from Part II - Phenomenology
Published online by Cambridge University Press: 14 December 2018
The principle of a Carnot cycle is discussed and the operation of a Carnot engine with an ideal gas is calcuated. Engine efficiency, heating and cooling coefficient of performance are defined and their values calculated for a Carnot engine operating on an ideal gas. In order to bring out the importance of irreversibility during heat transfers in a heat engine, the endoreversible cycle is analysed; the heat transfers at the hot and cold reservoirs are the only source of dissipation. The Stirling engine is described. Work and heat exchange are caculated for an ideal gas undergoing the processes that are involved in Diesel, Otto, Lenoir, Atkinson, Brayton and Rankine engines. The Rankine cycle of a biphasic fluid is analysed also.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.