CrossRefGoogle Scholar
Gordon, MB, Kloxin, CJ, Wagner, NJ. The rheology and microstructure of an aging thermoreversible colloidal gel. Journal of Rheology. 2017;61(1):2334.CrossRefGoogle Scholar
Mason, TG, Weitz, DA. Linear viscoelasticity of colloidal hard-sphere suspensions near the glass-transition. Physical Review Letters. 1995;75(14):27702773.CrossRefGoogle ScholarPubMed
Helgeson, ME, Wagner, NJ, Vlassopoulos, D. Viscoelasticity and shear melting of colloidal star polymer glasses. Journal of Rheology. 2007;51(2):297316.CrossRefGoogle Scholar
Eberle, APR, Castaneda-Priego, R, Kim, JM, Wagner, NJ. Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions. Langmuir. 2012;28(3):18661878.CrossRefGoogle ScholarPubMed
Petekidis, G, Vlassopoulos, D, Pusey, PN. Yielding and flow of sheared colloidal glasses. Journal of Physics Condensed Matter. 2004;16(38):S3955S3963.CrossRefGoogle Scholar
Segre, PN, Meeker, SP, Pusey, PN, Poon, WCK. Viscoity and structureal relaxation in suspensions of hard-sphere colloids. Physical Review Letters. 1995;75(5):958961.CrossRefGoogle Scholar
Pusey, PN, Segre, PN, Behrend, OP, Meeker, SP, Poon, WCK. Dynamics of concentrated colloidal suspensions. Physica A. 1997;235(1–2):18.CrossRefGoogle Scholar
Russel, WB, Wagner, NJ, Mewis, J. Divergence in the low shear viscosity for Brownian hard-sphere dispersions: At random close packing or the glass transition? Journal of Rheology. 2013;57(6):15551567.CrossRefGoogle Scholar
Besseling, R, Isa, L, Ballesta, P, Petekidis, G, Cates, ME, Poon, WCK. Shear banding and flow-concentration coupling in colloidal glasses. Physical Review Letters. 2010;105(26):268301.Google Scholar
Laun, HM. Rheological properties of aqueous polymer dispersions. Angewandte Makromolekulare Chemie. 1984;123(1):335359.CrossRefGoogle Scholar
Jones, DAR, Leary, B, Boger, DV. The rheology of a concentrated colloidal suspensions of hard spheres. Journal of Colloid and Interface Science. 1991;147(2):479495.CrossRefGoogle Scholar
Fuchs, M, Ballauff, M. Flow curves of dense colloidal dispersions: Schematic model analysis of the shear-dependent viscosity near the colloidal glass transition. Journal of Chemical Physics. 2005;122(9):094707.Google Scholar
Seth, JR, Mohan, L, Locatelli-Champagne, C, Cloitre, M, Bonnecaze, RT. A micromechanical model to predict the flow of soft particle glasses. Nature Materials. 2011;10(11):838843.CrossRefGoogle ScholarPubMed
Bonnecaze, RT, Brady, JF. Dynamic simulation of an electrorheological fluid. Journal of Chemical Physics. 1992;96(3):21832202.CrossRefGoogle Scholar
Koumakis, N, Pamvouxoglou, A, Poulos, A, and Petekdis, G. Direct comparison of the rheology of hard and soft particle glasses. Soft Matter. 2012;8(12):42714284.CrossRefGoogle Scholar
Ballesta, P, Besseling, R, Isa, L, Petekidis, G, Poon, WCK. Slip and flow of hard-sphere colloidal glasses. Physical Review Letters. 2008;101(25):258301.Google Scholar
Ballesta, P, Petekidis, G, Isa, L, Poon, WCK, Besseling, R. Wall slip and flow of concentrated hard-sphere colloidal suspensions. Journal of Rheology. 2012;56(5):10051037.Google Scholar
Wagner, NJ, Brady, JF. Shear thickening in colloidal dispersions. Physics Today. 2009;62(10):2732.CrossRefGoogle Scholar
Di Cola, E, Moussaid, A, Sztucki, M, Narayanan, T, Zaccarelli, E. Correlation between structure and rheology of a model colloidal glass. Journal of Chemical Physics. 2009;131(14):144903.Google Scholar
Ballauff, M, Brader, JM, Egelhaaf, SU, Fuchs, M, Horbach, J, Koumakis, N, et al. Residual stresses in glasses. Physical Review Letters. 2013;110(21):215701.CrossRefGoogle ScholarPubMed
Pham, KN, Petekidis, G, Vlassopoulos, D, Egelhaaf, SU, Poon, WCK, Pusey, PN. Yielding behavior of repulsion- and attraction-dominated colloidal glasses. Journal of Rheology. 2008;52(2):649676.CrossRefGoogle Scholar
Koumakis, N, Schofield, AB, Petekidis, G. Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses. Soft Matter. 2008;4(10):20082018.CrossRefGoogle Scholar
van Megen, W, Mortensen, TC, Williams, SR, Muller, J. Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. Physical Review E. 1998;58(5):60736085.CrossRefGoogle Scholar
Van Megen, W, Underwood, SM. Glass transition in colloidal hard spheres: Measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Physical Review E. 1994;49(5):42064220.CrossRefGoogle Scholar
Zwanzig, R, Mountain, RD. High-frequency moduli of simple fluids. Journal of Chemical Physics. 1965;43(12):4464.Google Scholar
Buscall, R. Effect of long-range repulsive forces on the viscosity of concenttrated lattices – Comparison of experimental data with an effective hard-sphere model. Journal of the Chemical Society, Faraday Transactions. 1991;87(6):13651370.CrossRefGoogle Scholar
Wagner, NJ. The high-frequency shear modulus of colloidal suspensions and the effects of hydrodynamic interactions Journal of Colloid and Interface Science. 1993;161(1):169181.CrossRefGoogle Scholar
Paulin, SE, Ackerson, BJ, Wolfe, MS. Equilibrium and shear induced nonequilibrium phase behavior of PMMA microgel spheres. Journal of Colloid and Interface Science. 1996;178(1):251262.CrossRefGoogle Scholar
Le Grand, A, Petekidis, G. Effects of particle softness on the rheology and yielding of colloidal glasses. Rheologica Acta. 2008;47(5–6):579590.CrossRefGoogle Scholar
Senff, H, Richtering, W. Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres. Journal of Chemical Physics. 1999;111(4):17051711.CrossRefGoogle Scholar
Chow, MK, Zukoski, CF. Nonequilibrium behavior of dense suspensions of uniform particles - Volume fraction and size dependence of rheology and microstructure. Journal of Rheology. 1995;39(1):3359.CrossRefGoogle Scholar
Raynaud, L, Ernst, B, Verge, C, Mewis, J. Rheology of aqueous latices with adsorbed stabilizer layers. Journal of Colloid and Interface Science. 1996;181(1):1119.CrossRefGoogle Scholar
Petekidis, G, Moussaid, A, Pusey, PN. Rearrangements in hard-sphere glasses under oscillatory shear strain. Physical Review E. 2002;66(5):051402.CrossRefGoogle ScholarPubMed
Petekidis, G, Vlassopoulos, D, Pusey, PN. Yielding and flow of colloidal glasses. Faraday Discussions. 2003;123:287302.CrossRefGoogle ScholarPubMed
Schall, P, Weitz, DA, Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science. 2007;318(5858):18951899.CrossRefGoogle ScholarPubMed
Amann, CP, Denisov, D, Dang, MT, Struth, B, Schall, P, Fuchs, M. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory. The Journal of Chemical Physics. 2015;143(3):034505.CrossRefGoogle ScholarPubMed
Koumakis, N, Laurati, M, Jacob, AR, Mutch, KJ, Abdellali, A, Schofield, AB, et al. Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure. Journal of Rheology. 2016;60(4):603623.CrossRefGoogle Scholar
Koumakis, N, Laurati, M, Egelhaaf, SU, Brady, JF, Petekidis, G. Yielding of Hard-Sphere Glasses during Start-Up Shear. Physical Review Letters. 2012;108(9):098303.CrossRefGoogle ScholarPubMed
Marenne, S, Morris, JF, Foss, DR, Brady, JF. Unsteady shear flows of colloidal hard-sphere suspensions by dynamic simulation. Journal of Rheology. 2017;61(3):477501.CrossRefGoogle Scholar
Brady, JF. The rheological behavior of concentrated colloidal dispersions. Journal of Chemical Physics. 1993;99(1):567581.CrossRefGoogle Scholar
Sollich, P. Rheological constitutive equation for a model of soft glassy materials. Physical Review E. 1998;58(1):738759.CrossRefGoogle Scholar
Brader, JM, Cates, ME, Fuchs, M. First-principles constitutive equation for suspension rheology. Physical Review Letters. 2008;101(13):138301.CrossRefGoogle ScholarPubMed
Priya, M, Voigtmann, T. Nonlinear rheology of dense colloidal systems with short-ranged attraction: A mode-coupling theory analysis. Journal of Rheology. 2014;58(5):11631187.CrossRefGoogle Scholar
Laurati, M, Mutch, KJ, Koumakis, N, Zausch, J, Amann, CP, Schofield, AB, et al. Transient dynamics in dense colloidal suspensions under shear: Shear rate dependence. Journal of Physics: Condensed Matter. 2012;24(46):464104.Google ScholarPubMed
Mutch, KJ, Laurati, M, Amann, CP, Fuchs, M, Egelhaaf, SU. Time-dependent flow in arrested states – transient behaviour. European Physical Journal–Special Topics. 2013;222(11):28032817.CrossRefGoogle Scholar
Amann, CM, Siebenbürger, M, Ballauff, M, Fuchs, M. Nonlinear rheology of glass-forming colloidal dispersions: transient stress–strain relations from anisotropic mode coupling theory and thermosensitive microgels. Journal of Physics: Condensed Matter. 2015;27(19):194121.Google ScholarPubMed
Padding, JT, Boek, ES, Briels, WJ. Dynamics and rheology of wormlike micelles emerging from particulate computer simulations. The Journal of Chemical Physics. 2008;129(7):074903-11.CrossRefGoogle ScholarPubMed
Rottler, J, Robbins, MO. Shear yielding of amorphous glassy solids: Effect of temperature and strain rate. Physical Review E. 2003;68(1):011507.CrossRefGoogle ScholarPubMed
Zausch, J, Horbach, J, Laurati, M, Egelhaaf, SU, Brader, JM, Voigtmann, T, et al. From equilibrium to steady state: The transient dynamics of colloidal liquids under shear. Journal of Physics: Condensed Matter. 2008;20(40):404210.Google Scholar
Siebenburger, M, Ballauff, M, Voigtmann, T. Creep in colloidal glasses. Physical Review Letters. 2012;108(25):255701.CrossRefGoogle ScholarPubMed
Koumakis, N, Petekidis, G. Two step yielding in attractive colloids: Transition from gels to attractive glasses. Soft Matter. 2011;7(6):24562470.Google Scholar
Schirber, M. Focus: Controlling persistent stress in glass. Physics. 2013;6(60): comment on: Ballauff M, Brader JM, Egelhaaf SU, Fuchs M, Horbach J, Koumakis N, et al. Residual stresses in glasses. Physical Review Letters. 110(21):215701.CrossRefGoogle Scholar
Mohan, L, Bonnecaze, RT, Cloitre, M. Microscopic origin of internal stresses in jammed soft particle suspensions. Physical Review Letters. 2013;111(26):268301.CrossRefGoogle ScholarPubMed
Moghimi, E, Jacob, AR, Koumakis, N, Petekidis, G. Colloidal gels tuned by oscillatory shear. Soft Matter. 2017;13(12):23712383.CrossRefGoogle ScholarPubMed
Negi, AS, Osuji, CO. Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation. Journal of Rheology. 2010;54(5):943958.CrossRefGoogle Scholar
Lidon, P, Villa, L, Manneville, S. Power-law creep and residual stresses in a carbopol gel. Rheologica Acta. 2017;56(3):307323.CrossRefGoogle Scholar
Chikkadi, V, Miedema, DM, Dang, MT, Nienhuis, B, Schall, P. Shear banding of colloidal glasses: Observation of a dynamic first-order transition. Physical Review Letters. 2014;113(20):208301.CrossRefGoogle ScholarPubMed
Fielding, SM. Shear banding in soft glassy materials. Reports on Progress in Physics. 2014;77(10):102601.CrossRefGoogle ScholarPubMed
Fielding, SM, Cates, ME, Sollich, P. Shear banding, aging and noise dynamics in soft glassy materials. Soft Matter. 2009;5(12):23782382.Google Scholar
Besseling, R, Isa, L, Weeks, ER, Poon, WCK. Quantitative imaging of colloidal flows. Advances in Colloid and Interface Science. 2009;146(1–2):117.CrossRefGoogle ScholarPubMed
Morris, JF. Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena. Annual Review of Fluid Mechanics. 2020;52(1):121144.CrossRefGoogle Scholar
Stradner, A, Sedgwick, H, Cardinaux, F, Poon, WCK, Egelhaaf, SU, Schurtenberger, P. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature. 2004;432(7016):492495.CrossRefGoogle ScholarPubMed
Stradner, A, Cardinaux, F, Egelhaaf, SU, Schurtenberger, A. Do equilibrium clusters exist in concentrated lysozyme solutions? Proceedings of the National Academy of Sciences of the United States of America. 2008;105(44):E75.Google Scholar
Campbell, AI, Anderson, VJ, van Duijneveldt, JS, Bartlett, P. Dynamical arrest in attractive colloids: The effect of long-range repulsion. Physical Review Letters. 2005;94(20):208301.Google Scholar
Mewis, J. Thixotropy – general review Journal of Non-Newtonian Fluid Mechanics. 1979;6(1):120.CrossRefGoogle Scholar
Tsurusawa, H, Leocmach, M, Russo, J, Tanaka, H. Direct link between mechanical stability in gels and percolation of isostatic particles. Science Advances. 2019;5(5):eaav6090.CrossRefGoogle ScholarPubMed
Royall, CP, Williams, SR, Ohtsuka, T, Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nature Materials. 2008;7(7):556561.Google Scholar
Sciortino, F, Buldyrev, SV, De Michele, C, Foffi, G, Ghofraniha, N, La Nave, E, et al. Routes to colloidal gel formation. Computer Physics Communications. 2005;169(1):166171.Google Scholar
Trappe, V, Sandkuhler, P. Colloidal gels—Low-density disordered solid-like states. Current Opinion in Colloid & Interface Science. 2004;8(6):494500.CrossRefGoogle Scholar
Helgeson, ME, Gao, YX, Moran, SE, Lee, J, Godfrin, M, Tripathi, A, et al. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels. Soft Matter. 2014;10(17):31223133.CrossRefGoogle ScholarPubMed
Foffi, G, De Michele, C, Sciortino, F, Tartaglia, P. Arrested phase separation in a short-ranged attractive colloidal system: A numerical study. Journal of Chemical Physics. 2005;122(22):224903.CrossRefGoogle Scholar
Dawson, K, Foffi, G, Fuchs, M, Gotze, W, Sciortino, F, Sperl, M, et al. Higher-order glass-transition singularities in colloidal systems with attractive interactions. Physical Review E. 2001;63(1):011401.CrossRefGoogle ScholarPubMed
Whitaker, KA, Varga, Z, Hsiao, LC, Solomon, MJ, Swan, JW, Furst, EM. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nature Communications. 2019;10(1):2237.CrossRefGoogle ScholarPubMed
Ramakrishnan, S, Chen, YL, Schweizer, KS, Zukoski, CF. Elasticity and clustering in concentrated depletion gels. Physical Review E. 2004;70(4):040401.CrossRefGoogle ScholarPubMed
He, H, Thorpe, MF. Elastic properties of glasses. Physical Review Letters. 1985;54(19):21072110.Google Scholar
Wang, G, Fiore, AM, Swan, JW. On the viscosity of adhesive hard sphere dispersions: Critical scaling and the role of rigid contacts. Journal of Rheology. 2019;63(2):229245.Google Scholar
Verhaegh, NAM, Asnaghi, D, Lekkerkerker, HNW, Giglio, M, Cipelletti, L. Transient gelation by spinodal decomposition in colloid-polymer mixtures. Physica A. 1997;242(1–2):104118.Google Scholar
Zaccarelli, E, Foffi, G, Dawson, KA, Sciortino, F, Tartaglia, P. Mechanical properties of a model of attractive colloidal solutions. Physical Review E. 2001;63(3):031501.CrossRefGoogle Scholar
Sciortino, F, Zaccarelli, E. Reversible gels of patchy particles. Current Opinion in Solid State & Materials Science. 2011;15(6):246253.Google Scholar
Cipelletti, L, Manley, S, Ball, RC, Weitz, DA. Universal aging features in the restructuring of fractal colloidal gels. Physical Review Letters. 2000;84(10):22752278.Google Scholar
Zaccarelli, E, Lu, PJ, Ciulla, F, Weitz, DA, Sciortino, F. Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures. Journal of Physics-Condensed Matter. 2008;20(49):494242.CrossRefGoogle Scholar
Poon, WCK, Selfe, JS, Robertson, MB, Ilett, SM, Pirie, AD, Pusey, PN. An experimental study of a model colloid-polymer mixture. Journal of Physics II. 1993;3(7):10751086.Google Scholar
Lu, PJ, Conrad, JC, Wyss, HM, Schofield, AB, Weitz, DA. Fluids of clusters in attractive colloids. Physical Review Letters. 2006;96(2):028306.Google Scholar
Zaccone, A, Wu, H, Del Gado, E. Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses. Physical Review Letters. 2009;103(20):208301.CrossRefGoogle ScholarPubMed
Laurati, M, Egelhaaf, SU, Petekidis, G. Nonlinear rheology of colloidal gels with intermediate volume fraction. Journal of Rheology. 2011;55(3):673706.Google Scholar
Johnson, LC, Zia, RN, Moghimi, E, Petekidis, G. Influence of structure on the linear response rheology of colloidal gels. Journal of Rheology. 2019;63(4):583608.CrossRefGoogle Scholar
Koumakis, N, Moghimi, E, Besseling, R, Poon, WCK, Brady, JF, Petekidis, G. Tuning colloidal gels by shear. Soft Matter. 2015;11(23):46404648.CrossRefGoogle ScholarPubMed
Foffi, G, De Michele, C, Sciortino, F, Tartaglia, P. Scaling of dynamics with the range of interaction in short-range attractive colloids. Physical Review Letters. 2005;94(7):078301.CrossRefGoogle ScholarPubMed
Ramakrishnan, S, Gopalakrishnan, V, Zukoski, CF. Clustering and mechanics in dense depletion and thermal gels. Langmuir. 2005;21(22):99179925.Google Scholar
Eberle, APR, Martys, N, Porcar, L, Kline, SR, George, WL, Kim, JM, et al. Shear viscosity and structural scalings in model adhesive hard-sphere gels. Physical Review E. 2014;89(5):050302(R).Google Scholar
Valadez-Perez, NE, Liu, Y, Eberle, APR, Wagner, NJ, Castaneda-Priego, R. Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation. Physical Review E. 2013;88(6):060302(R).CrossRefGoogle ScholarPubMed
Sciortino, F, Zaccarelli, E. Equilibrium gels of limited valence colloids. Current Opinion in Colloid & Interface Science. 2017;30:9096.CrossRefGoogle Scholar
Angelini, R, Zaccarelli, E, Marques, FAD, Sztucki, M, Fluerasu, A, Ruocco, G, et al. Glass-glass transition during aging of a colloidal clay. Nature Communications. 2014;5(1):4049.Google Scholar
Murphy, RP, Hong, KL, Wagner, NJ. Thermoreversible gels composed of colloidal silica rods with short range attractions. Langmuir. 2016;32(33):84248435.Google Scholar
Michel, E, Filali, M, Aznar, R, Porte, G, Appell, J. Percolation in a model transient network: Rheology and dynamic light scattering. Langmuir. 2000;16(23):87028711.Google Scholar
Zilman, A, Kieffer, J, Molino, F, Porte, G, Safran, SA. Entropic phase separation in polymer-microemulsion networks. Physical Review Letters. 2003;91(1):015901.CrossRefGoogle ScholarPubMed
Furst, EM, Pantina, JP. Yielding in colloidal gels due to nonlinear microstructure bending mechanics. Physical Review E. 2007;75(5):050402.CrossRefGoogle ScholarPubMed
Pantina, JP, Furst, EM. Elasticity and critical bending moment of model colloidal aggregates. Physical Review Letters. 2005;94(13):138301.CrossRefGoogle ScholarPubMed
van Doorn, JM, Sprakel, J, Kodger, TE. Temperature-triggered colloidal gelation through well-defined grafted polymeric surfaces. Gels. 2017;3(2):21.Google Scholar
Kohl, M, Capellmann, RF, Laurati, M, Egelhaaf, SU, Schmiedeberg, M. Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states. Nature Communications. 2016;7(1):11817.CrossRefGoogle ScholarPubMed
Maxwell, JCL. On the calculation of the equilibrium and stiffness of frames. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1864;27(182):294299.Google Scholar
Hsiao, LC, Newman, RS, Glotzer, SC, Solomon, MJ. Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(40):1602916034.Google Scholar
van Hecke, M. Jamming of soft particles: Geometry, mechanics, scaling and isostaticity. Journal of Physics-Condensed Matter. 2010;22(3):033101.Google Scholar
Verduin, H, Dhont, JKG. Phase diagram of a model adhesive hard-sphere dispersion. Journal of Colloid and Interface Science. 1995;172(2):425437.CrossRefGoogle Scholar
Grant, MC, Russel, WB. Volume-fraction dependence of elastic-moduli and transition-temperatures for colloidal silica-gels. Physical Review E. 1993;47(4):26062614.CrossRefGoogle ScholarPubMed
Brown, E, Jaeger, HM. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming. Reports on Progress in Physics. 2014;77(4):046602.CrossRefGoogle ScholarPubMed
Jamali, S, Brady, JF. Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics. Physical Review Letters. 2019;123(13):138002.CrossRefGoogle ScholarPubMed
Zia, RN, Landrum, BJ, Russel, WB. A micro-mechanical study of coarsening and rheology of colloidal gels: Cage building, cage hopping, and Smoluchowski’s ratchet. Journal of Rheology. 2014;58(5):11211157.CrossRefGoogle Scholar
Chen, YL, Schweizer, KS. Microscopic theory of gelation and elasticity in polymer-particle suspensions. Journal of Chemical Physics. 2004;120(15):72127222.Google Scholar
Shah, SA, Chen, YL, Ramakrishnan, S, Schweizer, KS, Zukoski, CF. Microstructure of dense colloid-polymer suspensions and gels. Journal of Physics: Condensed Matter. 2003;15(27):47514778.Google Scholar
Shah, SA, Chen, YL, Schweizer, KS, Zukoski, CF. Phase behavior and concentration fluctuations in suspensions of hard spheres and nearly ideal polymers. Journal of Chemical Physics. 2003;118(7):33503361.CrossRefGoogle Scholar
Pham, KN, Petekidis, GVlassopoulos, DEgelhaaf, SUPusey, PNPoon, WCK. Yielding of colloidal glasses. EPL (Europhysics Letters). 2006;75(4):624.CrossRefGoogle Scholar
Ballesta, P, Koumakis, N, Besseling, R, Poon, WCK, Petekidis, G. Slip of gels in colloid-polymer mixtures under shear. Soft Matter. 2013;9(12):32373245.CrossRefGoogle Scholar
Boromand, A, Jamali, S, Maia, JM. Structural fingerprints of yielding mechanisms in attractive colloidal gels. Soft Matter. 2017;13(2):458473.Google Scholar
Shao, Z, Negi, AS, Osuji, CO. Role of interparticle attraction in the yielding response of microgel suspensions. Soft Matter. 2013;9(22):54925500.Google Scholar
Sprakel, J, Lindstrom, SB, Kodger, TE, Weitz, DA. Stress enhancement in the delayed yielding of colloidal gels. Physical Review Letters. 2011;106(24):248303.Google Scholar
Landrum, BJ, Russel, WB, Zia, RN. Delayed yield in colloidal gels: Creep, flow, and re-entrant solid regimes. Journal of Rheology. 2016;60(4):783807.Google Scholar
Moghimi, E. Microscopic Dynamics and Rheology of Colloidal Gels [PhD thesis]. Crete: Univeristy of Crete; 2016.Google Scholar
Kim, JM, Eberle, APR, Gurnon, AK, Porcar, L, Wagner, NJ. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS). Journal of Rheology. 2014;58(5):13011328.CrossRefGoogle Scholar
Royall, CP, Williams, SR, Tanaka, H. Vitrification and gelation in sticky spheres. Journal of Chemical Physics. 2018;148(4):044501.CrossRefGoogle ScholarPubMed
Eberle, APR, Wagner, NJ, Castanada-Priego, R. Dynamical arrest transition in nanoparticle dispersions with short-range interactions. Physical Review Letters. 2011;106(10):105704.Google Scholar
Eberle, APR, Wagner, NJ, Akgun, B, Satija, SK. Temperature-dependent nanostructure of an end-tethered octadecane brush in tetradecane and nanoparticle phase behavior. Langmuir. 2010;26(5):30033007.Google Scholar
Barnes, HA. The yieldstress—A review of “panta rhei”—Everything flows? Journal of Non-Newtonian Fluid Mechanics. 1999;81(1–2):133178.CrossRefGoogle Scholar
Martin, JE, Adolf, D, Wilcoxon, JP. Viscoleasticiy of near-critical gels. Physical Review Letters. 1988;61(22):26202623.Google Scholar
Martin, JE, Wilcoxon, J, Odinek, J. Decay of density-fluctuations in gels. Physical Review A. 1991;43(2):858872.CrossRefGoogle ScholarPubMed
Hurtado, PI, Berthier, L, Kob, W. Heterogeneous diffusion in a reversible gel. Physical Review Letters. 2007;98(13):135503.Google Scholar
Rueb, CJ, Zukoski, CF. Viscoelastic properties of colloidal gels. Journal of Rheology. 1997;41(2):197218.Google Scholar
Mewis, J, Wagner, NJ. Thixotropy. Advances in Colloid and Interface Science. 2009;147–148:214227.Google Scholar
Guo, HY, Ramakrishnan, S, Harden, JL, Leheny, RL. Connecting nanoscale motion and rheology of gel-forming colloidal suspensions. Physical Review E. 2010;81(5):050401(R).Google Scholar
Winter, HH. Glass transition as the rheological inverse of gelation. Macromolecules. 2013;46(6):24252432.CrossRefGoogle Scholar
Park, JD, Ahn, KH, Wagner, NJ. Structure-rheology relationship for a homogeneous colloidal gel under shear startup. Journal of Rheology. 2017;61(1):117137.Google Scholar
Elliott, SL, Butera, RJ, Hanus, LH, Wagner, NJ. Fundamentals of aggregation in concentrated dispersions: Fiber-optic quasielastic light scattering and linear viscoelastic measurements. Faraday Discussions. 2003;123:369383.Google Scholar
Tripathy, M, Schweizer, KS. Activated dynamics in dense fluids of attractive nonspherical particles. I. Kinetic crossover, dynamic free energies, and the physical nature of glasses and gels. Physical Review E. 2011;83(4):10.CrossRefGoogle ScholarPubMed
Wang, G, Swan, J. Surface heterogeneity affects percolation and gelation of colloids: dynamic simulations with random patchy spheres. Soft Matter. 2019;15(25):50945108.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×