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We investigate self-consistent, steady-state axisymmetric solutions of an incompressible
tokamak plasma using a visco-resistive magnetohydrodynamic model. A key contribution
of this work is the formulation of Poisson’s equation that governs the pressure profile.
Our analysis reveals that the current modelling fails to produce realistic pressure levels.
To overcome this limitation, we introduce additional non-inductive current drives, akin to
those generated by neutral beam injection or radio frequency heating, modelled as mod-
ifications to the toroidal current. Numerical simulations validate our enhanced model,
showing significant improvements in pressure profile characteristics. In the cases exam-
ined, the effect of these current drives on the velocity profiles is moderate, except when
the non-inductive current drives induce reversals in the total toroidal current density,
leading to non-nested flux surfaces with internal separatrices.
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1. Introduction

The calculation of plasma equilibria is a critical aspect of both the design and
operation of magnetic confinement devices used in nuclear fusion research. In partic-
ular, a thorough understanding of tokamak plasma physics within the axisymmetric
framework is crucial, as it serves as the foundation from which three-dimensional
perturbations inevitably arise. From a numerical point of view, among the most
realistic models are those that (gyro-)kinetically describe each plasma species, cou-
pled with Maxwell’s equations and incorporating the external driving forces present
in tokamak devices. These are known to be computationally intensive and complex.
Furthermore, implementing boundary conditions in such kinetic models presents
significant challenges (Ball, Brunner & Ajay 2020). In real experiments, the Grad-
Shafranov equation serves usually to reconstruct equilibria. This comes from the
steady-state zero-flow and ideal Navier-Stokes equation. In the present study, our
aim is to reintroduce self-consistency in this reconstruction without entering the
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difficulties and details of a gyrokinetic approach. This amounts to using a magne-
tohydrodynamic (MHD) approach. We then consider a steady-state axisymmetric
(two-dimensional) visco-resistive MHD closed set of equations compatible with
tokamak conditions.

In this frame, a key challenge in developing a minimal, yet meaningful, model
lies in correctly representing the physical drives at work within the device. The
first natural drive is the curlfree magnetic field created by the external coils. A
second drive must be implemented to induce the winding of the magnetic field lines
around the magnetic axis by creating a poloidal component of the magnetic field.
In various previous works (Kamp & Montgomery 2003, 2004; Oueslati et al. 2019),
this second drive has been an external toroidal field produced by the time variation
of the poloidal magnetic flux, assumed to be a non-zero constant, which makes
the system time independent. Under the constraint of axisymmetry, the stationary
plasma states can then be determined by solving a self-consistent system consisting
of the steady-state Navier-Stokes equation, the steady-state Maxwell equations with
the two external drives and Ohm’s law, which provides closure to the system. This
system can be solved, for example, using the finite element method, once the plasma
domain £2 and the boundary conditions for the fields have been specified. This
system has been studied (Kamp & Montgomery 2003, 2004; Oueslati et al. 2019)
primarily with the aim of estimating plasma flow velocities in steady-state regimes.
It has recently been shown (Krupka & Firpo 2024) that the dependence of the visco-
resistive system on the two external drives can be reformulated as a dependence on
a single control parameter. This amounts to the ratio of the electric current driven
by Ohm’s law in response to an applied toroidal loop voltage over that needed for
generating the external toroidal magnetic field. A second relevant control parameter
relative to this visco-resistive framework is the Hartmann number, defined as H =
(nv)~Y2, where n and v are respectively the dimensionless plasma resistivity and
viscosity.

In the present study, another path to producing the second drive will be imple-
mented in the form of a non-inductive current drive. This is valuable for investigating
advanced operational regimes that are relevant for the truly steady-state operation
of tokamaks (Kikuchi 2010). Long-duration, steady-state-like operation has already
been demonstrated in several existing tokamaks (van Houtte ef al. 2004; Ferron
et al. 2013; Xie et al. 2023; Ko et al. 2024), providing important benchmarks for
future devices designed for fully steady-state scenarios, including DEMO (Tran et al.
2022), CFETR (Wan et al. 2017) or JT-60SA (Garzotti et al. 2018).

In this self-consistent framework, irrespective of the inductive or non-inductive
nature of the toroidal current drive, the plasma pressure field has been largely
disregarded since it can be eliminated by taking the curl of the steady-state Navier—
Stokes equation. This reflects the well-established notion, familiar in the study of
the Navier-Stokes equation applied to neutral fluids, that pressure behaves as a
passive rather than an active variable. In the present work, however, we focus on
the evaluation of the pressure field, an aspect that has been overlooked within
this approach so far. The derivation provided here is fully self-consistent, mark-
ing a clear departure from the conventional treatment of pressure in tokamak
plasma modelling. Indeed, conventional approaches, such as real-time equilibrium
reconstruction codes using the Grad-Shafranov equation, or its extended versions
incorporating some plasma flows, also known as the Grad-Shafranov-Bernoulli sys-
tem of equations (Guazzotto et al. 2004; Del Prete & Montani 2021; Li & Zhu 2021;
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Kaltsas & Throumoulopoulos 2022; Daza et al. 2024), treat the scalar pressure
field as a free function. This function, along with the diamagnetic function (and
possibly functions associated with plasma flows), is optimised to minimise the x>
from the measured data. In other typical models for tokamak plasmas, the pressure
may be evaluated using an equation of state, which amounts to a thermodynamic
closure.

This paper is organised as follows. In §2, we introduce the aforementioned
steady-state axisymmetric model for describing tokamak plasmas within an incom-
pressible visco-resistive MHD framework having as time-independent external drives
a curl-free toroidal magnetic field and a curl-free toroidal electric field (Kamp &
Montgomery 2003, 2004; Oueslati et al. 2019; Krupka & Firpo 2024). Specifically,
it is predicted that this system yields a zero pressure gradient in the ideal and
motionless limit. This points to the necessity of incorporating an additional non-
inductive current drive in a steady-state machine to effectively control and increase
the pressure. This is addressed in § 2.4 where we implement some current drive to
model the heating methods used in real tokamaks verified through pressure pro-
files in § 3. Numerical simulations with toroidal current drives are presented in §4,
using the finite element method through the FreeFem++ platform for solving par-
tial differential equations (Hecht 2012). In conclusion, §5 summarises the study’s
findings.

2. The necessity of non-inductive current drive: a theoretical approach
2.1. Axisymmetric steady-state visco-resistive MHD: self-consistent system of equations

The framework used in this study is MHD. In more precise terms, building on
the research initiated by Montgomery and his collaborators (Kamp, Montgomery
& Bates 1998), we assume that the axisymmetric steady states of the plasma are
governed by the incompressible visco-resistive MHD. This is consistent with the
customary reconstruction of two-dimensional equilibria using the Grad-Shafranov
equation, except that we do not assume the velocity field to be zero, and we have
a self-consistent model, as we do not have free functions. Then, to describe a toka-
mak plasma, an essential aspect is to model the external drives involved in the
system. One inherent drive in this magnetic confinement fusion device is the exter-
nal magnetic field. Additionally, the need to wind the magnetic field lines and create
a macroscopic poloidal component of the magnetic field requires a second forc-
ing mechanism. Following previous references (Kamp & Montgomery 2003, 2004;
Oueslati et al. 2019; Oueslati & Firpo 2020; Krupka & Firpo 2024), we assume that
the poloidal magnetic field component is generated by a toroidal electric field, which
drives a toroidal current density.

Denoting by B, the value of the external magnetic field on the magnetic axis,
by uo the vacuum permeability and by p,o the plasma mass density assumed
to be constant, the Alfvén velocity is vi9 = Bo/(topmo)>. In the remainder of
this article, we shall work with dimensionless variables. Specifically, velocities are
normalised with respect to the Alfvén speed, vy, as is the field B/(ioomo) ">
Moreover, the space variables are also dimensionless. From the set of cylindrical
polar coordinates (r, ¢, z) and denoting by R, the tokamak major radius, we define
R=r/Ry and Z =z/R,. The dimensionless resistivity, n, is the resistivity divided
by woRovse and the dimensionless viscosity, v, is the viscosity divided by Ryv,g.
The computation of visco-resistive axisymmetric steady states involves then solving
the steady-state incompressible Navier-Stokes equations (2.1)-(2.2) along with the
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solenoidal condition (2.3), Ampere law (2.4) and Ohm’s law (2.5) on a tokamak
poloidal plasma cross-section §2. The equations are

w-VYv=J x B—Vp+vVy, (2.1)
V.v=0, (2.2)
V.-B=0, (2.3)
VxB=], (2.4)
E+vxB=nl]. (2.5)

With respect to the drives, the externally applied (vacuum) toroidal magnetic field is

1,
Bou= iy (2.6)

with i, a unit vector in the toroidal (azimuthal) direction. As for the electric field,

its general expression is

E=—-Vo®+VV (;) , 2.7)

b4
where —V @ is a purely electrostatic contribution and where V is the loop voltage.
This second term serves to inductively generate the toroidal current, it is, therefore,
non-steady state in nature and amounts to an external drive
E, .
Eext = Flw
with Ey = (27)'9v,,;/0¢. In the present modelling, we consider the time variation
of the poloidal magnetic flux v, and thus E,, as constant and non-zero. This field
satisfies V x E., =0 pointwise for R > 0, but its global structure exhibits a non-
vanishing toroidal circulation, consistent with a finite V = dv,,,1/9¢. Consequently,
although E. is locally curl free in the classical sense, it does not derive from a
single-valued scalar potential, and Faraday’s law must be interpreted in the weak
(distributional) sense. Thus, the present frame is strictly speaking not steady state
as it is required that 01,, /0t be non-zero, but it is time independent. Nevertheless,
once the current drive is implemented (see §4.1), we can put Ey =0 in the model
equations and just have E = —V @&. Let us note, indeed, that several tokamak exper-
iments have demonstrated scenarios where the externally applied electric field is
curl free while maintaining a zero toroidal component (2.8). This occurs in fully
non-inductive discharges driven by mechanisms such as lower hybrid current drive,
electron cyclotron current drive and neutral beam current drive, where the electric
field is electrostatic or wave driven, not induced by transformer action (see e.g.
Sauter et al. (2000); Litaudon et al. (2002)). The magnetic and electric fields in
(2.1)-(2.5) are the sum of these external contributions and of the self-consistent
plasma fields. This system of equations needs to be solved in the plasma cross-
section £2 with suitable boundary conditions. From a computational perspective, we
solve the system of partial differential equations (PDEs) that we are now presenting.

(2.8)

2.2. Scalar PDE formulation

One can eliminate the unknown pressure term by taking the curl of (2.1). This
signifies that the pressure is not an active but a passive variable. Moreover, the
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single-fluid, mass-averaged plasma velocity v, vorticity @ =V x v, magnetic B and
current density J vector fields are divergence free, and they admit then the following

representations:

1

szVX X 1y 4 Vyly, (2.9)
1 S

w:EV (Rv,) xzw—E(A X) iy, (2.10)
1 . .

B:Ewy X 1,+ Byi,, (2.11)
1 A S

J=EV(RB¢) X’w‘E(A V)i, (2.12)

where x is the velocity streamfunction, ¥ is the magnetic flux function, B, is the
toroidal component of the magnetic field vector and v, is the toroidal component
of the velocity field vector. The above system of (2.1)-(2.5) with the external drives
(2.6)-(2.8) can be expressed Kamp et al. (1998), Kamp & Montgomery (2003),
Kamp & Montgomery (2004), Krupka & Firpo (2024); Roverc’h et al. (2021) as the
following set of five scalar elliptic PDEs:

A*x =—Rw,, (2.13)
* d 2 2 1 .
1 20,9 2j, 0y
—I{x,R —~ L T 2.14
A ey ey @14
1 1 2RB,dx 2v, 0y
A*(RB,))=—{x.,RB —!Rv,, f o £ 2.15
18 (RB) = {6, RB} + g {Rv v+ =507 — 2757 @15
. 1 1
VA (va)zﬁ{x, Rv¢}+E{RB¢, v}, (2.16)
A = —Rj,, (2.17)
with the toroidal projection of Ohm’s law giving the constraint
, 1
77RJ¢=E0+E{W,X}- (2.18)

Here, the Poisson bracket {u, v} for any spatial functions # and v is defined as

ou v o d
(u, v)= =20 0 (2.19)

NA=E — — —— + —. 2.20
IR? R8R+8Z2 ( )

A relevant dimensionless control parameter has been identified by Montgomery
(1993), Cappello & Escande (2000) and Krupka & Firpo (2024) as the Hartmann
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number, H = (nv)~'/2. In fusion-relevant conditions, this is expected to be a large

parameter, ranging from 10° to 10%. Simulations for realistic parameter values
already exist for this system under various boundary conditions, typically using the
JET geometry. The elliptic system (2.13)—(2.17) requires five boundary conditions.
The four conditions associated with the divergence-free properties of the magnetic
field (B), current density (J), velocity (V) and vorticity (@) vector fields are deter-
mined by ensuring the continuity of their normal components across the plasma
boundary. The following boundary conditions are selected in the numerical simula-
tions: x =% =0 and B, =1/R on 9£2. We enforce Neumann boundary conditions
on both the toroidal velocity v, and toroidal vorticity w, through 9,v, = 0,w, =0
on d£2. We used the open-source PDE solver FreeFem-++, employing the finite ele-
ment method of Hecht (2012) to solve the above steady-state axisymmetric system of
equations in a weak form on the plasma cross-section domain §2 with the specified
boundary conditions. For our calculations, we set a tolerance parameter € = 10710,
allowing the Newton-Raphson scheme to converge in typically 4-5 iterations.

2.3. Examination of the pressure field

Let us now examine the pressure profile in the visco-resistive model (2.1)-(2.5)
with the external drives (2.6)-(2.8). Let us assume for now that the steady-state
plasma speed is negligible. Then, in the ideal limit,  — 0 and v — 0, the steady-state
Navier-Stokes equation (2.1) takes the form

Vp=J x B. (2.21)

Restricting ourselves to axisymmetric solutions, the projection of this equation on R
and Z gives, respectively,

op d(RB,) . oY
— =R —B — 1, 2.22
OR ( *"9r 3R (222)
ap 1 d(RB,) . Y
—~— —R —B — . 2.23
Y ( v "oz Mz (223)
In the toroidal direction, we get
0=R*{y, RB,}, (2.24)

which amounts to the well-known property of Grad-Shafranov’s theory that the
diamagnetic function, RB,, is a function of the magnetic flux ¢ only. Moreover,
writing that J - B is curl free, which follows from the force balance (2.21), and
projecting this on the toroidal direction yields

B . 0y
—2RB¢8—Z"’+{¢/, Rjp} +2Rjy=— =0. (2.25)

Then, combining (2.23) and (2.25), the pressure gradient along the z-axis with a
zero-flow hypothesis is given by

0 1
=2 =5z R v} (2.26)
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Yet, assuming no plasma flow, the toroidal projection of Ohm’s law in (2.18) states
that Rj, is a constant, with Rj, = E,/n. Equation (2.26) indicates then that the pres-
sure field does not depend on Z. However, from the set of (2.22)-(2.24), we can
deduce that the pressure is a function of the magnetic flux v such that {p, ¥} =0.
Thus, we have dzp = p’(¥)dzy =0. This implies that the pressure profile is con-
stant. This aligns with the results obtained by Braams (1991), which indicate that in
equilibrium configurations, the current density must be proportional to 1/R when
the pressure gradient is zero.

2.4. Implications and implementation of non-inductive current drives

Section 2.3 demonstrates that the sole inclusion of Ohm’s law to close the system
imposes significant limitations on the model. Specifically, the effective pressure in
the model arises only because the toroidal geometry and viscous dissipation prevent
the steady-state velocity field from being identically zero. This allows the pressure
profile to remain non-zero, as Rj, is not exactly constant. However, the model
lacks a robust mechanism to provide sufficient heating to achieve fusion conditions.
Therefore, incorporating alternative heating methods is essential to reaching higher
pressure. We will also see that this tends to induce higher plasma rotation velocities
in specific drive configurations.

In our previous analysis, we focused on the behaviour of the system for a specific
ratio of Ey/n, which was the only explicit drive in the dimensionless system of
equations (Krupka & Firpo (2024). Now, we aim to introduce an additional drive
which will manifest as an extra term in the toroidal component of Ohm’s law in (2.5)
with

E
;04— (vxB)-i,+ jp=nJ i, (2.27)
where jp represents a current drive. Equation (2.18) now becomes
. 1 .
UR]w:EO+E {, x}+ JjpR. (2.28)
Our goal is to investigate the influence of the non-inductive current drive jp within
our system. We will begin by evaluating its effect on the pressure profile. For this

purpose, it is necessary to determine the pressure field, which we will now establish.

3. Derivation of Poisson’s equation for the pressure field

Let us go back to the steady-state Navier-Stokes equation (2.1) and rewrite it as

wxv=JxB—-Vp*+vVy, 3.
with
2
p*:p—k?. (3.2)

Previously, we eliminated the pressure term by taking the curl and considering the
toroidal part of the force balance equation. Now, to obtain the pressure of the
system, we take the divergence of (3.1)

V-Vp*:V-[—wxv+JxB+vV2v]. (3.3)

This takes the form of Poisson’s equation for the pressure p* as the left-hand side
yields the Laplacian of the pressure, Ap*. Taking the divergence of the first term on
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the right-hand side gives
V.- (wxv)=v:-Vv+e" (3.4)
We can treat the J x B term similarly
V-(JxB)=—B-V*B—J~ (3.5)
Finally, the term V . (vV?v) equals zero due to the incompressibility condition
V . v =0. Therefore, the complete Poisson’s equation for the pressure is
Ap*=v-Vv+w*—B-V’B—J° (3.6)
where A is defined as
A 104 A
OR?  ROR 93Z%
Next, we will express the Poisson’s equation (3.6) in terms of the functions y, ..., j,
defined over the domain (R, Z) € £2. To do this, we will analyse each term sepa-

rately. By utilising the expression for the vorticity (2.10), the second term can be
rewritten as

AA = (3.7)

2 2
5 Wy 1 d(Rv,) v,
=——A - — . 3.8
e (R ok ) T\az (3-8)
Similarly, for the square of the current density vector (2.12), we get
Jimdopey 4 (LARBIY | (9B, (3.9)
R R OR 3z ) - '

Finally, let us examine the term B - V>B. We can use the identity B - VB =—B -
(V x J) with

1 0y 0(Rj 10y dj
__W ( JV’) +__wﬂ. (3.10)
R20R OR R oZ 9z

B‘ﬂ *
B-(V x J)Z—XA (RB,) +
Similarly, we have

) 1 d0(Rw,) dx 1 0w, 0y
-(V =—2A%R — Lt 3.11
v (V@) =g AR R Rk TRz 02 @11
Incorporating all of these contributions into the right-hand side of Poisson’s equation

yields

1 9(Rw,) dx 1 0w, d
Ap= 2 At (R, — — YR OX Dy 2X
R R® 9R oR R OZ oz

w, . 1a(Rv)\  (0v,\
— A — ¢
R X+(R ok ) T\az

B 1 oy 9(Rj 1 0y 9j
——WA*(RB(/,)—I———wM __wﬂ

R R?29R OR Ro0ZdZ

. 2 2

Jo .« 1 d(RB,) 0B,

=AY -\ = -\ ) . 3.12
+ R 4 (R oR 9Z (3-12)
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FIGURE 1. Pressure field in Pascal units computed without the application of the drive (jp = 0)
for a Hartmann number of H = 10°.

This elliptic differential equation needs to be solved with a boundary condition
to allow the pressure profiles for the different drives to be computed. To the
best of our knowledge, the derivation of (3.12) within the visco-resistive system is
novel.

4. Numerical results
4.1. Pressure field behaviour without and with non-inductive current drives

Let us now solve Poisson’s equation for pressure, assuming a zero pressure condi-
tion at the boundary 042. It is important to note that, in the absence of an additional
toroidal current drive and assuming no plasma flow, we previously inferred a zero
pressure gradient, resulting in a constant zero pressure in the limits » — 0 and v — 0,
as discussed in § 2.3. To return to dimensional pressure and compare the results with
those obtained from the JET tokamak, we recall that p* is the dimensionless total
pressure Krupka & Firpo (2024), normalised as p* = p*/v?,0n, Where p* is dimen-
sional pressure. By using parameters from a specific JET deuterium-tritium shot
on JET (Team 1992), we obtain p,, =2.09 x 10~ kgm™ and the Alfvén velocity
Vao=5.46 x 10°ms~'.

To verify the pressure distribution in the absence of the drive with plasma flow,
let us examine figure 1. The pressure profile is presented in Pascal units (Pa). The
order of magnitude of the pressure field in the absence of the current drive turns
out to be unrealistically small, as predicted in § 2.3.

To explore the effects of a non-inductive current drive, we considered a family of
drives, jp, which are solutions to Poisson’s equation V?j, = —A, with the boundary
condition jp =B on 9£2. Here, A denotes the magnitude of the drive, while B
represents the current distribution offset. This approach provides an initial method
for simulating current distributions akin to those generated by heating mechanisms
in tokamaks, effectively ‘adding a bump’ to the current profile. Let us also note here
that, by introducing this form of the drive in (2.28), E,/n start to plays the same role
as an offset B as it is a constant. Therefore, in the presence of a current drive, we
can set Ey =0 without loss of generality, as this simply shifts B to B — E,/n. This
amounts to a purely non-inductive tokamak operation.
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FIGURE 2. Toroidal current field without the drive (jp = 0) (top) and with the drive jp set to
A =100 and offset B = 0 (bottom), for a Hartmann number of H = 10 in dimensionless units.

Let us now choose a drive that produces realistic pressure profiles. To do so, we
select jp with A =100 and B =0. Figure 2 compares the toroidal current density
fields, calculated at Hartmann number H = 10, using (2.13)-(2.17) for jp, =0 (the
reference case) and for jp with A =100 and B = 0. In the original system of Kamp
& Montgomery (2003, 2004), Oueslati et al. (2019) and Krupka & Firpo (2024)
(jp =0), the model fails to produce realistic toroidal current density profiles despite
yielding a realistic total current. This is because a ratio of Ey/n of approximately one
corresponds to a realistic total current for the JET deuterium-tritium shot described
in JET (Team 1992).

Let us now examine how the application of the drive affects the pressure profiles.
Figure 3 shows the computed pressure, p = p* — v?/2, with the application of the
drive jp using A =100 and B =0 for H = 10°. The current drive not only prevents
unrealistically low pressure levels but also establishes a realistic central pressure.
In our incompressible framework, what matters physically is the pressure gradient
or difference, since one can always add a constant to the pressure field without
affecting the dynamics. In our case, the boundary pressure is fixed at zero, which
makes the centre-to-edge pressure drop a meaningful quantity. For the presented
configuration, the central pressure reaches values around 4 x 10° Pa, in line with
experimental observations in the JET tokamak by JET (Team 1992). This is con-
sistent with the observations in Chahine & Bos (2018), where the role of absolute
pressure values is discussed in the context of incompressible MHD. As pointed
out there, pressure differences, and not the absolute value, are what influence the
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FIGURE 3. Pressure field in Pascal units computed with the application of the drive jp with
A =100 and B = 0 on the toroidal current density field. The Hartmann number is H = 10°.

dynamics, especially when interpreting numerical data or comparing with realistic
high-8 experiments. Our results, in this light, confirm that the application of the
drive produces physically relevant pressure gradients and magnitudes that fall within
realistic tokamak operating regimes.

Let us now examine how the variation of the magnitude of the drive affects
the root-mean-square of the pressure as a function of the Hartmann number.
Figure 4 illustrates this relationship. It is evident that all the magnitudes A of the
drive jp chosen in this study produce a realistic pressure response.

Let us note that, with the application of the drives, it is possible to achieve various
configurations of magnetic flux surfaces, including non-nested magnetic field lines
with several n = 0 islands present. Such an example is given in figure 5, which shows
the magnetic flux surfaces and the pressure profile when the drive jp with A =100
and B = -5 is applied. However, we will primarily focus on drives that induce
standard nested magnetic flux surfaces.

4.2. Recovery of Grad—Shafranov equilibrium in the ideal MHD limit

We now consider the case of standard nested magnetic flux surfaces, induced by a
non-inductive current drive jp with magnitude A = 100 and offset B = 0. Let us first
examine the non-ideal regime, where the dimensionless viscosity v and resistivity n
are both set to 1. This corresponds to a Hartmann number of H = 1, and represents
a strongly dissipative case with significant viscous and resistive effects. In this regime,
shown on the left of figure 6, the pressure isolines do not align with the magnetic
flux surfaces. As we approach the ideal MHD limit, i.e. as v— 0 and n — 0 (or
equivalently, H — 00), the dynamics becomes dominated by the ideal force balance.
In this case, shown on the right of figure 6 for H = 10°, the pressure isolines start
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FIGURE 4. Root mean square of the pressure field in Pascals as a function of the Hartmann
number, with the application of the drive jp with B = 0 on the toroidal current field, for various
values of A.
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FIGURE 5. Magnetic flux surfaces with internal separatrices (on the left) and pressure profiles
(on the right) computed with the application of the drive jp with A =100 and B = —5 on the
toroidal current field for H = 10°.

to align with the magnetic flux surfaces. This result shows that the pressure tends to
become a flux function in the ideal limit.

To explore this further, we extract the data for the pressure field P and the dia-
magnetic function F = x B, and plot them as functions of the corresponding values
of the poloidal magnetic flux, vr. In the left-hand plots of figure 7, we show that, for
H =1000, both P and F are very well approximated by cubic polynomial functions
of Y. They behave then as flux functions. Then we use these fits in a code that solves
the Grad-Shafranov equation using a Picard fixed-point iteration.

The right-hand plot of figure 7 compares the level curves of the normalised
poloidal magnetic flux, ¥, obtained for the same vy values from a self-
consistent visco-resistive MHD code at H = 1000, with those obtained from the
Grad-Shafranov equilibrium reconstruction. A very good agreement is observed,
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FIGURE 6. Magnetic flux surfaces and pressure isolines computed for the drive jp with A = 100
and B = 0 with H = 1 (non-ideal case) on the left and H = 103 (approaching the ideal limit) on
the right.

as expected, since the non-ideal and finite-velocity contributions are small.
Quantitatively, using the L?*-norm

1/2
Y1 — ¥all o) = (/ (Y1 (x, ¥) — ¥a(x, ¥))* dx dy) : (4.1)
Q

we get in this case H Yn.Gs — lﬂN,MHD” e 0.015.

This indicates that the Grad-Shafranov equilibrium can be recovered from the
self-consistent MHD solutions in the appropriate limits, but this also highlights the
broader validity of our model in more dissipative regimes. Most importantly, the
pressure field is self-consistently determined within our system, which is not the case
for Grad-Shafranov equilibrium reconstructions.

4.3. Impact of the non-inductive current drive on steady-state velocity and scaling

Let us now examine the impact on the velocity distribution of the application
of the current drive jp. Figure 8 presents the root mean square of the toroidal
velocity field while applying the drive jp, with B =0 to the toroidal current field
across various values of A, as in figure 4. It can be observed that, while varying
the magnitude of the drive causes an increase in velocities in the low-H regime, the
large-H, boundary layer regime remains almost unchanged, despite the application
of current drives with different magnitudes.

In Krupka & Firpo (2024), we showed that, at large Hartmann numbers, the
velocity field develops a distinct boundary layer that becomes progressively thin-
ner as H increases. In this regime, the boundary layer thickness and, consequently,
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FIGURE 7. (Left) Dimensionless pressure and diamagnetic function plotted as functions of the
poloidal magnetic flux in the H = 1000 MHD simulation, along with their best cubic polyno-
mial fits. The (¢, P) and (¢, F) plots are constructed by evaluating P, F' and i at the same
finite element mesh nodes (x;, y;). Each pair (¥;, P;) and (;, F;) is represented as a red point.
(Right) Comparison of the same levels of the normalised poloidal magnetic flux, ¥, obtained
from the H = 1000 visco-resistive MHD simulation (blue curves) and from the Grad—Shafranov
equilibrium reconstruction (red curves) using the pressure and diamagnetic functions fitted in
the left panel.

the velocity, scale with the Hartmann number, if nonlinear effects remain negligi-
ble. Specifically, by analysing the boundary layer equations analytically, we found
that both the toroidal and poloidal velocities scale as H'/* for H > 1. This scaling
was also confirmed numerically through power-law fitting. Increasing the magnitude
of the drive raises the total current, but the velocities appear unaffected by this
variation. This insensitivity is consistent with the persistence of the boundary layer
regime, which imposes a fixed scaling of the velocities with the Hartmann number,
independent of the drive amplitude.

Next, let us examine how the velocities change with the variation of the param-
eter B, which represents the offset of the drive jp. Figure 9 presents the same
information as figure 8, but with a fixed value of A =100 while exploring differ-
ent values of B. Shifting the drive results in the highest velocities at B = —5. The
usual large-H velocity behaviour changes at certain parameters of the current drive.
Here, we consider several different toroidal current profiles: two that lie entirely
in the positive region (e.g. B =3 and B =0), two that are in between positive and
negative regions (B = —3 and B = —5) and one that is fully in the negative region
B = —7. In some of our simulations, the self-consistent MHD evolution leads to the
formation of reversed current profiles, where the toroidal current density changes
sign across the plasma radius. These current configurations give rise to additional
magnetic axes and separatrices, modifying the magnetic topology beyond the typical
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FIGURE 8. Root mean square of the toroidal velocity in Alfvén velocity units as a function of
the Hartmann number, considering the application of the drive jp with B =0 on the toroidal
current field, for the different values of A.
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FIGURE 9. Root mean square of the toroidal velocity in Alfvén velocity units as a function of
the Hartmann number, considering the application of the drive jp with A =100 on the toroidal
current field, for various values of B.

single-axis case. Such phenomena are not only robust numerical features but are also
physically relevant, as reversed current profiles and associated topological changes
have been experimentally observed in devices like JET and JT-60U. Moreover, we
found that these configurations coincide with a breakdown of standard scaling laws
for the velocity fields, showing increased root-mean-square values for both toroidal
and poloidal velocities. This makes them particularly interesting for understanding
fundamental transport and equilibrium behaviour in such regimes.

Indeed, in the high-Hartmann-number regime, two scenarios emerge: either the
boundary layer forms Krupka & Firpo (2024), and the root mean square of the
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FIGURE 10. Toroidal current density field (on the left) and toroidal velocity field (on the right)
with the application of the drive jp with A =100, B = —5 for H = 10’ as in figure 5.

toroidal and poloidal velocities exhibit some scaling law with the Hartmann number,
as is the case for the drive jp, with B =0 and B = 3, or the velocities do not develop
a linear behaviour on a log-log scale for B=—3, —5 and —7, meaning that the
velocities do not scale with the Hartmann number. This departure from scaling
behaviour is probably linked to the way the toroidal velocity field changes with
the drive offset B. For different values of B, the velocity distribution can differ
significantly, which affects whether or not the boundary layer forms. In our view,
what we observe here is a competition between different scaling regimes, which
leads to the non-monotonic behaviour. Let us now take a closer look at this latest
phenomenology, which is novel and pertains to a situation involving non-nested
magnetic flux surfaces with internal separatrices. To illustrate this, we examine the
non-inductive current drive j, with A =100 and B = -5 for H = 10°, where the
magnetic flux surfaces and pressure field are depicted in figure 5. Figure 10 shows
on the left the associated toroidal current field.

The velocity distribution on the right of figure 10 closely resembles the toroidal
current distribution, with the highest velocities occurring at the transition point
between positive and negative current regions. In this case, we observe no for-
mation of a boundary layer, which is advantageous from a numerical perspective.
The absence of a boundary layer contributes to increased stability in the code and
yields more robust results. The toroidal velocity field in our simulations exhibits
a clear up—down antisymmetry, such that v,(x, y) = —v,(x, —y), leading to zero
net toroidal momentum. This symmetry arises naturally from the geometry and
boundary conditions imposed in our set-up. While this excludes the possibility of
spontaneous momentum generation in the present context, it is worth noting that
previous studies have demonstrated mechanisms through which up-down symmetry
breaking can lead to the emergence of net toroidal flow, both in gyrokinetic frame-
works (Camenen ef al. 2009) and in MHD (Morales et al. 2012). For instance, it
was shown in Oueslati & Firpo (2020) that breaking this symmetry by means of
external magnetic perturbations can influence flow topology and might be used to
induce finite mean flows. There is significant potential to achieve much higher veloc-
ities with these drives; however, accurately predicting which current drive would
be optimal for maximising velocities remains a challenge and necessitates further
investigation.
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5. Conclusion and perspectives

We have examined axisymmetric steady states of tokamak plasmas using a self-
consistent incompressible visco-resistive MHD model with external drives. While
acknowledging the intrinsic limitations of a MHD (rather than kinetic) approach,
this set-up remains relevant to the fully non-inductive regimes pursued in advanced
fusion reactor designs. The knowledge of axisymmetric steady states is fundamental
for stability analysis, and also for a recently proposed classification of magnetic and
current density modes (Firpo 2024, 2025).

A significant advancement of the present study is the formulation of a Poisson
equation governing the pressure within this self-consistent incompressible visco-
resistive MHD framework. This allows for the computation of the pressure profile
as soon as its boundary condition is prescribed. This approach differs notably from
the Grad-Shafranov method used in equilibrium reconstruction, where pressure
is treated as a free function. The numerical solution of this Poisson equation for
pressure obtained using the finite element method demonstrates the necessity of
implementing additional drives to avoid unrealistic pressure profiles with zero gradi-
ents in the ideal and no-flow limit. We have shown that this can be achieved through
non-inductive-like current drives, resulting in realistic pressure profiles.

We examined a family of functions to model the non-inductive current drives
of tokamaks, but further research is needed to optimise the distribution of non-
inductive currents and make them more realistic. Another goal is to maximise their
effectiveness in enhancing plasma speed and achieving fusion-relevant pressure pro-
files. Notably, certain configurations of our test current drives led to the formation of
internal separatrices and non-nested magnetic flux surfaces, indicating the potential
for more complex equilibrium structures under specific plasma conditions. An addi-
tional outlook of this study is to leverage the supplementary constraint offered by the
Poisson equation governing the pressure, with the aim of enhancing or constraining
equilibrium reconstruction in steady-state operational regimes.

Finally, the resulting toroidal current profiles were found to depend on the
Hartmann number. This suggests that future implementations of these drives could
involve fixed toroidal current density profiles that are independent of other system
parameters. This topic will be explored further in subsequent work and is discussed
in more detail in Krupka (2024).
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