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ABSTRACT: Rational decision-making is crucial in the later stages of engineering system design to allocate
resources efficiently and minimize costs. However, human rationality is bounded by cognitive biases and
limitations. Understanding how humans deviate from rationality is critical for guiding designers toward better
design outcomes. In this paper, we quantify designer rationality in competitive scenarios based on utility theory.
Using an experiment inspired by crowd-sourced contests, we show that designers employ varied search strategies.
Some participants approximate a Bayesian agent that aimed to maximize its expected utility. Those with higher
rationality reduce uncertainty more effectively. Furthermore, rationality correlates with both the proximity to
optimal design and design iteration costs, with winning participants exhibiting greater rationality than losing
participants.
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1. Introduction
Designers frequently face decisions requiring the evaluation of trade-offs, often relying on a subset of
available data or known alternatives to identify optimal solutions under time and resource constraints.
Consequently, rational decision-making under uncertainty becomes crucial, particularly in the later
stages of design, to efficiently allocate resources and minimize costs associated with unforeseen design
changes while preserving the overall quality of the engineering system.
From Rationality to Bounded Rationality. Several models have been proposed in the literature to explain
human decision-making behaviors under uncertainty. One prominent example is the von Neumann–
Morgenstern utility theory, which defines an individual’s utility as the sum of the values of mutually
exclusive decision alternatives, each weighted by their respective probabilities (Von Neumann and
Morgenstern, 2007). According to this theory, a rational choice maximizes expected utility. However,
designers are known to exhibit bounded rationality in practice (Gurnani and Lewis, 2008). Bounded
rationality describes the constraints on human judgment due to limited cognitive abilities and restricted
capacity to process information (Simon, 1990). It suggests that individuals typically adopt a satisficing
strategy—seeking solutions that adequately meet their objectives rather than exhaustively searching
for optimal solutions. For instance, Taylor (1975) noted that when decision-makers encounter
information overload, they simplify problems and disregard certain options, further constraining their
rationality.
Alternative frameworks, such as prospect theory (Kahneman and Tversky, 1979) and regret theory
(Loomes and Sugden, 1982), help to explain why individuals deviate from complete rationality. These
theories demonstrate that people employ mental shortcuts such as emphasizing relative gains or losses
rather than absolute outcomes to simplify decision-making. Thus, examining how individuals manage
cognitive limitations, and psychological factors can help researchers better understand and predict
inconsistencies in human decisions (Jordao et al., 2020; Hernandez and Ortega, 2019; Camerer, 1998).

ICED25 249

https://doi.org/10.1017/pds.2025.10039
mailto:bayrak@lehigh.edu


Influence of Competitive Pressures and Dynamic Decision-Making. Bounded rationality arises not only
from cognitive limitations but also from external factors, such as complex decision environments and
competitive pressures. In competitive environments, decision-makers often experience increased
cognitive strain, shifting from pure optimization toward strategies involving overcompensation—such as
allocating additional resources to match or surpass competitors’ perceived performance. Chan and
Ybarra (2002) demonstrated that individuals tend to underestimate the capabilities of their partners but
overestimate those of their opponents during competition. Similar competitive behaviors are observed in
engineering design contexts; for instance, our previous study indicated that designers often overestimate
their opponents’ performance, resulting in excessive resource allocation or overly cautious design
choices aimed at mitigating perceived risks (Bayrak and Sha, 2021).
Traditional game theory provides a foundational framework for understanding how decisions are
optimized based on expectations of competitors’ actions. Research on dynamic competitive decision-
making further shows that individuals frequently adjust strategies in response to competitor actions,
continuously updating beliefs—a process modeled as a dynamic game (Chen and Wang, 2010). This
adaptive behavior compels designers to iteratively refine strategies, especially under uncertainty or
limited information. Consequently, competitive behavior demonstrates considerable flexibility, with
decision-makers regularly adapting choices based on cognitive assessments and external pressures
(Tolston et al., 2017).
Sequential Decision-Making and Bayesian Inference in Engineering Design. In engineering design,
designers typically engage in sequential decision-making due to the cognitive load associated with
considering numerous solutions simultaneously and the need to adapt to dynamic conditions, such as
competitor strategies or market fluctuations. Consequently, they refine their strategies iteratively across
multiple stages. One critical aspect of rational decision-making in this context is forming and updating
beliefs about uncertain factors, such as user preferences, technological advancements, or competitor
actions. This process resembles Bayesian inference, wherein prior beliefs are updated based on new
information. Engineers start with prior knowledge from past projects, market trends, or simulations, and
as new data emerges—through prototyping, competitor releases, or experimental findings—they update
these priors, refining their expectations and adjusting design decisions accordingly.
Our Contribution to Designer Rationality Assessment. The existing literature extensively describes
human factors contributing to bounded rationality. However, there is a gap for quantitative metrics
assessing designer rationality throughout the design process, especially in competitive environments.
In this paper, we propose a mathematical approach inspired by both the von Neumann–Morgenstern
utility principle, where rational decisions maximize expected utility. We develop a rational design
agent that performs exploration within an unknown design space based on Bayesian inference, serving
as an ideal baseline for quantifying the rationality of human decision-makers. We use the similarity
between human design exploration and Bayesian inference to illustrate how human subjects deviate
from rational behavior. We present results from our rationality assessment using experimental data
from a study in which designers explored an unknown design space under competitive conditions.

2. Experiment Setup
The analysis in this study is based on the design decision-making data collected from a prior experiment
designed to examine decision-making in 1 vs. 1 design competition (Sha et al., 2015; Panchal et al.,
2017). Participants of this experiment played a function optimization game against an opponent. Each
participant’s objective was to sample values within a design space to minimize an unknown function F(x)
while incurring a sampling cost per trial. The participant who found a lower F(x) wins specified number
of tokens Π, minus any sampling costs. Participants were paired with different opponents in each round
to eliminate reputation effects. Four sessions were conducted in total. Each session had multiple
participants, each completing 15 rounds per treatment. To account for potential learning effects, the first
five rounds were excluded from the analysis. The unknown function had a quadratic form with constants
a and b, randomly chosen in each period within specified boundaries, given by F(x) = (x − a)2 + b, where
x [−100,100] and (a, b) [−70,70]. Each trial allowed participants to sample a value of x, and the
corresponding F(x) value was revealed to them at a cost c for each sample. The experiment involved two
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cost treatments: a low-cost treatment (c = 10 tokens per trial) and a high-cost treatment (c = 20 tokens per
trial), with a fixed winning prize of Π = 200 tokens for both cost treatments.
This function optimization game represents an abstraction of a configuration design task or a parametric
design problem in the detailed design stage where a design domain has been well defined with decision
variables, and the artifact being designed is constructed from a predefined set of components (McComb
et al., 2017; Baldwin and Clark, 2000). Sha et al. (2015) states that the nature of this game is sufficiently
general to capture some of the key characteristics of engineering design processes, as outlined below.

(C1) “A designer’s goal is to find the best design quantified by certain objective values.”
(C2) “Designers assess the performance of potential designs using simulations or physical
experiments.”

(C3) “The design search process incurs costs, which may include monetary expenses or resource
expenditures such as computational power and human effort.”

(C4) “Investing more resources in exploring the design space enhances understanding, leading to
higher-quality designs.”

The context-free configuration of this game helps reduce variations among decision-makers due to
differences in domain knowledge, thereby minimizing noise in the data. The experimental setup induces
two types of uncertainty: uncertainty in the design space due to the unknown objective function and
uncertainty in opponent performance under competition. This setup requires participants to sequentially
make two essential decisions under uncertainty in each period of the game: the choice of the next x and
the decision of whether to stop or continue.

3. Methodology
We follow (Icard, 2018) and use Bayesian Optimization (BO) (Frazier, 2018) to model a rational
decision-making process under design space uncertainty, as BO—where the Gaussian Process (GP)
posterior is updated after each function evaluation—appears to align with the strategy humans might
naturally use (Borji and Itti, 2013). Furthermore, GP models effectively describe how humans learn
functions, particularly for simple functional relationships like linear and quadratic patterns (Griffiths
et al., 2008). BO with different acquisition functions has been used to model and mimic human decisions
in the literature (Chaudhari et al., 2020). In our study, BO does not mimic human decision-making but
rather serves as a baseline model to assess the rationality of the participating designers in the
experimental data using distance measures. In this section, we provide a brief introduction to the
preliminaries of BO and how it is implemented with the experiment data in the reference study to assess
design rationality.

3.1. Bayesian Optimization
BO is a probabilistic model-based optimization method commonly used to find the global optimum of
expensive-to-evaluate functions. A typical BO process comprises two major components (i) A statistical
inference method, typically Gaussian process regression, serves as a surrogate model to approximate the
underlying function; (ii) an acquisition function to decide where to sample in the design space which will
be the core component to model a rational search process in this study.
Gaussian Process. The goal of Gaussian processes (GP) is to learn the underlying distribution of the
objective function F(x) from a set of observations D � �x1:k; f�x1 : k�� (Rasmussen, 2004). GPs define a
distribution over functions, assuming that the surrogate model f(x) is jointly Gaussian and any finite set of
dataset D follows a multivariate Gaussian distribution as in Eq. 1.

f�x1:k� � GP�µ0�x1:k�;
X

0
�x1:k ; x1:k�� (1)

where the mean vector, μ0(x1:k) = [μ0(x1), : : : , μ0(xk)] evaluated by each x1, : : : , xk, and, the covariance
matrix, Σ0(x1:k, X1:k) is constructed by the covariance Σ0(.,u.) between each observation. Given the
observation data D, the posterior probability distribution is defined as Eq. 2.

f �x�jf�x1:k� � GP�µ�x�; σ2�x��
µ�x� � P

0�x; x1:k�
P

0�x1:k ; x1:k��1�f�x1:k� � µ0�x1:k�� � µ0�x�
σ2�x� � P

0�x; x� �
P

0�x; x1:k�
P

0�x1:k ; x1:k��1
P

0�x1:k ; x�
(2)
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where the posterior mean μ(x) and variance σ2(x) represent the prediction of the model and the
corresponding uncertainty, respectively, in the objective function at the point x. We set the prior mean μ0
to zero and employ the Matérn kernel to construct the covariance matrix.
Acquisition function. BO decides where to sample next by minimizing or maximizing its acquisition
function. Building upon the surrogate model, acquisition function allows searching the design space
strategically in regions where the uncertainty is significant (exploration) and where the model predicts
high values (exploitation). Several acquisition functions are widely used in BO, such as Expected
Improvement (Jones et al., 1998), and Lower Confidence Bound (Srinivas et al., 2012). Following the
von Neumann–Morgenstern utility theorem, we use the Expected Improvement (EI) as the acquisition
function to model a rational search process. EI aims to strike a balance between exploration and
exploitation as follows:

αEI�x; ξ� � �µ�x� � f �x�� � ξ�Φ µ�x� � f �x�� � ξ

σ�x�
� �

� σ�x�ϕ µ�x� � f �x�� � ξ

σ�x�
� �

(3)

where x* is the current best value, ϕ and φ are the cumulative distribution and probability density
functions, respectively. A hyper-parameter ξ is used to control the exploration-exploitation behaviors.

3.2 Rationality Assessment
In this paper, we define a rational decision-making process as choosing the highest expected utility under
uncertainty, as per Von Neumann-Morgenstern Utility Theorem. In black-box design space exploration,
a BO process with EI as the acquisition function meets the requirements of Von Neumann- Morgenstern
rationality. We quantify the rationality of participants as a continuous measure using the absolute
distance between a participants guesses and the points evaluated by EI using the past decisions.
Let D�S�

n � f�x�S�1 ;F�x�S�1 ��; �x�S�2 ;F�x�S�2 ��; . . . ; �x�S�n ;F�x�S�n ��g be the set of the first n sampled points by

participant S. We train a GP model on D�S�
n , constructing a surrogate function f �x�jD�S�

n

� GP�µn�x�; σ2
n�x��. The total variance of the GP estimation is computed as the discrete sumP

k2K
σ2
n�xk� over a gridK in the design space, which serves as a measure of uncertainty. Then, BO employs

EI to obtain an information acquisition function αEI�xjD�S�
n � to determine the next sampling location:

x�EI�n�1 � argmax
x

αEI�xjD�S�
n � (4)

where the corresponding objective function value F�x�EI�n�1� is recorded for comparison and is denoted as
y�EI�n�1 for brevity. The BO process proceeds iteratively from the (n + 1)th decision to the final decision,
updating the dataset to retrain the GP at each step n:

D�S�
n�1 � D�S�

n [f�xn�1;F�xn�1��g; 8n 2 fn; . . . ; e � 1g (5)

where e represents the total number of decisions made in each trial which is different for each S. The set
of decisions predicted by EI, f�x�EI�i ; y�EI�i �gei�n�1, is compared with the actual decisions made by

participant S, f�x�S�i ; y�S�i �gei�n�1, using absolute distance measures in both the design and objective
spaces. Finally, we compute the mean absolute difference between the decisions predicted by EI and the
actual decisions made by participant S over i, as described in Eq. 6. Additionally, we calculate the mean
total uncertainty that each S represents in each round, as shown in Eq. 7.

ρ̄x �
1

e � n

Xe
i�n�1

jx�EI�i � x�S�i j; ρ̄y �
1

e � n

Xe
i�n�1

jy�EI�i � y�S�i j: (6)

Ū � 1
�e � n � 1�

Xe�1
n

X
k2K

σ2
n�xk� (7)

The absolute difference between EI and S represents instantaneous rationality of S at iteration i in the
search process, and ρ�y and ρ�y represent the overall rationality as an average quantity. We choose absolute
distance as the simplest measure for 1-D design space exploration while for higher dimensions, other
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distance measures can be considered. To test the relationship between rationality and uncertainty, we
measure design uncertainty Ū, using the mean of the total variance in the GP estimation at each n. Also,
to test whether rationality ρ̄ is influenced by the distance to the optimum function value, we define a
proximity measure, δ̄, to the true optimum as a performance measure of the participant S.

δ̄x �
1

e � n

Xe
i�n�1

jx�S�i � x�j; δ̄y �
1

e � n

Xe
i�n�1

jy�S�i � f �x��j: (8)

where x* represents the location of the minimum function value f(x*).

4. Results and Discussion
The game dataset used in this study comprises 3,224 individual decisions. Calculating the mean
performances reduces the size to 757 aggregated data points. To analyze this dataset, we set the
exploration-exploitation parameter (ξ) in Eq. 3 to 0.01 and use a length scale of l = 1 and a smoothness
parameter of v = 1.5 in the GP. The number of design iterations performed by the participants was limited
due to cost constraints in the experiment. Thus, we start with n = 3 to train the GP and start the analysis
with each participant’s fourth decision onward. We omit the data points where participants finished the
round with fewer than four design samples.

4.1. Nature of the Data and Methods of Analyses
An initial analysis on the measures described in Sec. 3 show that the original values in the raw data do not
follow a normal distribution. As seen in Fig. 1(a), the data is highly skewed and contains many outliers.

Since our primary objective is to examine the Pearson correlation between the metrics introduced in Sec.
3.2, approaching normality is essential for ensuring the validity of the correlation coefficients and for
reducing skewness and kurtosis, thereby enhancing the confidence in our analyses.

4.1.1. Data Transformation
The raw data in Fig. 1(a) shows that all variables demonstrate significant right-skewness; most data
points are closer to the lower end of their ranges, with a long tail extending to higher values. To address
this skewness and improve normality, we first shift the data to ensure all values are positive, anchoring

Figure 1. Comparison of the Data Before and After the Transformation
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the minimum values at 1 for maximum effectiveness in transformation (Osborne, 2002). Then we apply,
a natural log transformation to the shifted data. Table 1 shows that the transformed data presents reduced
skewness across variables and the distributions are closer to normal. Although the transformed data still
does not fully satisfy normality requirements based on the Shapiro-Wilk test (Shapiro and Wilk, 1965),
Fig. 1(b) indicates proximity to normal distributions. To represent the transformed data, we use tildes (~)
instead of bars (−) over the variables.

4.1.2. Clustering Analyses
In addition to the skewness, another important characteristic we observe in the data is a mix of human
behaviors as opposed to uniform trend presented by the participants. Fig. 2(a) shows a scatter plot of
participants’ rationality versus the proximity measure in Eq. 8. This plot visually reveals two distinct
trends, making the analysis of the entire data as a whole uninformative, as opposing correlations cancel
each other out. After testing several clustering methods, including k-means and density-based clustering,
we use Gaussian mixture model to separate the two clusters as shown in Fig. 2(b), which provides the
best visual separation. Gaussian mixture clustering is a probabilistic method that assumes data points are
generated from a mixture of multiple Gaussian distributions, each representing a different cluster (Fraley
and Raftery, 1998). Gaussian Mixture Models assign probabilities to data points, allowing them to
belong to multiple clusters simultaneously. In our case, we use hard clustering after assigning the
probabilities, resulting in two distinct clusters. Both clusters contain a mix of winning and losing players,
as well as decisions from both low-cost and high-cost treatments. There are no significant differences in
the percentages of winning status or cost treatments between the two clusters. However, Cluster 1
comprises 30% of the overall dataset, while Cluster 0 accounts for 70%.

4.2. Rationality and Proximity to the Optimal Solution
We examine the relationship between participants proximity to the true optimum and their rationality by
analyzing the correlations between the ρ̃y and δ̃y. We perform this analysis separately for the groups
identified by the clustering approach. We present the scatter plots and the Pearson correlation metrics in
Fig. 3. Although the results indicate similar behaviors in both the design and objective spaces, the
objective space provides more robust results. In the experiment, F(x) changed in each round and the
participants needed to base their strategies on the function response, i.e., the values in the objective space.
As seen in Fig. 3, the points in the design space are spread over a wider area, resulting in slightly lower
correlation coefficients. This behavior extends beyond rationality and proximity to other relationships.
Thus, we present only the findings in the objective space in the remainder of the paper.
Cluster 1 shows a direct correlation with r = 1.00 in the objective space, suggesting that participant
decisions in that cluster approaches rational decisions as they find values closer to the true optimum in
their search. On the other hand, Cluster 0 exhibits the opposite behavior, albeit with a weaker correlation
(r = −0.33). The results remain statistically significant. Decisions in this cluster become more irrational
as participants approach true optimum. The data used in this paper does not provide any further insight
into the underlying cause of this contradictory behavior and we leave further analysis as a topic for future
study with additional experiments. However, we show that human participants can employ a multitude of
search strategies and an any future investigation must account for that fact.

Table 1. Summary of the Descriptive Statistics

Metric Mean StdDev Skewness Kurtosis

ρ̄x 40.31 33.14 0.97 0.52
ρ̄y 2746.05 3702.37 2.76 10.71
δ̄x 8.76 11.02 4.04 22.10
δ̄y 250.13 819.75 7.21 61.97
Ū 1.11E+09 1.65E+09 4.51 35.58
ρ
x

3.30 1.03 -0.59 -0.43
ρ
y

6.81 1.93 -0.99 0.59
δ
x

1.92 0.79 0.45 0.41
δ
y

3.97 1.70 0.17 0.17
Ũ 19.55 2.27 -1.83 7.90
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4.3. Uncertainty and Its Impact on Rationality
To examine the impact of design space uncertainty as defined in Eq. 7 on rationality, we analyze the
scatter plot between ρ̃

y

and Ũ in Fig. 4. Similar to our analysis in Sec. 4.2, the behavior of clusters
indicates a conflict: Cluster 1 shows a moderate positive correlation with r = 0.51, while Cluster 0 shows
a weak negative correlation with r = −0.44. Both of these correlations are statistically significant.
Although the correlation between ρ̃y and Ũ is not as strong as that between ρ̃y and δ̃y in Cluster 1, it still
indicates that the decisions in that group tend to approach closer to rationality as uncertainty in the design
space decreases. However, Cluster 0 directly contradicts this interpretation with an opposite behavior.

4.4. Rationality and Competitive Success
Although BO with EI as a rational search process neglects the competition factor that exists in the
experiment, we analyze the rationality of winning and losing participants to understand the trends in each
group of participants. We show the box-plots of ρ̃y for winners and losers in both clusters in Fig. 5. The
figure shows that the median values and ranges of winners are significantly lower than those of losers in
Cluster 1, suggesting that winners make decisions closer to rational ones in that cluster. However, there
appears to be no clear distinction in Cluster 0 based on winning status.
To further analyze these results, we apply the Mann-Whitney U test to both clusters and across both cost
treatments. The Mann-Whitney U test is a non-parametric statistical test used to determine whether there
is a significant difference between the distributions of two independent groups (Mann and Whitney,
1947). Unlike parametric tests, it does not assume normality and instead compares the ranks of the data,
making it suitable for ordinal or non-normally distributed datasets. This approach is particularly relevant
to this study since neither the raw nor the transformed data follow a normal distribution. Table 2 displays

Figure 3. Correlation results between ρ̃y and δ̃y

Figure 2. Comparison of Rationality vs Proximity to True Optimum in the Objective Space
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the p-values for the different tests conducted to compare the winning and losing participants in two
clusters and cost treatments. In Cluster 1, results with p < 0.05 indicate that winners exhibit lower
rationality measures than losers across both treatments, suggesting more rational choices. In contrast, in
Cluster 0, only the low-cost treatment shows significant differences, while the high-cost treatment lacks
consistency across clusters. These findings underscore the impact of cost treatment on rational
decisionmaking. Given our rational process model does not explicitly account for the effect of
competition in the search behaviors, it is expected the low-cost treatment to provide better differentiation
since the participants may not feel the pressure of competition in this treatment as much as they do in
high-cost treatment. When cost of search is higher, the participants may be more careful in their design
decisions and a model that accounts for the competition may be necessary to understand this distinction.

Figure 4. Correlation results between ρ̃y and Ũ

Figure 5. Rationality comparison between winners and losers

Table 2. Mann-Whitney U Test Results Comparing Winning and Losing Participants

Cluster group Cost type U stat. p-value

Low Cost 72172 0
Cluster 1 High Cost 10059 0

Low Cost 158226 0.0130
Cluster 0 High Cost 69794.5 0.2706
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5. Conclusion
In this paper, we investigated rational decision-making under uncertainty in engineering systems design
based on the data from a 1 vs. 1 function optimization game. We used BO with EI as a baseline to assess
participants’ behaviors. The findings of this study may have important implications for real-world design
problems that exhibit the design characteristics mentioned in Sec. 2. Our results quantified how much
each participantdeviated from purely rational search behaviors. Notably, the competition winners
exhibited higher rationality. These results highlight an opportunity for designers to integrate Bayesian
optimization-driven rational agents that can collaborate with human decision-makers, influencing their
search strategies based on the design objective. For instance, these agents could guide designers toward
unexplored regions of the design space, promoting solution diversity or navigate them toward
exploitation, thereby reducing uncertainty through systematic knowledge acquisition (C1). Since
uncertainty affects decision-making as shown in our study, such strategies could help designers make
more informed and rational choices (C2). Additionally, our preliminary analysis suggests that cost
influences participant rationality. When higher cost constraints are present, designers may be unable to
fully explore the design space, potentially leading to suboptimal solutions (C3–C4).
This work did not include the impact of competition in the baseline rational model, focusing solely on
developing metrics to assess individuals’ decision-making processes. Future studies should improve the
baseline rational decision-making model with competitive factors, potentially using game theory. Also,
the process in this paper is limited to individual decision-making whereas competitive design decisions in
practice are made in teams. Extending the analysis to competition with design teams could further
provide valuable insights that might be more applicable to design process followed in practice.
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