Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T02:41:42.778Z Has data issue: false hasContentIssue false

30 - Manipulation of Biofilms

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Introduces methods to manipulate biofilms including magnetic nanobots.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 343 - 347
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Tripathy, A., et al., Natural and bioinspired nanostructural bactericidal surfaces. Advances in Colloid and Interface Science 2017, 248, 85104.CrossRefGoogle ScholarPubMed

References

Ofek, I.; Bayer, E. A.; Abraham, S. N., Bacterial adhesion. In The Prokaryotes, Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., Eds., Springer: 2013; pp. 107123.CrossRefGoogle Scholar
Hetrick, E. M.; Schoenfisch, M. H., Reducing implant-related infections: Active release strategies. Chemical Society Reviews 2006, 35 (9), 780789.CrossRefGoogle ScholarPubMed
Pogodin, S.; et al., Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophysical Journal 2013, 104 (4), 835840.CrossRefGoogle ScholarPubMed
Tripathy, A.; Sen, P.; Su, B.; Briscoe, W. H., Natural and bioinspired nanostructured bactericidal surfaces. Advances in Colloid and Interface Science 2017, 248, 85104.CrossRefGoogle ScholarPubMed
Linklater, D. P.; Baulin, V. A.; Juodkazis, S.; Crawford, R. J.; Stoodley, P.; Ivanova, E. P., Mechano-bactericidal actions of nanostructured surfaces. Nature Reviews Microbiology 2021, 19 (1), 822.CrossRefGoogle ScholarPubMed
Yang, K. H.; Lim, H. S.; Kwon, S. J., Effective bio-slime coating technique for concrete surfaces under sulfate attach. Material 2020, 13 (7), 1512.CrossRefGoogle Scholar
Sharma, S.; Lavender, S.; Woo, J.; Guo, L. H.; Shi, W. Y.; Kilpatrick-Liverman, L.; Gimzewski, J. K., Nanoscale characterization of effect of L-arginine on S. mutans biofilm adhesion by atomic force microscopy. Microbiology-SGM 2014, 160 (7), 14661473.CrossRefGoogle Scholar
Sharon, N., Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochimica et Biophysica Acta 2006, 1760 (4), 527537.CrossRefGoogle ScholarPubMed
Rupel, K.; et al., Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. npj Biofilms and Microbiomes 2019, 5 (1), 29.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal 2006, 90 (2), 619627.CrossRefGoogle ScholarPubMed
Hwang, G.; et al., Catalytic antimicrobial robots for biofilm eradication. Science Robotics 2019, 4 (29), eaaw2388.CrossRefGoogle ScholarPubMed
Li, J.; Nickel, R.; Wu, J.; Lin, F.; Lierop, J. V.; Liu, S., A new tool to attack biofilms: Driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale 2019, 11 (14), 69056915.CrossRefGoogle ScholarPubMed
Gu, H.; Lee, S. W.; Carnicelli, J.; Zhang, T.; Ren, D., Magnetically driven active topography for long-term biofilm control. Nature Communications 2020, 11 (1), 2211.CrossRefGoogle ScholarPubMed
Murata, H.; Koepsel, R. R.; Matyjaszewski, K.; Russell, A. J., Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells. Biomaterials 2007, 28 (32), 48704879.CrossRefGoogle Scholar
Banerjee, I.; Pangule, R. C.; Kane, R. S., Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials 2011, 23 (6), 690718.CrossRefGoogle ScholarPubMed
Balagadde, F. K.; You, L.; Hansen, C. L.; Arnold, F. H.; Quake, S. R., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005, 309 (5731), 137140.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×