Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T08:59:13.214Z Has data issue: false hasContentIssue false

Chapter 22 - The Management of Neurocognitive Impairment in Mood Disorders

Published online by Cambridge University Press:  16 May 2024

Allan Young
Affiliation:
Institute of Psychiatry, King's College London
Marsal Sanches
Affiliation:
Baylor College of Medicine, Texas
Jair C. Soares
Affiliation:
McGovern Medical School, The University of Texas
Mario Juruena
Affiliation:
King's College London
Get access

Summary

Mood disorders are associated with dysfunction in a broad range of neurocognitive domains and processes. Deficits have been reported to occur in symptomatic states (depression, [hypo]mania) as well as in remission, negatively impacting psychological well-being and impairing social and occupational functioning. Multiple studies have investigated the potential of pharmacological and nonpharmacological (psychological, behavioural and neurostimulatory) interventions for the amelioration or prevention of neurocognitive impairments. In this chapter, we present an overview of these approaches. We focus particularly on their underlying mechanisms of action and discuss the relative advantages of each approach.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rock, PL, Roiser, JP, Riedel, WJ, Blackwell, AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med 2014;44:2029–40.CrossRefGoogle ScholarPubMed
Zakzanis, KK, Leach, L, Kaplan, E. On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry Neuropsychol Behav Neurol 1998;11:111–19.Google ScholarPubMed
Kurtz, MM, Gerraty, RT. A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychol Rev 2009;23:551–62.Google ScholarPubMed
Goodall, J, Fisher, C, Hetrick, S, et al. Neurocognitive functioning in depressed young people: a systematic review and meta-analysis. Neuropsychol Rev 2018;28:216–31.CrossRefGoogle ScholarPubMed
Lee, RSC, Hermens, DF, Porter, MA, Redoblado-Hodge, MA. A meta-analysis of cognitive deficits in first-episode major depressive disorder. J Affect Disord 2012;140:113–24.CrossRefGoogle ScholarPubMed
Hasselbalch, BJ, Knorr, U, Kessing, LV. Cognitive impairment in the remitted state of unipolar depressive disorder: a systematic review. J Affect Disord 2011;134:2031.CrossRefGoogle ScholarPubMed
Preiss, M, Kucerova, H, Lukavsky, J, et al. Cognitive deficits in the euthymic phase of unipolar depression. Psychiatry Res 2009;169:235–9.CrossRefGoogle ScholarPubMed
Gallagher, P, Robinson, LJ, Gray, JM, Porter, RJ, Young, AH. Neurocognitive function following remission in major depressive disorder: potential objective marker of response? Aust N Z J Psychiatry 2007;41:5461.CrossRefGoogle ScholarPubMed
Robinson, LJ, Thompson, JM, Gallagher, P, et al. A meta-analysis of cognitive deficits in euthymic bipolar subjects. J Affect Disord 2006;93:105–15.CrossRefGoogle Scholar
Cullen, B, Ward, J, Graham, NA, et al. Prevalence and correlates of cognitive impairment in euthymic adults with bipolar disorder: a systematic review. J Affect Disord 2016;205:165–81.CrossRefGoogle ScholarPubMed
Thompson, JM, Gallagher, P, Hughes, JH, et al. Neurocognitive impairment in euthymic bipolar disorder. Br J Psychiatry 2005;186:3240.CrossRefGoogle Scholar
Withall, A, Harris, LM, Cumming, SR. The relationship between cognitive function and clinical and functional outcomes in major depressive disorder. Psychol Med 2009;39:393402.CrossRefGoogle ScholarPubMed
Zubieta, JK, Huguelet, P, O’Neil, RL, Giordani, BJ. Cognitive function in euthymic bipolar I disorder. Psychiatry Res 2001;102:920.CrossRefGoogle ScholarPubMed
Tabarés-Seisdedos, R, Balanzá-Martínez, V, Sánchez-Moreno, J, et al. Neurocognitive and clinical predictors of functional outcome in patients with schizophrenia and bipolar I disorder at one-year follow-up. J Affect Disord 2008;109:286–99.CrossRefGoogle ScholarPubMed
Mur, M, Portella, MJ, Martinez-Aran, A, Pifarre, J, Vieta, E. Influence of clinical and neuropsychological variables on the psychosocial and occupational outcome of remitted bipolar patients. Psychopathology 2009;42:148–56.CrossRefGoogle ScholarPubMed
Duarte, W, Becerra, R, Cruise, K. The relationship between neurocognitive functioning and occupational functioning in bipolar disorder: a literature review. Eur J Psychol 2016;12:659–78.CrossRefGoogle ScholarPubMed
Drakopoulos, J, Sparding, T, Clements, C, Pålsson, E, Landén, M. Executive functioning but not IQ or illness severity predicts occupational status in bipolar disorder. Int J Bipolar Disord 2020;8:7.CrossRefGoogle ScholarPubMed
Bortolato, B, Miskowiak, KW, Köhler, CA, et al. Cognitive remission: a novel objective for the treatment of major depression? BMC Med 2016;14.CrossRefGoogle ScholarPubMed
Sanches, M, Bauer, IE, Galvez, JF, Zunta-Soares, GB, Soares, JC. The management of cognitive impairment in bipolar disorder: current status and perspectives. Am J Ther 2015;22:477–86.CrossRefGoogle Scholar
Miskowiak, KW, Carvalho, AF, Vieta, E, Kessing, LV. Cognitive enhancement treatments for bipolar disorder: a systematic review and methodological recommendations. Eur Neuropsychopharmacol 2016;26:1541–61.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Ott, CV, Petersen, JZ, Kessing, LV. Systematic review of randomized controlled trials of candidate treatments for cognitive impairment in depression and methodological challenges in the field. Eur Neuropsychopharmacol 2016;26:1845–67.CrossRefGoogle ScholarPubMed
Yerkes, RM, Dodson, JD. The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 1908;18:459–82.CrossRefGoogle Scholar
Tamura, JK, Carvalho, IP, Leanna, LMW, et al. Management of cognitive impairment in bipolar disorder: a systematic review of randomized controlled trials. CNS Spectr 2021;28:122.CrossRefGoogle Scholar
Solé, B, Jiménez, E, Torrent, C, et al. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int J Neuropsychopharmacol 2017;20:670–80.CrossRefGoogle ScholarPubMed
Cipriani, A, Furukawa, TA, Salanti, G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 2018;391:1357–66.CrossRefGoogle ScholarPubMed
Rosenblat, JD, Kakar, R, McIntyre, RS. The cognitive effects of antidepressants in major depressive disorder: a systematic review and meta-analysis of randomized clinical trials. Int J Neuropsychopharmacol 2015;19.Google ScholarPubMed
Baune, BT, Brignone, M, Larsen, KG. a network meta-analysis comparing effects of various antidepressant classes on the Digit Symbol Substitution Test (DSST) as a measure of cognitive dysfunction in patients with major depressive disorder. Int J Neuropsychopharmacol 2018;21:97107.CrossRefGoogle ScholarPubMed
Katona, C, Hansen, T, Olsen, CK. A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. Int Clin Psychopharmacol 2012;27:215–23.CrossRefGoogle ScholarPubMed
Raskin, J, Wiltse, CG, Siegal, A, et al. Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder: an 8-week, double-blind, placebo-controlled trial. Am J Psychiatry 2007;164:900–9.CrossRefGoogle ScholarPubMed
Robinson, M, Oakes, TM, Raskin, J, et al. Acute and long-term treatment of late-life major depressive disorder: duloxetine versus placebo. Am J Geriatr Psychiatry 2014;22:3445.CrossRefGoogle ScholarPubMed
McIntyre, RS, Lophaven, S, Olsen, CK. A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. Int J Neuropsychopharmacol 2014;17:1557–67.CrossRefGoogle ScholarPubMed
Mahableshwarkar, AR, Zajecka, J, Jacobson, W, Chen, Y, Keefe, RS. A randomized, placebo-controlled, active-reference, double-blind, flexible-dose study of the efficacy of vortioxetine on cognitive function in major depressive disorder. Neuropsychopharmacology 2015;40:2025–37.CrossRefGoogle ScholarPubMed
Vieta, E, Sluth, LB, Olsen, CK. The effects of vortioxetine on cognitive dysfunction in patients with inadequate response to current antidepressants in major depressive disorder: a short-term, randomized, double-blind, exploratory study versus escitalopram. J Affect Disord 2018;227:803–9.CrossRefGoogle ScholarPubMed
Baune, BT, Sluth, LB, Olsen, CK. The effects of vortioxetine on cognitive performance in working patients with major depressive disorder: a short-term, randomized, double-blind, exploratory study. J Affect Disord 2018;229:421–8.CrossRefGoogle ScholarPubMed
Nierenberg, AA, Loft, H, Olsen, CK. Treatment effects on residual cognitive symptoms among partially or fully remitted patients with major depressive disorder: a randomized, double-blinded, exploratory study with vortioxetine. J Affect Disord 2019;250:3542.CrossRefGoogle ScholarPubMed
Mur, M, Portella, MJ, Martínez-Arán, A, Pifarré, J, Vieta, E. Neuropsychological profile in bipolar disorder: a preliminary study of monotherapy lithium-treated euthymic bipolar patients evaluated at a 2-year interval. Acta Psychiatr Scand 2008;118:373–81.CrossRefGoogle Scholar
Yatham, LN, Mackala, S, Basivireddy, J, et al. Lurasidone versus treatment as usual for cognitive impairment in euthymic patients with bipolar I disorder: a randomised, open-label, pilot study. Lancet Psychiatry 2017;4:208–17.CrossRefGoogle ScholarPubMed
Xu, N, Huggon, B, Saunders, KEA. Cognitive impairment in patients with bipolar disorder: impact of pharmacological treatment. CNS Drugs 2020;34:2946.CrossRefGoogle ScholarPubMed
Porter, RJ, Robinson, LJ, Mahli, GS, Gallagher, P. The neurocognitive profile of mood disorders – a review of the evidence and methodological issues. Bipolar Disord 2015;17:2140.CrossRefGoogle ScholarPubMed
Gallagher, P, Watson, S, Smith, MS, Young, AH, Ferrier, IN. Plasma cortisol-dehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar disorder. Schizophr Res 2007;90:258–65.CrossRefGoogle ScholarPubMed
Maes, M, Calabrese, J, Meltzer, HY. The relevance of the inpatient versus the outpatient status for studies on HPA-axis in depression – spontaneous hypercortisolism is a feature of major depressed inpatients and not of major depression per se. Prog Neuropsychopharmacol Biol Psychiatry 1994;18:503–17.CrossRefGoogle Scholar
Arborelius, L, Owens, MJ, Plotsky, PM, Nemeroff, CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999;160:112.CrossRefGoogle ScholarPubMed
Gallagher, P, Reid, KS, Ferrier, IN. Neuropsychological functioning in health and mood disorder: modulation by glucocorticoids and their receptors. Psychoneuroendocrinology 2009;34 196207.CrossRefGoogle ScholarPubMed
Girshkin, L, Matheson, SL, Shepherd, AM, Green, MJ. Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology 2014;49:187206.CrossRefGoogle ScholarPubMed
Fries, GR, Vasconcelos-Moreno, MP, Gubert, C, et al. Hypothalamic-pituitary-adrenal axis dysfunction and illness progression in bipolar disorder. Int J Neuropsychopharmacol 2015;18:pyu043-pyu. Erratum in: Int J Neuropsychopharmacol. 2016 Apr 27: PMID: 25522387; PMCID: PMC4368875.CrossRefGoogle Scholar
Watson, S, Gallagher, P, Del-Estal, D, et al. Hypothalamic-pituitary-adrenal axis function in patients with chronic depression. Psychol Med 2002;32:1021–8.CrossRefGoogle ScholarPubMed
Watson, S, Gallagher, P, Ritchie, JC, Ferrier, IN, Young, AH. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry 2004;184:496502.CrossRefGoogle ScholarPubMed
Young, AH, Gallagher, P, Porter, RJ. Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry 2002;159:1237–9.CrossRefGoogle ScholarPubMed
Wolkowitz, OM, Reus, VI, Weingartner, H, et al. Cognitive effects of corticosteroids. Am J Psychiatry 1990;147:1297–303.Google ScholarPubMed
Heffelfinger, AK, Newcomer, JW. Glucocorticoid effects on memory function over the human life span. Dev Psychopathol 2001;13:491513.CrossRefGoogle ScholarPubMed
Jameison, K, Dinan, TG. Glucocorticoids and cognitive function: from physiology to pathophysiology. Hum Psychopharmacol 2001;16:293302.CrossRefGoogle ScholarPubMed
McAllister-Williams, RH, Rugg, MD. Effects of repeated cortisol administration on brain potential correlates of episodic memory retrieval. Psychopharmacology (Berl) 2002;160:7483.CrossRefGoogle ScholarPubMed
Lupien, SJ, Wilkinson, CW, Briere, S, et al. The modulatory effects of corticosteroids on cognition: studies in young human populations. Psychoneuroendocrinology 2002;27:401–16.CrossRefGoogle ScholarPubMed
McQuade, R, Young, AH. Future therapeutic targets in mood disorders: the glucocorticoid receptor. Br J Psychiatry 2000;177:390–5.CrossRefGoogle ScholarPubMed
Jahn, H, Schick, M, Kiefer, F, et al. Metyrapone as additive treatment in major depression: a double-blind and placebo-controlled trial. Arch Gen Psychiatry 2004;61:1235–44.CrossRefGoogle ScholarPubMed
O’Dwyer, A-M, Lightman, SL, Marks, MN, Checkley, SA. Treatment of major depression with metyrapone and hydrocortisone. J Affect Disord 1995;33:123–8.Google ScholarPubMed
McAllister-Williams, RH, Anderson, IM, Finkelmeyer, A, et al. Antidepressant augmentation with metyrapone for treatment-resistant depression (the ADD study): a double-blind, randomised, placebo-controlled trial. Lancet Psychiatry 2016;3:117–27.CrossRefGoogle ScholarPubMed
Ferrier, IN, Anderson, IM, Barnes, J, et al. Randomised controlled trial of Antiglucocorticoid augmentation (metyrapone) of antiDepressants in Depression (ADD Study). Efficacy Mech Eval 2015;2.CrossRefGoogle Scholar
Donoghue, K, Rose, A, Coulton, S, et al. Double-blind, placebo-controlled trial of mifepristone on cognition and depression in alcohol dependence. Trials 2020;21:796.CrossRefGoogle ScholarPubMed
Young, AH, Gallagher, P, Watson, S, et al. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology 2004;29:1538–45.CrossRefGoogle ScholarPubMed
Watson, S, Gallagher, P, Porter, RJ, et al. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol Psychiatry 2012;72:943–9.CrossRefGoogle ScholarPubMed
Gallagher, P, Watson, S, Dye, CE, Young, AH, Ferrier, IN. Persistent effects of mifepristone (RU-486) on cortisol levels in bipolar disorder and schizophrenia. J Psychiatr Res 2008;42:1037–41.CrossRefGoogle Scholar
Harrison, PJ. Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr Opin Neurobiol 2015;36:16.CrossRefGoogle Scholar
Kalia, M. Neurobiological basis of depression: an update. Metabolism 2005;54:24–7.CrossRefGoogle ScholarPubMed
Austin, MP, Mitchell, P, Hadzi-Pavlovic, D, et al. Effect of apomorphine on motor and cognitive function in melancholic patients: a preliminary report. Psychiatry Res 2000;97:207–15.CrossRefGoogle ScholarPubMed
Madhoo, M, Keefe, RSE, Roth, RM, et al. Lisdexamfetamine dimesylate augmentation in adults with persistent executive dysfunction after partial or full remission of major depressive disorder. Neuropsychopharmacology 2014;39:1388–98.CrossRefGoogle ScholarPubMed
Goldberg, JF, Burdick, KE, Endick, CJ. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry 2004;161:564–6.CrossRefGoogle ScholarPubMed
Cusin, C, Iovieno, N, Iosifescu, DV, et al. A randomized, double-blind, placebo-controlled trial of pramipexole augmentation in treatment-resistant major depressive disorder. J Clin Psychiatry 2013;74:e636-41.CrossRefGoogle ScholarPubMed
Zarate, J, Carlos, A., Payne, JL, et al. Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiatry 2004;56:5460.CrossRefGoogle ScholarPubMed
Hori, H, Kunugi, H. The efficacy of pramipexole, a dopamine receptor agonist, as an adjunctive treatment in treatment-resistant depression: an open-label trial. ScientificWorldJournal 2012;2012:372474.CrossRefGoogle Scholar
Burdick, KE, Braga, RJ, Goldberg, JF, Malhotra, AK. Cognitive dysfunction in bipolar disorder: future place of pharmacotherapy. CNS Drugs 2007;21:971–81.CrossRefGoogle ScholarPubMed
Burdick, KE, Braga, RJ, Nnadi, CU, et al. Placebo-controlled adjunctive trial of pramipexole in patients with bipolar disorder: targeting cognitive dysfunction. J Clin Psychiatry 2012;73:103–12.CrossRefGoogle ScholarPubMed
Li, C-T, Yang, K-C, Lin, W-C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry 2019;9:767.CrossRefGoogle ScholarPubMed
Gigante, AD, Bond, DJ, Lafer, B, et al. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 2012;14:478–87.CrossRefGoogle ScholarPubMed
Berman, RM, Cappiello, A, Anand, A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000;47:351–4.CrossRefGoogle ScholarPubMed
Joseph, B, Parsaik, AK, Ahmed, AT, Erwin, PJ, Singh, B. A systematic review on the efficacy of intravenous racemic ketamine for bipolar depression. J Clin Psychopharmacol 2021;41:71–5.CrossRefGoogle ScholarPubMed
Liu, W, Zhou, Y, Zheng, W, et al. Repeated intravenous infusions of ketamine: Neurocognition in patients with anxious and nonanxious treatment-resistant depression. J Affect Disord 2019;259:16.CrossRefGoogle ScholarPubMed
Chei, TT, Demetrio, FN. Memantine may acutely improve cognition and have a mood stabilizing effect in treatment-resistant bipolar disorder. Braz J Psychiatry 2006;28:252–4.Google Scholar
Strzelecki, D, Tabaszewska, A, Barszcz, Z, et al. A 10-week memantine treatment in bipolar depression: a case report. Focus on depressive symptomatology, cognitive parameters and quality of life. Psychiatry Investig 2013;10:421–4.CrossRefGoogle ScholarPubMed
Young, AH, Sahakian, BJ, Robbins, TW, Cowen, PJ. The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology (Berl) 1999;145:260–6.CrossRefGoogle ScholarPubMed
Oitzl, MS, Fluttert, M, de Kloet, ER. Acute blockade of hippocampal glucocorticoid receptors facilitates spatial learning in rats. Brain Res 1998;797:159–62.CrossRefGoogle ScholarPubMed
Oitzl, MS, Fluttert, M, Sutanto, W, de Kloet, ER. Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur J Neurosci 1998;10:3759–66.CrossRefGoogle ScholarPubMed
Ashok, AH, Marques, TR, Jauhar, S, et al. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 2017;22(5):666–79.CrossRefGoogle ScholarPubMed
Whitton, AE, Treadway, MT, Pizzagalli, DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatr 2015;28:712.CrossRefGoogle Scholar
Valero-Cabré, A, Amengual, JL, Stengel, C, Pascual-Leone, A, Coubard, OA. Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev 2017;83:381404. Erratum in Corrigendum to ‘Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights’ [Neurosci. Biobehav. Rev. 83 (2017) 381–404].CrossRefGoogle Scholar
Moreno, ML, Vanderhasselt, MA, Carvalho, AF, et al. Effects of acute transcranial direct current stimulation in hot and cold working memory tasks in healthy and depressed subjects. Neurosci Lett 2015;591:126–31.CrossRefGoogle ScholarPubMed
Kumar, S, Batist, J, Ghazala, Z, et al. Effects of bilateral transcranial direct current stimulation on working memory and global cognition in older patients with remitted major depression: a pilot randomized clinical trial. Int J Geriatr Psychiatry 2020;35:1233–42.CrossRefGoogle ScholarPubMed
Mogg, A, Pluck, G, Eranti, SV, et al. A randomized controlled trial with 4-month follow-up of adjunctive repetitive transcranial magnetic stimulation of the left prefrontal cortex for depression. Psychol Med 2008;38:323–33.CrossRefGoogle ScholarPubMed
O’Connor, MG, Jerskey, BA, Robertson, EM, et al. The effects of repetitive transcranial magnetic stimulation (rTMS) on procedural memory and dysphoric mood in patients with major depressive disorder. Cogn Behav Neurol 2005;18.Google ScholarPubMed
Schulze-Rauschenbach, SC, Harms, U, Schlaepfer, TE, et al. Distinctive neurocognitive effects of repetitive transcranial magnetic stimulation and electroconvulsive therapy in major depression. Br J Psychiatry 2005;186:410–6.CrossRefGoogle ScholarPubMed
Wolkenstein, L, Plewnia, C. Amelioration of cognitive control in depression by transcranial direct current stimulation. Biol Psychiatry 2013;73:646–51.CrossRefGoogle ScholarPubMed
Fregni, F, Boggio, PS, Nitsche, MA, Rigonatti, SP, Pascual-Leone, A. Cognitive effects of repeated sessions of transcranial direct current stimulation in patients with depression. Depress Anxiety 2006;23:482–4.CrossRefGoogle ScholarPubMed
Myczkowski, ML, Fernandes, A, Moreno, M, et al. Cognitive outcomes of TMS treatment in bipolar depression: safety data from a randomized controlled trial. J Affect Disord 2018;235:20–6.CrossRefGoogle ScholarPubMed
Yang, LL, Zhao, D, Kong, LL, et al. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves neurocognitive function in bipolar disorder. J Affect Disord 2019;246:851–6.CrossRefGoogle ScholarPubMed
Bersani, FS, Minichino, A, Bernabei, L, et al. Prefronto-cerebellar tDCS enhances neurocognition in euthymic bipolar patients. Findings from a placebo-controlled neuropsychological and psychophysiological investigation. J Affect Disord 2017;209:262–9.CrossRefGoogle ScholarPubMed
Minichino, A, Bersani, FS, Bernabei, L, et al. Prefronto-cerebellar transcranial direct current stimulation improves visuospatial memory, executive functions, and neurological soft signs in patients with euthymic bipolar disorder. Neuropsychiatr Dis Treat 2015;11:2265–70.Google ScholarPubMed
Turner, DC, Robbins, TW, Clark, L, et al. Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 2003;165:260–9.CrossRefGoogle ScholarPubMed
Battleday, RM, Brem, AK. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review. Eur Neuropsychopharmacol 2015;25:1865–81.CrossRefGoogle ScholarPubMed
Cope, ZA, Minassian, A, Kreitner, D, et al. Modafinil improves attentional performance in healthy, non-sleep deprived humans at doses not inducing hyperarousal across species. Neuropharmacology 2017;125:254–62.CrossRefGoogle Scholar
Nunez, NA, Singh, B, Romo-Nava, F et al. Efficacy and tolerability of adjunctive modafinil/armodafinil in bipolar depression: a meta-analysis of randomized controlled trials. Bipolar Disord 2020;22:109–20.CrossRefGoogle ScholarPubMed
DeBattista, C, Lembke, A, Solvason, HB, Ghebremichael, R, Poirier, J. A prospective trial of modafinil as an adjunctive treatment of major depression. J Clin Psychopharmacol 2004;24:8790.CrossRefGoogle Scholar
Peters, KZ, Cheer, JF, Tonini, R. Modulating the neuromodulators: dopamine, serotonin, and the endocannabinoid system. Trends Neurosci 2021;44:464–77.CrossRefGoogle ScholarPubMed
Federici, M, Latagliata, EC, Rizzo, FR, et al. Electrophysiological and amperometric evidence that modafinil blocks the dopamine uptake transporter to induce behavioral activation. Neuroscience 2013;252:118–24.CrossRefGoogle ScholarPubMed
Dinges, DF, Weaver, TE. Effects of modafinil on sustained attention performance and quality of life in OSA patients with residual sleepiness while being treated with nCPAP. Sleep Med 2003;4:393402.CrossRefGoogle ScholarPubMed
Wang, D, Bai, XX, Williams, SC, et al. Modafinil increases awake EEG activation and improves performance in obstructive sleep apnea during continuous positive airway pressure withdrawal. Sleep 2015;38:1297–303.CrossRefGoogle ScholarPubMed
Bradley, AJ, Anderson, KN, Gallagher, P, McAllister-Williams, RH. The association between sleep and cognitive abnormalities in bipolar disorder. Psychol Med 2020;50:125–32.CrossRefGoogle ScholarPubMed
Bradley, AJ, Webb-Mitchell, R, Hazu, A, et al. Sleep and circadian rhythm disturbance in bipolar disorder. Psychol Med 2017;47:1678–89.CrossRefGoogle ScholarPubMed
Garcia-Portilla, MP, Saiz, PA, Bascaran, MT, et al. Cardiovascular risk in patients with bipolar disorder. J Affect Disord 2009;115:302–8.CrossRefGoogle ScholarPubMed
Murray, DP, Weiner, M, Prabhakar, M, Fiedorowicz, JG. Mania and mortality: why the excess cardiovascular risk in bipolar disorder? Curr Psychiatry Rep 2009;11:475.CrossRefGoogle ScholarPubMed
Vargas, HO, Nunes, SOV, Barbosa, DS, et al. Castelli risk indexes 1 and 2 are higher in major depression but other characteristics of the metabolic syndrome are not specific to mood disorders. Life Sci 2014;102:6571.CrossRefGoogle Scholar
Carli, M, Kolachalam, S, Longoni, B, et al. Atypical antipsychotics and metabolic syndrome: from molecular mechanisms to clinical differences. Pharmaceuticals (Basel) 2021;14.CrossRefGoogle ScholarPubMed
Mackin, P, Bishop, D, Watkinson, H, Gallagher, P, Ferrier, IN. Metabolic disease and cardiovascular risk in people treated with antipsychotics in the community. Br J Psychiatry 2007;191:23–9.CrossRefGoogle ScholarPubMed
Mackin, P, Waton, T, Watkinson, HM, Gallagher, P. A four-year naturalistic prospective study of cardiometabolic disease in antipsychotic-treated patients. Eur Psychiatry 2012;27:50–5.CrossRefGoogle ScholarPubMed
Wang, Y, Liu, D, Li, X, Liu, Y, Wu, Y. Antidepressants use and the risk of type 2 diabetes mellitus: a systematic review and meta-analysis. J Affect Disord 2021;287:4153.CrossRefGoogle ScholarPubMed
Panza, F, Frisardi, V, Capurso, C, et al. Metabolic syndrome and cognitive impairment: current epidemiology and possible underlying mechanisms. J Alzheimers Dis 2010;21:691724.CrossRefGoogle ScholarPubMed
Yaffe, K, Kanaya, A, Lindquist, K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 2004;292:2237–42.CrossRefGoogle ScholarPubMed
Brands, AMA, Biessels, GJ, de Haan, EHF, Kappelle, LJ, Kessels, RPC. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 2005;28:726–35.CrossRefGoogle ScholarPubMed
Awad, N, Gagnon, M, Messier, C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 2004;26:1044–80.CrossRefGoogle ScholarPubMed
Guo, M, Mi, J, Jiang, QM, et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol 2014;41:650–6.CrossRefGoogle ScholarPubMed
McIntyre, RS, Soczynska, JK, Woldeyohannes, HO, et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord 2012;14:697706.CrossRefGoogle ScholarPubMed
Sikka, P, Bindra, VK, Kapoor, S, Jain, V, Saxena, KK. Blue cures blue but be cautious. J Pharm Bioallied Sci 2011;3:543–5.CrossRefGoogle ScholarPubMed
Poteet, E, Winters, A, Yan, LJ, et al. Neuroprotective actions of methylene blue and its derivatives. PLoS One 2012;7.CrossRefGoogle ScholarPubMed
Naylor, GJ, Dick, DAT, Johnston, BB, et al. Possible explanation for the therapeutic actions of lithium, and a possible substitute (methylene blue). Lancet 1981;318:1175–6.CrossRefGoogle Scholar
Narsapur, SL, Naylor, GJ. Methylene blue: a possible treatment for manic depressive psychosis. J Affect Disord 1983;5:155–61.CrossRefGoogle ScholarPubMed
Thomas, RD, Callender, K. Methylene blue in treatment of bipolar illness. Biol Psychiatry 1985;20:120–1.CrossRefGoogle ScholarPubMed
Naylor, GJ, Smith, AH, Connelly, P. Methylene blue in mania. Biol Psychiatry 1988;24:941–2.CrossRefGoogle ScholarPubMed
Naylor, GJ, Martin, B, Hopwood, SE, Watson, Y. A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis. Biol Psychiatry 1986;21:915–20.CrossRefGoogle ScholarPubMed
Naylor, GJ, Smith, AH, Connelly, P. A controlled trial of methylene blue in severe depressive illness. Biol Psychiatry 1987;22:657–9.CrossRefGoogle ScholarPubMed
Alda, M, McKinnon, M, Blagdon, R, et al. Methylene blue treatment for residual symptoms of bipolar disorder: randomised crossover study. Br J Psychiatry 2017;210:5460.CrossRefGoogle ScholarPubMed
Sargin, D, Friedrichs, H, El-Kordi, A, Ehrenreich, H. Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 2010;24:573–94.CrossRefGoogle ScholarPubMed
Ott, CV, Vinberg, M, Kessing, LV, Miskowiak, KW. The effect of erythropoietin on cognition in affective disorders – associations with baseline deficits and change in subjective cognitive complaints. Eur Neuropsychopharmacol 2016;26:1264–73.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Vinberg, M, Christensen, EM, et al. Recombinant human erythropoietin for treating treatment-resistant depression: a double-blind, randomized, placebo-controlled phase 2 trial. Neuropsychopharmacology 2014;39:1399–408.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Ehrenreich, H, Christensen, EM, Kessing, LV, Vinberg, M. Recombinant human erythropoietin to target cognitive dysfunction in bipolar disorder: a double-blind, randomized, placebo-controlled phase 2 trial. J Clin Psychiatry 2014;75:1347–55.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Macoveanu, J, Vinberg, M, et al. Effects of erythropoietin on memory-relevant neurocircuitry activity and recall in mood disorders. Acta Psychiatr Scand 2016;134:249–59.CrossRefGoogle ScholarPubMed
Miskowiak, KW, Vinberg, M, Macoveanu, J, et al. Effects of erythropoietin on hippocampal volume and memory in mood disorders. Biol Psychiatry 2015;78:270–7.CrossRefGoogle ScholarPubMed
Freo, U, Pizzolato, G, Dam, M, Ori, C, Battistin, L. A short review of cognitive and functional neuroimaging studies of cholinergic drugs: implications for therapeutic potentials. J Neural Transm (Vienna) 2002;109:857–70.Google Scholar
Hampel, H, Mesulam, MM, Cuello, AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018;141:1917–33.CrossRefGoogle ScholarPubMed
Zaninotto, AL, Bueno, OF, Pradella-Hallinan, M, et al. Acute cognitive effects of donepezil in young, healthy volunteers. Hum Psychopharmacol 2009;24:453–64.CrossRefGoogle ScholarPubMed
Kelly, T. Is donepezil useful for improving cognitive dysfunction in bipolar disorder? J Affect Disord 2008;107:237–40.CrossRefGoogle ScholarPubMed
Pelton, GH, Harper, OL, Tabert, MH, et al. Randomized double-blind placebo-controlled donepezil augmentation in antidepressant-treated elderly patients with depression and cognitive impairment: a pilot study. Int J Geriatr Psychiatry 2008;23:670–6.CrossRefGoogle ScholarPubMed
Reynolds, CF III, Butters, MA, Lopez, O, et al. Maintenance treatment of depression in old age: a randomized, double-blind, placebo-controlled evaluation of the efficacy and safety of donepezil combined with antidepressant pharmacotherapy. Arch Gen Psychiatry 2011;68:5160.CrossRefGoogle Scholar
Gildengers, AG, Butters, MA, Chisholm, D, Reynolds, CF III, Mulsant, BH. A 12-week open-label pilot study of donepezil for cognitive functioning and instrumental activities of daily living in late-life bipolar disorder. Int J Geriatr Psychiatry 2008;23:693–8.CrossRefGoogle ScholarPubMed
Schrauwen, E, Ghaemi, SN. Galantamine treatment of cognitive impairment in bipolar disorder: four cases. Bipolar Disord 2006;8:196–9.CrossRefGoogle ScholarPubMed
Iosifescu, DV, Moore, CM, Deckersbach, T, et al. Galantamine-ER for cognitive dysfunction in bipolar disorder and correlation with hippocampal neuronal viability: a proof-of-concept study. CNS Neurosci Ther 2009;15:309–19.CrossRefGoogle ScholarPubMed
Ghaemi, SN, Gilmer, WS, Dunn, RT, et al. A double-blind, placebo-controlled pilot study of galantamine to improve cognitive dysfunction in minimally symptomatic bipolar disorder. J Clin Psychopharmacol 2009;29:291–5.CrossRefGoogle ScholarPubMed
Beglinger, LJ, Tangphao-Daniels, O, Kareken, DA, et al. Neuropsychological test performance in healthy elderly volunteers before and after donepezil administration: a randomized, controlled study. J Clin Psychopharmacol 2005;25.CrossRefGoogle ScholarPubMed
Dean, O, Giorlando, F, Berk, M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 2011;36:7886.CrossRefGoogle ScholarPubMed
Dean, OM, Bush, AI, Copolov, DL, et al. Effects of N-acetyl cysteine on cognitive function in bipolar disorder. Psychiatry Clin Neurosci 2012;66:514–7.CrossRefGoogle ScholarPubMed
Ciappolino, V, DelVecchio, G, Prunas, C, et al. The effect of DHA supplementation on cognition in patients with bipolar disorder: an exploratory randomized control trial. Nutrients 2020;12.CrossRefGoogle ScholarPubMed
McNamara, RK, Carlson, SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids 2006;75:329–49.CrossRefGoogle ScholarPubMed
Antypa, N, Smelt, AHM, Strengholt, A, der Does AJW, Van. Effects of omega-3 fatty acid supplementation on mood and emotional information processing in recovered depressed individuals. J Psychopharmacol (Oxf) 2011;26:738–43.Google ScholarPubMed
Singh, N, Bhalla, M, de Jager, P, Gilca, M. An overview on ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011;8:208–13.CrossRefGoogle ScholarPubMed
Chengappa, KNR, Bowie, CR, Schlicht, PJ, et al. Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J Clin Psychiatry 2013;74:1076–83.CrossRefGoogle ScholarPubMed
Douglas, KM, Peckham, A, Porter, R, Hammar, A. Cognitive enhancement therapy for mood disorders: a new paradigm? Aust N Z J Psychiatry 2019;53:1148–50.CrossRefGoogle ScholarPubMed
Burdick, KE, Lewandowski, KE, Van Rheenen, TE. Entering the debate: cognitive enhancement therapy for mood disorders: a new paradigm? Bipolar Disord 2020;22:305–6.CrossRefGoogle ScholarPubMed
Porter, RJ, Bowie, CR, Jordan, J, Malhi, GS. Cognitive remediation as a treatment for major depression: a rationale, review of evidence and recommendations for future research. Aust N Z J Psychiatry 2013;47:1165–75.CrossRefGoogle ScholarPubMed
Listunova, L, Roth, C, Bartolovic, M, et al. Cognitive impairment along the course of depression: non-pharmacological treatment options. Psychopathology 2018;51:295305.CrossRefGoogle ScholarPubMed
Bowie, CR, Gupta, M, Holshausen, K. Cognitive remediation therapy for mood disorders: rationale, early evidence, and future directions. Can J Psychiatry 2013;58:319–25.CrossRefGoogle ScholarPubMed
Martínez-Arán, A, Torrent, C, Solé, B, et al. Functional remediation for bipolar disorder. Clin Pract Epidemiol Ment Health 2011;7:112–16.CrossRefGoogle ScholarPubMed
Bowie, CR, Gupta, M, Holshausen, K, et al. Cognitive remediation for treatment-resistant depression: effects on cognition and functioning and the role of online homework. J Nerv Ment Dis 2013;201.CrossRefGoogle ScholarPubMed
Naismith, SL, Redoblado-Hodge, MA, Lewis, SJ, Scott, EM, Hickie, IB. Cognitive training in affective disorders improves memory: a preliminary study using the NEAR approach. J Affect Disord 2010;121:258–62.CrossRefGoogle ScholarPubMed
Meusel, L-AC, Hall, GBC, Fougere, P, McKinnon, MC, MacQueen, GM. Neural correlates of cognitive remediation in patients with mood disorders. Psychiatry Res 2013;214:142–52.CrossRefGoogle ScholarPubMed
Semkovska, M, Ahern, E. Online neurocognitive remediation therapy to improve cognition in community-living individuals with a history of depression: a pilot study. Internet Interv 2017;9:714.CrossRefGoogle ScholarPubMed
Motter, JN, Pimontel, MA, Rindskopf, D, et al. Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. J Affect Disord 2016;189:184–91.CrossRefGoogle ScholarPubMed
Listunova, L, Kienzle, J, Bartolovic, M, et al. Cognitive remediation therapy for partially remitted unipolar depression: a single-blind randomized controlled trial. J Affect Disord 2020;276:316–26.CrossRefGoogle ScholarPubMed
Deckersbach, T, Nierenberg, AA, Kessler, R, et al. Cognitive rehabilitation for bipolar disorder: an open trial for employed patients with residual depressive symptoms. CNS Neurosci Ther 2010;16:298307.CrossRefGoogle ScholarPubMed
Strawbridge, R, Tsapekos, D, Hodsoll, J, et al. Cognitive remediation therapy for patients with bipolar disorder: a randomised proof-of-concept trial. Bipolar Disord 2021;23:196208.CrossRefGoogle ScholarPubMed
Demant, KM, Vinberg, M, Kessing, LV, Miskowiak, KW. Effects of short-term cognitive remediation on cognitive dysfunction in partially or fully remitted individuals with bipolar disorder: results of a randomised controlled trial. PLoS One 2015;10:e0127955.CrossRefGoogle ScholarPubMed
Gomes, BC, Rocca, CC, Belizario, GO, et al. Cognitive behavioral rehabilitation for bipolar disorder patients: a randomized controlled trial. Bipolar Disord 2019;21:621–33.CrossRefGoogle ScholarPubMed
Lewandowski, KE, Sperry, SH, Cohen, BM, et al. Treatment to Enhance Cognition in Bipolar Disorder (TREC-BD): efficacy of a randomized controlled trial of cognitive remediation versus active control. J Clin Psychiatry 2017;78:e1242-e9.CrossRefGoogle ScholarPubMed
Ott, CV, Vinberg, M, Kessing, LV, et al. Effect of action-based cognitive remediation on cognitive impairment in patients with remitted bipolar disorder: a randomized controlled trial. Bipolar Disord 2020;23(5):487–99.Google ScholarPubMed
Bonnin, CM, Reinares, M, Martínez-Arán, A, et al. Effects of functional remediation on neurocognitively impaired bipolar patients: enhancement of verbal memory. Psychol Med 2016;46:291301.CrossRefGoogle ScholarPubMed
Bonnin, CM, Torrent, C, Arango, C, et al. Functional remediation in bipolar disorder: 1-year follow-up of neurocognitive and functional outcome. Br J Psychiatry 2016;208:8793.CrossRefGoogle ScholarPubMed
Torrent, C, del Mar Bonnin, C, Martínez-Arán, A, et al. Efficacy of functional remediation in bipolar disorder: a multicenter randomized controlled study. Am J Psychiatry 2013;170:852–9.CrossRefGoogle ScholarPubMed
Solé, B, Bonnin, CM, Mayoral, M, et al. Functional remediation for patients with bipolar II disorder: improvement of functioning and subsyndromal symptoms. Eur Neuropsychopharmacol 2015;25:257–64.CrossRefGoogle ScholarPubMed
Solé, B, Bonnín, CM, Radua, J, et al. Long-term outcome predictors after functional remediation in patients with bipolar disorder. Psychol Med 2022;52(2):314922.CrossRefGoogle ScholarPubMed
Ehrminger, M, Brunet-Gouet, E, Cannavo, A-S, et al. Longitudinal relationships between cognition and functioning over 2 years in euthymic patients with bipolar disorder: a cross-lagged panel model approach with the FACE-BD cohort. Br J Psychiatry 2021;218:80–7.CrossRefGoogle ScholarPubMed
Valls, È, Bonnín, CM, Torres, I, et al. Efficacy of an integrative approach for bipolar disorder: preliminary results from a randomized controlled trial. Psychol Med 2021;52(16):112.Google ScholarPubMed
Brunoni, AR, Boggio, PS, De Raedt, R, et al. Cognitive control therapy and transcranial direct current stimulation for depression: a randomized, double-blinded, controlled trial. J Affect Disord 2014;162:43–9.CrossRefGoogle ScholarPubMed
Martinez-Aran, A, Vieta, E, Colom, F, et al. Neuropsychological performance in depressed and euthymic bipolar patients. Neuropsychobiology 2002;46:1621.CrossRefGoogle ScholarPubMed
Martinez-Aran, A, Penades, R, Vieta, E, et al. Executive function in patients with remitted bipolar disorder and schizophrenia and its relationship with functional outcome. Psychother Psychosom 2002;71:3946.CrossRefGoogle ScholarPubMed
Silverstein, ML, Harrow, M, Mavrolefteros, G, Close, D. Neuropsychological dysfunction and clinical outcome in psychiatric disorders: a two-year follow-up study. J Nerv Ment Dis 1997;185:722–9.CrossRefGoogle ScholarPubMed
Douglas, KM, Gallagher, P, Robinson, LJ, et al. Prevalence of cognitive impairment in major depression and bipolar disorder. Bipolar Disord 2018;20:260–74.CrossRefGoogle ScholarPubMed
Van Rheenen, TE, Lewandowski, KE, Tan, EJ, et al. Characterizing cognitive heterogeneity on the schizophrenia-bipolar disorder spectrum. Psychol Med 2017;47:1848–64.CrossRefGoogle ScholarPubMed
Burdick, KE, Russo, M, Frangou, S, et al. Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: clinical implications. Psychol Med 2014;44:3083–96.CrossRefGoogle ScholarPubMed
Iverson, GL, Brooks, BL, Langenecker, SA, Young, AH. Identifying a cognitive impairment subgroup in adults with mood disorders. J Affect Disord 2011;132:360–7.CrossRefGoogle ScholarPubMed
Cunningham, JEA, Shapiro, CM. Cognitive behavioural therapy for insomnia (CBT-I) to treat depression: a systematic review. J Psychosom Res 2018;106:112.CrossRefGoogle ScholarPubMed
Lancee, J, van Straten, A, Morina, N, Kaldo, V, Kamphuis, JH. Guided online or face-to-face cognitive behavioral treatment for insomnia: a randomized wait-list controlled trial. Sleep 2016;39:183–91.CrossRefGoogle ScholarPubMed
Sweetman, A, Lovato, N, Micic, G, et al. Do symptoms of depression, anxiety or stress impair the effectiveness of cognitive behavioural therapy for insomnia? A chart-review of 455 patients with chronic insomnia. Sleep Med 2020;75:401–10.CrossRefGoogle ScholarPubMed
Manber, R, Edinger, JD, Gress, JL, et al. Cognitive behavioral therapy for insomnia enhances depression outcome in patients with comorbid major depressive disorder and insomnia. Sleep 2008;31:489–95.CrossRefGoogle ScholarPubMed
Cheng, P, Luik, AI, Fellman-Couture, C, et al. Efficacy of digital CBT for insomnia to reduce depression across demographic groups: a randomized trial. Psychol Med 2019;49:491500.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×