
TPLP: Page 1–16. c© The Author(s), 2025. Published by Cambridge University Press. This is an

Open Access article, distributed under the terms of the Creative Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068425100240

1

Generating Satisfiable Benchmark Instances for
Stable Roommates Problems with Optimization∗

BATURAY YILMAZ AND ESRA ERDEM
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkiye

(e-mails: baturayyilmaz@sabanciuniv.edu, esraerdem@sabanciuniv.edu)

submitted 27 July 2025; revised 27 July 2025; accepted 29 July 2025

Abstract

While the existence of a stable matching for the stable roommates problem possibly with incom-
plete preference lists (SRI) can be decided in polynomial time, SRI problems with some fairness
criteria are intractable. Egalitarian SRI that tries to maximize the total satisfaction of agents if
a stable matching exists, is such a hard variant of SRI. For experimental evaluations of methods
to solve these hard variants of SRI, several well-known algorithms have been used to randomly
generate benchmark instances. However, these benchmark instances are not always satisfiable
and usually have a small number of stable matchings if one exists. For such SRI instances,
despite the NP-hardness of Egalitarian SRI, it is practical to find an egalitarian stable matching
by enumerating all stable matchings. In this study, we introduce a novel algorithm to generate
benchmark instances for SRI that have very large numbers of solutions, and for which it is hard
to find an egalitarian stable matching by enumerating all stable matchings.

KEYWORDS: benchmark instance generation, stable roommates problem, answer set
programming

1 Introduction

Benchmark instances play an important role in empirical analysis of methods, and thus,

the generation of meaningful and/or hard benchmark instances has been studied for

various problems in AI (Selman et al . 1996; Prosser 2014; Torralba et al . 2021; Dang

et al . 2022) and OR (Pisinger 2005; Vanhoucke and Maenhout 2009). In this study, we

are interested in generating hard and meaningful benchmark instances for the stable

roommates problem possibly with incomplete preference lists (SRI) (Gale and Shapley

1962; Gusfield and Irving 1989).

In SRI, each agent provides a strictly ordered and possibly incomplete list of their

preferences over the other agents, and the goal is to find a roommate for each agent (if

possible) so that no two agents prefer each other more than their current roommates. SRI

(unlike the stable marriage problem) might admit no solutions (Gale and Shapley 1962).

∗ We thank Muge Fidan and Patrick Prosser for useful discussions and suggestions on benchmark
instance generation for matching problems and empirical evaluations of matching methods. We thank
the anonymous reviewers for their useful suggestions to improve our paper.

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240
https://orcid.org/0009-0002-5030-0901
https://orcid.org/0000-0001-8384-7810
mailto:baturayyilmaz@sabanciuniv.edu
mailto:esraerdem@sabanciuniv.edu
https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem2

The existence of a stable matching for SRI can be decided in polynomial time (Gusfield

and Irving 1989). On the other hand, SRI with some fairness criteria become intractable.

For instance, Egalitarian SRI, which tries to maximize the total satisfaction of agents if

a stable matching exists, is NP-hard (Feder 1992; Cseh et al . 2019).

For experimental evaluations of methods to solve hard optimization variants of SRI

(like the ASP-based methods in our earlier study (Erdem et al . 2020)), some well-known

algorithms and tools have been used to randomly generate benchmark instances (Gent

and Prosser 2022; Prosser 2014). For instance, we can randomly generate SRI instances

using Prosser’s software (SRItoolkit 2019) that is based on Mertens’ idea (2005) to gener-

ate a random graph ensemble G(n, p) according to the Erdös-Renyi model (1960), where

n denotes the number of agents and p denotes the probability of the mutual acceptability

of pairs of agents. Although such benchmark generators are useful for understanding var-

ious aspects of methods to solve SRI instances, they may not be sufficient for a thorough

and controlled experimental evaluation of methods for hard variants of SRI, due to the

following challenges we have observed in our studies and real-world applications (Fidan

and Erdem 2021).

Challenge 1.

The SRI benchmark instances randomly generated by the existing methods usually have

a small number of stable matchings if one exists. For instance, the benchmark instances

generated for empirical analysis by Erdem et al . (2020) have less than four stable match-

ings in average. In such cases, an egalitarian stable matching can be found naively by

enumerating all stable matchings. As Prosser notes (Prosser 2014): “Therefore, although

NP-hard, we would fail to encounter a hard instance in the problems sampled. So, (as

Cheeseman, Kanefsky and Taylor famously asked (1991)) where are the hard problems?”

With the existing methods, generating hard instances for optimization variants of SRI,

in the spirit of Prosser’s discussions (i.e., with too many stable matchings that are hard

to enumerate), is challenging.

Challenge 2.

SRI (unlike the stable marriage problem) might admit no solutions (Gale and Shapley

1962), and the SRI benchmark instances randomly generated by the existing methods

are not always satisfiable. For instance, almost half of the benchmark instances gener-

ated for empirical analysis by Erdem et al . (2020) for 80 agents do not have a stable

matching. On the other hand, for controlled empirical analysis, it is desirable to be able

to generate instances that have stable matchings. Ensuring the satisfiability of instances

while generating them using the existing methods is challenging.

Challenge 3.

To investigate the applicability of the proposed methods for SRI in the real world, it is

desirable that the instances are also meaningful. For instance, in a real-world application

of SRI at a university, it would not be meaningful to request long and strictly ordered

preference lists from students; usually, the preference lists would be short (e.g., containing

3–5 choices) and might include ties (SRTI). Generation of such meaningful SRTI instances

by the existing methods is challenging.

In this study, motivated by these three challenges and the need for useful benchmark

instances for empirical studies of SRTI, our contributions can be summarized as follows:

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 3

Contribution 1.

We introduce a method to generate hard benchmark instances for SRI possibly with Ties,

which have a large number of (e.g., over 106) stable matchings, and for which it would

not be practical to find an optimal (e.g., egalitarian) stable matching by enumerating all

stable matchings.

Contribution 2.

We introduce a “seed & combine” methodology underlying our method: (1) we generate

small yet hard “seed” instances with respect to desired features, and (2) we construct

large instances by “combining” these difficult seeds intelligently.

Contribution 3.

For (1), we utilize answer set programming (ASP) (Marek and Truszczyński 1999;

Niemelä 1999; Lifschitz 2002; Brewka et al ., 2011, 2016) – a declarative programming

paradigm based on answer set semantics (Gelfond and Lifschitz, 1988, 1991), due to its

expressive knowledge representation languages and efficient solvers. For (2), we introduce

a novel algorithm.

We illustrate the usefulness of our method with examples and conclude with a

discussion on its applicability to egalitarian one-to-one stable matching problems in

general.

2 Generating solvable hard seed instances

Our first objective is to generate “seed” SRTI instances that are small (i.e., with small

number of agents and with short preference lists) yet that are hard in the spirit of Prosser

(i.e., that have very large number of stable matchings).

2.1 Problem definition: seed-srti-sat

We consider the definition of SRTI and Egalitarian SRTI as in our earlier study (Erdem

et al . 2020). Let us briefly remind the relevant definitions.

An SRTI instance is characterized by a nonempty set A of agents, and a collection

≺ of preference lists ≺x of every agent x in A. The preferences of an agent x can be

characterized by their ranks: for every agent y, if y is the i’th preferred agent by x, then

its rank r(x, y) is i; here 1≤ r(x, y)≤ n− 1. Therefore, if an agent x prefers agent y to

agent z, then r(x, y)< r(x, z). If an agent x has the same preference for different agents

y and z (i.e., x is indifferent to y and z), then r(x, y)=r(x, z), and the preference list ≺x

contains a tie between y and z. Note that if there is no tie in any preference list of any

agent, then the problem becomes SRI.

For every pair {x, y} of different agents, if x and y prefer each other (i.e., x∈≺y

and y ∈≺x), then x and y are mutually acceptable to each other. Then a matching µ

is characterized by the union of a set of pairs of mutually acceptable agents that are

matched to each other, and a set of single agents. For every pair {x, y} of agents that

are mutually acceptable but not matched to each other in µ, we say that {x, y} blocks

the matching µ if one of the following conditions hold: both agents are single in µ, one

of the agents x is single and the other agent y prefers x to its current matched partner,

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem4

or both agents are matched in µ but prefer each other to their current partners. A

matching for a given SRTI instance is stable if there is no such blocking pair of agents. An

SRTI instance that has a stable matching is satisfiable; otherwise, it is called unsatisfiable.

Now, let us proceed with our definitions. We define a satisfiable seed SRTI instance as

follows.

Definition 1

(Satisfiable seed SRTI instances). Given positive integers n>1, m<n, and k, a satisfiable

(n,m, k)-seed SRTI instance (I, SI) is a pair of

• an SRTI instance I=(A,≺) for a nonempty set A of agents with preference lists ≺
where |A|=n, and | ≺x |≤m for every agent x in A, and

• a set SI of exactly k different stable matchings for I.

We are interested in the problem of generating such satisfiable seed SRTI instances to

construct benchmarks for SRTI.

Definition 2

(seed-srti-sat). Given positive integers n>1, m<n, and k, seed-srti-sat is the problem of

deciding the existence of a satisfiable (n,m, k)-seed SRTI instance.

We generate such satisfiable (n,m, k)-seed SRTI instances, using ASP.

2.2 Solving seed-srti-sat using ASP

Our ASP formulation of seed-srti-sat consists of three parts. The first part generates

preference lists of length at mostm, for each agent. Given such preference lists, the second

part generates k different matchings, and the third part ensures that each matching is

stable.

Part 1: Generating preference lists

Suppose that the input is described by positive integers n>1, m<n and k.

First, for each agent, we generate a preference list of length at most m. Suppose that

a preference list ≺a1
of an agent a1 is described by atoms of the form arank(a1, a2, r)

(“agent a2 has rank r in the preference list ≺a1
of a1”).

For each agent a1 and for each rank r, we nondeterministically choose a subset of

agents a2 and include them in the preference list of a1 at rank r, by the choice rule:

{arank(a1, a2, r) : 1≤ a2≤n, a1 �=a2}. (1≤ a1≤n; 1≤r≤m)

We ensure that a2 has a unique rank r in the preference list of a1 by the constraints:

← arank(a1, a2, r), arank(a1, a2, r1). (1≤ a1, a2≤n; a1 �=a2; 1≤r, r1≤m; r �=r1)

Here we also make sure that the ranks start from 1 and are consecutive:

← not arank(a, , r− 1), arank(a, , r). (1≤ a≤n; 2≤r≤m)

Lastly, we ensure that the preference lists contain at most m agents:

← #count{a2 : arank(a1, a2,)}>m. (1≤a1≤n)

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 5

Part 2: Generating k different matchings

We ensure that the SRTI instance (A,≺) generated above has k matchings.

First, we define the mutual acceptability of two agents a1 and a2, and the preference

of an agent a1 over another agent a2 by an agent a by the rules:

acceptable(a1, a2)← arank(a1, a2,), arank(a2, a1,). (1≤ a1, a2≤n; a1 �=a2)

aPrefers(a, a1, a2)← arank(a, a1, r1), arank(a, a2, r2).

(1≤ a, a1, a2≤n; a1 �=a2; 1≤r1, r2≤m; r1<r2)

Next, we generate k matchings. Suppose that atoms of the form matched(a1, a2, i)

denote that agent a1 is assigned to agent a2 in matching i. At every matching i, for every

acceptable pair of agents a1 and a2, we nondeterministically decide to assign a2 to a1:

{matched(a1, a2, i) : acceptable(a1, a2)}1. (1≤a1, a2≤n; a1 �=a2; 1≤i≤k)
We ensure that this assignment is symmetric:

←matched(a1, a2, i), not matched(a2, a1, i). (1≤a1, a2≤n; 1≤i≤k)
and that an agent a cannot be assigned to two different agents a1 and a2:

←matched(a, a1, i), matched(a, a2, i). (1≤a, a1, a2≤n; a �=a1, a2; a1 �=a2; 1≤i≤k)
Next, for every matching i, we identify every agent a who is not assigned to another

agent:

aSingle(a, i)← not matched(a, , i). (1≤a≤n; 1≤i≤k)
Next, we ensure that these k matchings are different from each other. For two matchings

i1 and i2, first we define when they are different: if there exists an agent a who is assigned

to different agents a1 and a2 in them.

hasDifferentPairs(i1, i2)←matched(a, a1, i1),matched(a, a2, i2).

(1≤a, a1, a2≤n; a �=a1, a2; a1 �=a2; 1≤i1, i2≤k; i1 �=i2)

hasDifferentPairs(i1, i2)←matched(a, , i1), aSingle(a, i2).

(1≤a≤n; 1≤i1, i2≤k; i1 �=i2)

Then, we ensure that any two of the k matchings generated above are different:

← not hasDifferentPairs(i1, i2). (1≤i1, i2≤k; i1 �=i2)

Part 3: Ensuring stability

We need to guarantee that every generated unique matching i above is stable.

First, for every matching i, we identify every pair (a1, a2) of agents that blocks the

matching i:

blockingPair(a1, a2, i)← aSingle(a1, i), aSingle(a2, i),

acceptable(a1, a2). (1≤a1, a2≤n; a1 �=a2; 1≤i≤k)
blockingPair(a1, a2, i)← aSingle(a2, i),matched(a1, x, i), aPrefers(a1, a2, x),

acceptable(a1, a2). (1≤x, a1, a2≤n; x �=a1, a2; a1 �=a2; 1≤i≤k)
blockingPair(a1, a2, i)← aSingle(a1, i),matched(a2, x, i), aPrefers(a2, a1, x),

acceptable(a1, a2). (1≤x, a1, a2≤n; x �=a1, a2; a1 �=a2; 1≤i≤k)
blockingPair(a1, a2, x)←matched(a1, x, i),matched(a2, y, i), aPrefers(a1, a2, x),

aPrefers(a2, a1, y). (1≤x, y, a1, a2≤n; x, y �=a1, a2; a1 �=a2; 1≤i≤k)

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem6

SRTI 1:

a1: (a4)
a2: (a4)
a3: (a2)
a4: (a3) (a1, a2)

µ1
1: {(a1, a4), (a2), (a3)}

µ2
1: {(a2, a4), (a1), (a3)}

SRTI 2:

a5: (a9)
a6: (a8) (a7) (a9)
a7: (a9)
a8: (a7)
a9: (a5, a6, a7)

µ1
2: {(a7, a9), (a5), (a6), (a8)}

µ2
2: {(a6, a9), (a5), (a7), (a8)}

µ3
2: {(a5, a9), (a6), (a7), (a8)}

SRTI 3:

a1: (a7, a9) (a4)
a2: (a4)
a3: (a2) (a9)
a4: (a3) (a1, a2) (a7) (a9) (a8)
a5: (a4, a9) (a3)
a6: (a8) (a4) (a7) (a9)
a7: (a9) (a4)
a8: (a2, a3, a7) (a4)
a9: (a2, a3, a5, a6, a7) (a4)

µ1: {(a1, a4), (a7, a9), (a2), (a3), (a5), (a6), (a8)}
µ2: {(a1, a4), (a6, a9), (a2), (a3), (a5), (a7), (a8)}
µ3: {(a1, a4), (a5, a9), (a2), (a3), (a6), (a7), (a8)}
µ4: {(a2, a4), (a7, a9), (a1), (a3), (a5), (a6), (a8)}
µ5: {(a2, a4), (a6, a9), (a1), (a3), (a5), (a7), (a8)}
µ6: {(a2, a4), (a5, a9), (a1), (a3), (a6), (a7), (a8)}
µ7: {(a2, a4), (a3, a9), (a1), (a5), (a6), (a7), (a8)}
µ8: {(a1, a4), (a3, a9), (a2), (a5), (a6), (a7), (a8)}

Fig. 1. (Upper left) First small seed SRTI instance, I1; (upper right) two stable matchings of
the first seed, SI1 ; (middle left) second small SRTI seed with renamed agents, I2; (middle
right) stable matchings of the second seed, SI2 ; (lower left) an SRTI instance obtained from

two seeds, I; (lower right) eight stable matchings of the combined instance.

Then, we ensure that, for every matching i, there is no pair of agents a1 and a2 that

blocks the matching i:

← blockingPair(a1, a2, i). (1≤a1, a2≤n; a1 �=a2; 1≤i≤k)

Example 1.

Using the ASP program above, we can generate small yet hard SRTI instances. For

instance, a seed SRTI instance with n=4 agents, m=n−1 and k=2 stable matchings,

generated by our program is illustrated in the upper left table (SRTI 1) in Figure 1 .

3 Populating and combining seeds into large SRTI instances

First we generate c (ni, mi, ki)-seed SRTI instances (Ii, SIi) (1≤i≤c), where Ii = (Ai,≺i),

possibly with different values of ni, mi, and ki. Then we rename the agents in such a

way that no agent appears in two seed instances.

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 7

Next, we “combine” these c seeds into a larger SRTI instance I, in such a way that

some desired properties of the seeds (e.g., short preference lists) are preserved in I, and

that the instance I is hard (i.e., the number of stable matchings for I is at least
∏c

i=1 ki).

Essentially, for some pairs (x, y) of agents such that x and y appear in different seeds

Ix and Iy, respectively, our method updates their preference lists by adding x into the

preference list of y with a probability p1 of incompleteness and with a probability p2 of

forming a tie. In this way, we “combine” the seeds Ix and Iy, and form a new and larger

SRTI instance.

A trial of adding x in the preference list of y in Iy with respect to p1 and p2 is described

as follows:

1. First, observe that x cannot be added to the preference list of y if the length of

the preference list of y is already m, or if x is already in the preference list of y.

Otherwise, if the length of the preference list of y is strictly less than m and if x is

not already in the preference list of y in Iy, randomly pick two numbers r1 and r2
in [0, 1] and proceed with the following steps.

2. If r1>p1 and y is not in the preference list of x in Ix, then add x to the preference

list of y in Iy as follows.

If r2<p2, then add x to the preference list of y in Iy so that y becomes indifferent

between x and at least one other agent.

Otherwise, add x to the preference list of y in Iy so that x does not appear

in a tie.

3. If r1>p1 and y is already in the preference list of x in Ix, first observe that adding

x to the preference list of y in Iy will create a mutually acceptable pair (x, y) for

the combined instance. So we can try to add x to the preference list of y at some

rank, provided that (x, y) will not block any stable matching of the seed instances.

If y is single in a matching µj
y ∈ SIy and x is single in a matching µi

x ∈ SIx or

x prefers y to at least one of his matched partner, then (x, y) would block the

matchings of the combined instance.

Otherwise, if y is matched in every matching in SIy or, x is matched in every

matching SIx and x does not prefer y to none of his matched partners, then add x

to the preference list of y in Iy as described in Step 2 above, but with a rank that

is greater than or equal to the ranks of every partner of y in the matchings in SIy

(when x is matched in every matching in SIx).

Observe that, if x is matched in every matching in SIx and y is single in at least one

matching, then we can put x at any rank in the preference list of y. Because, since

x and y are in two different seeds and y is in the preference list of x, then y must

have been added to that preference list at some point by this method. Also, since

y is single at some matching, it must succeed every partner of x in the preference

list as required by the method. Moreover, observe that, with this rank, since one of

x and y is the least preferred agent for the other, (x, y) does not block any stable

matching of the seed instances.

4. In the end, after considering every possible pair (x, y) where x and y occur in

different seeds, our method constructs an SRTI instance I= (Ax ∪Ay,≺′) where ≺′

is the collection that contains updated preference lists. Note that if x cannot be

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem8

added to the preference list of y, then the combined instance is still generated

containing both agents x and y without including x in the preference list of y.

Our method of combining two seed instances over a pair of agents probabilistically

preserves the stable matchings of the seed instances.

Proposition 1.

Given a (nx, mx, kx)-seed instance (Ix, SIx) and a (ny, my, ky)-seed instance (Iy, SIy)

with unique agents, two agents x and y of Ix and Iy, respectively, and probabilities

p1 and p2, let I be an SRTI instance obtained from these seeds by our seed & combine

method above. For every stable matching µx ∈ SIx and for every stable matching µy ∈ SIy ,

µx ∪ µy is a stable matching for I.

Proof.

According to our method, for two agents x and y that belong to two different seeds,

there can be three cases. At the end of the procedure, either y does not put x into its

preference list, or y puts x into its preference list, but (x, y) is not mutually acceptable,

or y puts x into its preference list and they become mutually acceptable.

Case 1: x is not added to the preference list of y. Observe that, since µx and µy are

stable by definition, clearly, no pair in Ix (respectively Iy) blocks µx (respectively

µy). Also, observe that no pair in Ix (respectively Iy) can block µy (respectively µx);

otherwise, by definition, a member in the blocking pair in Ix (respectively Iy) must be

included in Iy (respectively Ix). However, agents in the seeds are given to be unique,

so it is not possible. So, µx ∪ µy is stable as it is. Also, since there is no new pair

(x, y) that is mutually acceptable, there can be no blocking pair. Then, µx ∪ µy remains

stable.

Case 2.1: x is added to the preference list of y, and (x, y) is not mutually acceptable.

This case corresponds to Step 2 of the method above. In this case, x is added to the

preference list of y; however, since (x, y) is not an acceptable pair, then it is also not

blocking by definition. Thus, µx ∪ µy is stable.

Case 2.2: x is added to the preference list of y, and (x, y) is mutually acceptable. This

case corresponds to Step 3 of the method above. In this case, since x is added to the

preference list of y, we know that they are not simultaneously single at µx, µy, and

at least one of them prefers all of its matched partners to the other one. Then, by

definition, the pair (x, y) cannot be a blocking pair, and hence µx ∪ µy is stable.

Since µx ∪ µy is stable for all of the cases, it must also be stable for I. �

This result generalizes to combining more than two seeds by repeated application of

our method.

Corollary 1.

Given c (ni, mi, ki)-seed SRTI instances (Ii, SIi) (1≤i≤c) with unique agents, and prob-

abilities p1 and p2, let I be an SRTI instance obtained by combining pairs of these

seeds by using our method above. Let M(I) be the set of stable matchings of I. Then,

SI1 × SI2 × · · · × SIc ⊆M(I).

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 9

Example (cont’d). Figure 1 illustrates two small seed SRTI instances: SRTI 1 and

SRTI 2. SRTI 1 is a (4,3,2)-seed SRTI instance specified by I1 defined over the agents

A1={a1, a2, a3, a4} and their preferences ≺1 (upper left), and by SI1 consisting of 2

stable matchings for I1 (upper right: µ1
1 and µ1

2).

SRTI 2 is a (5,4,3)-seed SRTI instance specified by I2 defined over the agents

A2={a5, a6, a7, a8} and their preferences ≺2 (middle left), and by SI2 consisting of 3

stable matchings for I2 (middle right: µ2
1, µ

2
2, µ

2
3).

SRTI 3 is an SRTI instance obtained from these two different seed instances, consid-

ering p1 = 0.5 and p2 = 0.5. In particular, our method tries to add each agent a1.. a4 to

the preference lists of each agent a5.. a9, and vice versa.

For example, a7 is added in a tie in the preference list of a1, while it is added to the

preference list of a4 without being in a tie. On the other hand, a1 could not be added to

the preference list of a7, to prevent (a1, a7) from blocking the stable matchings µ5 and

µ6 of SRTI 3.

Our method preserves the stable matchings of the seed instances: Observe that every

element of SI1 × SI2 (i.e., each one of the first 6 matchings in the lower right table) is a

stable matching for SRTI 3.

On the other hand, our method does not preserve the ranks of agents while combining

the seeds. For example, a4 is in the first rank at the preference list of a1 in SRTI 1, while

it is in the second rank at SRTI 3.

Also, note that an SRTI instance obtained from two seed instances, (I1, SI1) and

(I2, SI2), can have more than |SI1 | ∗ |SI2 | stable matchings. For example, SRTI 3 has 2

more stable matchings, µ7 and µ8. This example also shows why the claim of Proposition 1

is not bidirectional.

4 Remarks

Edge cases

Our method considers two probabilities given in the input: p1 (probability of incom-

pleteness) and p2 (probability of ties). We would like to underline that, in the edge cases

where p1 or p2 is given as 0 or 1, the preference lists of satisfiable seed SRTI instances

are constructed carefully.

For instance, if the user gives p1 = 0 as input, then the user tries to generate an instance

where there is no incompleteness (i.e., the preference lists must be complete, including

all n− 1 agents). Hence, the generated seed instance must also satisfy this property. We

ensure this by adding the following constraint to the ASP program used for generating

seed instances (Section 2.2).

← #count{a2 : arank(a1, a2,)}�=n− 1. (1≤a1≤n)
If the user specifies p1 = 1 in the input, then every preference list must be empty. Thus

there is no need to generate an instance.

If the user specifies p2 = 0 in the input, then the user tries to generate an instance

without any ties in the preference lists. We ensure this by adding the following constraint

to our seed generating ASP program.

← arank(a, a1, r), arank(a, a2, r). (1≤a, a1, a2≤n; a1 �=a2; 1≤r≤m)

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem10

If the user specifies p2 = 1 in the input, then every agent must prefer other agents at

the same rank. In other words, it is not allowed that an agent prefers different agents at

different ranks. We ensure this by adding the following constraint to our seed generating

ASP program.

← arank(a, a1, r1), arank(a, a2, r2). (1≤a, a1, a2≤n; a1 �=a2; 1≤r1, r2≤m; r1 �=r2)

Our seed & combine algorithm (Section 3) considers these edge cases.

Symmetry in preferences

For the purpose of mutual acceptability, sometimes the user may require that, for every

two agents a1 and a2, a1 is the preference list of a2 iff a2 is the preference list of a1. To

ensure this, we add the following constraint to our seed generating ASP program.

← arank(a1, a2,), not arank(a2, a1,). (1≤a, a1, a2≤n; a1 �=a2)

Our seed & combine algorithm (Section 3) considers this possibility of generating

symmetric preferences upon the user’s request.

5 Experimental evaluations

Objectives

Recall that our study has been mainly motivated by Prosser’s observation (Prosser

2014), described in Challenge 1: the SRI instances generated by the random instance

generator of Prosser’s software (SRItoolkit 2019), based on Mertens’ idea (Mertens 2005),

have small numbers of stable matchings, and thus they do not sufficiently illustrate the

exponential asymptotic complexity of an enumeration-based method (i.e., which first

computes all stable matchings and then finds an egalitarian solution from among them)

to solve Egalitarian SRI.

Therefore, we have first conducted experiments to better understand the applicability

and usefulness of our random instance generator from this perspective, and to answer

the following questions:

(Q1) Does our method generate SRI instances with many solutions, so as to illustrate the

NP-hardness of Egalitarian SRI empirically with an enumeration-based method?

(Q2) How does our random instance generator compare to the random instance generator

of Prosser’s software, in terms of the number of stable matchings of the instances

they generate?

Next, we have conducted experiments to better understand the applicability and

usefulness of our instance generator for empirical evaluation of an ASP-based method:

(Q3) Are the SRI instances generated by our method difficult for the ASP-based method

of Erdem et al . (2020) to solve Egalitarian SRI?

Setup We have implemented our algorithm in Python (version 3.12.0), utilizing Clingo

(version 5.4.0).

We have used Prosser’s software (SRItoolkit 2019) to generate random instances based

on Erdös-Renyi model (Erdös and Rényi 1960). We have also used Prosser’s software

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 11

to compute all stable matchings of SRI instances. This software utilizes the constraint

programming system Choco (version 2.1.5) via a Java wrapper (JDK 11.0.24).

We have conducted our experiments on a laptop computer that has a 64-bit Ubuntu

20.04 as an operating system, and a 2.40 GHz ×64-based processor with 8 GB RAM.

Benchmarks

We have used two sorts of SRI instances.

• Existing benchmarks: We have considered the SRI benchmark instances that were

earlier generated by Erdem et al . (2020) using Prosser’s software (SRItoolkit 2019),

for an empirical analysis of various methods to solve SRI. This set contains, for

each number n=20, 40, 60, 80, 100 of agents and for each completeness degree of

25%, 50%, 75%, 100%, 20 SRI instances.1

• New benchmarks: For every number n=20, 40, 60, 80, 100 of agents and for every

incompleteness degree p1=0, 0.25, 0.5, 0.75, we have generated new 20 SRI bench-

mark instances, using our seed & combine method. For each SRI instance, (1) for

every 20 agents, 3 different satisfiable seed instances are generated with n= 8, 8, 6

and k= 6, 6, 2, respectively, and m= n− 1, and (2) these satisfiable seed instances

are combined over every pair of agents, with p1 and p2 = 0.

Experiments 1

In our first set of experiments, our goal was to provide answers to questions Q1 and

Q2. For these experiments, we have considered the first phase of an enumeration-based

method only: computation of all stable matchings.2

In this set of experiments, since Prosser considered the SR problem in his study (2014),

we have used only the SR instances from the existing (resp. the new) benchmark set,

that is with completeness degree of 100% (resp. with incompleteness probability p1=0).

For each number n of agents and for each of the 20 SR instances with n agents, we have

used Prosser’s software (with Choco) to find all stable matchings with a time threshold

of 200 s in total. For each satisfiable SR instance that could be solved within the time

threshold, Prosser’s software returns all the stable matchings it computes and the total

number of search nodes it examines. For each such satisfiable and solved SR instance,

the CPU time (in seconds) to compute all stable matchings is also noted.

Table 1 illustrates the results of our experiments. For each number n of agents, the

number of satisfiable SR instances (out of 20 SR instances) that are solved within the

time threshold is reported (#SI).

The average values are reported for the SR instances that are satisfiable and solved

within the time threshold: the average number of stable matchings (#SM), the average

1 The completeness degree is defined (Erdem et al. 2020) as p, where p denotes the probability of the
mutual acceptability of pairs of agents in a random graph ensemble G(n, p) according to the Erdös-
Renyi model (Erdös and Rényi 1960). Note that the incompleteness probability p1 used in our seed &
combine method equals to 1− p.

2 Recall that the second phase of an enumeration-based method finds an egalitarian stable matching
from among all these solutions. The second phase is not included in the evaluations of the first set of
experiments, as the first phase is sufficient to answer questions Q1 and Q2.

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem12

Table 1. Results of computing all stable matchings, using Prosser’s software with
Choco. For n agents, out of 20 SR instances, the number #SI of instances with a
solution, the average number #SM of stable matchings, the average CPU time (in
seconds) to compute all these stable matchings for the satisfiable instances, and the

average number of search nodes are reported

Existing benchmarks New benchmarks

n Time Nodes #SI #SM Time Nodes #SI #SM

20 0.01 2.73 15 1.4 0.02 130 20 72
40 0.02 4.53 15 2.33 0.12 9418 20 5184
60 0.02 4.35 14 1.71 2.3 678,154 20 373,248
80 0.02 5.69 13 2.6 149.63 49,051,094 20 27,097,804
100 0.02 7.1 10 3.2 TO – 0 –

TO: timeout, that is, no solution was found for any of the 20 instances in 200 s.

CPU time in seconds to compute all stable matchings (Time), and the average number

of search nodes examined (Nodes).

In our experiments with the existing benchmarks, for each n, out of 20 SR instances,

only some of them have stable matchings, and all satisfiable instances could be solved

within the time threshold. For instance, for n=100 agents, 10 SR instances (out of 20 SR

instances) have stable matchings; for each instance, all its stable matchings are computed

within the time threshold. These 10 instances have in average 3.2 stable matchings. It

takes 0.02 s in average to compute all stable matchings for these 10 instances. The average

number of nodes is 7.1, and it denotes the average search effort.

From this table, one can see that, indeed, as observed by Prosser (2014), the existing

benchmarks do not show the hardness of Egalitarian SR: the average number of stable

matchings is small, and thus it takes less than 1 s to find them all. In fact, the computation

time almost never changes when the instance size increases.

On the other hand, in the new benchmark, all SR instances are satisfiable, and

all satisfiable instances (except for the ones with n=100) are solved within the time

threshold.

In Table 1, we observe that the average number #SM of stable matchings increases

significantly, as the instance size n increases. For instance, when the number n of agents

increases from 60 to 80 (by 1.33 times), the average number of stable matchings increases

from 373,248 to 27,097,804 (by 72 times). In addition, the average CPU time increases

from 2.3 s to 149.6 s (by 65 times), and the search effort (indicated by the number of

examined nodes in search) increases by 72 times.

As noted above, in the new benchmark, none of the 20 SR instances with n=100 could

be solved within the time threshold. A solution to one of the instances could be found in

more than 3 hours. For this instance, we have computed an estimate for #SM as 65×109,
using the approximate model counter ApproxMC (Chakraborty et al . 2013)3 over the

corresponding SAT formulation of SRTI.

3 ApproxMC: https://github.com/meelgroup/approxmc

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 13

Table 2. Results of computing an egalitarian stable matching,
using the ASP-based method of Fidan et al., with Clingo. For n
agents, incompleteness probability p1, out of 20 SR instances,
the number #SI of instances with a stable matching, and the
average CPU time (in seconds) to compute an egalitarian

solution for these satisfiable instances are reported

Existing New
benchmarks benchmarks

n p1 #SI Time #SI Time

20 0.00 15 0.06 20 0.09
0.25 18 0.02 20 0.03
0.50 17 0.01 20 0.01
0.75 20 0.00 20 0.00

40 0.00 15 1.24 20 1.98
0.25 14 0.51 20 0.45
0.50 12 0.15 20 0.16
0.75 11 0.02 20 0.06

60 0.00 14 7.59 20 16.71
0.25 13 2.99 20 10.45
0.50 16 0.86 20 9.95
0.75 10 0.1 20 12.2

80 0.00 13 29.37 20 TO
0.25 8 10.76 20 85.721

0.50 13 2.99 20 TO
0.75 13 0.37 20 TO

100 0.00 10 93.18 20 TO
0.25 13 31.42 20 TO
0.50 12 7.82 20 TO
0.75 14 0.91 20 TO

TO: timeout, that is, no solution was found for any of the 20
instances in 200 s.

1Only 1 instance out of 20 instances was solved in 200 s.

Therefore, these experiments provide a positive answer to our question Q1 and Q2:

Our method generates SRI instances with too many solutions and can illustrate the NP-

hardness of Egalitarian SRI empirically.

For question Q2, our experiments provide the following answer: Our random instance

generator produces better instances, in terms of their number of stable matchings,

compared to the random instance generator of Prosser’s software.

Experiments 2 In our second set of experiments, the goal is to provide an answer to

question Q3. For these experiments, we have considered computation of an egalitarian

stable matching without enumeration. We have used the ASP formulation of Erdem et al .

(2020) to solve Egalitarian SRI, with the existing and new benchmark instances, using

Clingo.

Table 2 illustrates, for each instance size n=20, 40, 60, 80, 100 and for every incom-

pleteness probability p1=0, 0.25, 0.5, 0.75 (i.e., for every mutual acceptability probability

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem14

1− p1), the number of SRI instances that have a solution, and the average CPU time (in

seconds) to compute an egalitarian stable matchings for these instances.

We can observe from these results that the instances generated by our seed & combine

method require more computation time for larger instances. For instance, for n=80, 100,

these instances cannot even be solved with the ASP-based method.

Therefore, these experiments provide a positive answer to our question Q3:

The SRI instances generated by our seed & combine method are also difficult for the

ASP-based method of Erdem et al. (2020) to solve Egalitarian SRI.

Repository

The implementation of our method is available at https://github.com/baturayyilmaz-

su/GIG, and the benchmarks used in our experiments discussed above are available at

https://github.com/baturayyilmaz-su/ICLP˙Experiments/.

6 Discussion

We have introduced a two-step seed & combine method to generate satisfiable benchmark

instances for SRI possibly with Ties, which have a large numbers of (e.g., over 106) stable

matchings, and thus, it would not be practical to find an egalitarian stable matching by

enumerating all stable matchings.

We have utilized ASP to generate small satisfiable seed instances with multiple stable

matchings and introduced a novel algorithm to construct large instances from these seeds

ensuring a lower bound on the number of stable matchings.

Based on experimental evaluations, we have observed that our seed & combine method

indeed generates instances with significantly large number of stable matchings, com-

pared with the instances generated by the existing graph-based approaches. We have

also observed that these instances are more difficult for the ASP-based method that is

not based on enumeration of all stable matchings.

Since our method for generating satisfiable seed instances relies on an elaboration

tolerant representation of SRI in ASP, and our method for populating and combining

satisfiable seed instances preserves the stable matchings of these seed instances, our over-

all method can be easily used to generate satisfiable seed instances for other nonpartite or

bipartite one-to-one stable matching problems with large numbers of stable matchings.

For example, the stable marriage problem (SM) is a bipartite one-to-one stable match-

ing problem. SM is a special case of SR: the set of agents consists of two types of agents

(i.e., men and women), and no agent prefers another agent of the same type. So we can

generate small satisfiable seed SMTI instances using our ASP formulation for generating

SRTI instances, by adding relevant rules and constraints. We can populate and combine

satisfiable seed SMTI instances using our method for obtaining larger SRTI instances,

by ensuring that an agent is not included in the preference of another agent of the same

type. In fact, our implementation allows generation of SMTI instances with large number

of stable matchings, with a command line option.

We believe that empirical evaluations of computational methods for matching prob-

lems is important to better understand the practical and theoretical challenges of these

problems. Empirical evaluations also play an important role in the investigation of the

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

Generating satisfiable benchmark instances for stable roommates problems 15

applicability and usefulness of these computational methods in real-world applications.

Our study of generating benchmark instances for one-to-one matching problems, which

have a large number of stable matchings, contributes to design and implementation of

empirical evaluations of methods for matching problems, not only by providing models

and methods but also by providing a tool for future studies.

Competing interests

The authors declare no competing interests.

References

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
ACM Communications 54 , 12, 92–103.

Brewka, G., Eiter, T. and Truszczynski, M. 2016. Answer set programming: An introduction
to the special issue. AI Magazine 37 , 3, 5–6.

Chakraborty, S., Meel, K. S. and Vardi, M. Y. 2013. A scalable approximate model counter.
In Proceedings of CP , 200–216.

Cheeseman, P., Kanefsky, B. and Taylor, W. M. 1991. Where the really hard problems are.
In Proceedings of IJCAI , 331–337.

Cseh, Á., Irving, R. W. and Manlove, D. F. 2019. The stable roommates problem with short
lists. Theory of Computing Systems 63 , 1, 128–149.

Dang, N., Akgün, O., Espasa, J., Miguel, I. and Nightingale, P. 2022. A framework for
generating informative benchmark instances. In Proceedings of CP , Leibniz International Proc.
in Informatics (LIPIcs), vol. 235 , 18:1–18:18.

Erdem, E., Fidan, M., Manlove, D. F. and Prosser, P. 2020. A general framework for
stable roommates problems using answer set programming. Theory and Practice of Logic
Programming 6 , 911–925.

Erdös, P. and Rényi, A. 1960. On the evolution of random graphs. In Publication of the
Mathematical Institute of the Hungarian Academy f Sciences, 17–61.

Feder, T. 1992. A new fixed point approach for stable networks and stable marriages. Journal
of Computer and System Sciences 45 , 2, 233–284.

Fidan, M. and Erdem, E. 2021. Knowledge-based stable roommates problem: A real-world
application. Theory and Practice of Logic Programming 6 , 852–869.

Gale, D. and Shapley, L. S. 1962. College admissions and the stability of marriage.
The American Mathematical Monthly 69 , 1, 9–15.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of ICLP , 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 , 365–385.

Gent, I. P. and Prosser, P. 2022. An empirical study of the stable marriage problem with ties
and incomplete lists. In Proceedings of the ECAI , 141–145.

Gusfield, D. and Irving, R. W. 1989. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, Cambridge, MA, USA.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138 ,
39–54.

Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, 375–398.

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

B. Yilmaz and E. Erdem16

Mertens, S. 2005. Random stable matchings. Journal of Statistical Mechanics: Theory and
Experiment 10 , P10008–P10008.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25 , 241–273.

Pisinger, D. 2005. Where are the hard knapsack problems? Comput. Operations Research 32 ,
2271–2284.

Prosser, P. 2014. Stable roommates and constraint programming. In Proceedings of CPAIOR,
15–28.

Selman, B., Mitchell, D. G. and Levesque, H. J. 1996. Generating hard satisfiability
problems. Artificial Intelligence 81 , 1–2, 17–29.

SRItoolkit 2019. http://www.dcs.gla.ac.uk/∼pat/roommates/distribution/. [Accessed on
November 21, 2019]

Torralba, Á., Seipp, J. and Sievers, S. 2021. Automatic instance generation for classical
planning. In Proceedings of ICAPS , 376–384.

Vanhoucke, M. and Maenhout, B. 2009. On the characterization and generation of nurse
scheduling problem instances. European Journal of Operational Research 196 , 2, 457–467.

https://doi.org/10.1017/S1471068425100240 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100240

	Introduction
	2 Generating solvable hard seed instances
	Problem definition: seed-srti-sat
	Solving seed-srti-sat using ASP

	3 Populating and combining seeds into large SRTI instances
	
	

	4 Remarks
	Experimental evaluations
	Benchmarks
	Discussion
	Competing interests
	References

