
Computational Humanities
Research

www.cambridge.org/chr

Software Paper

Cite this article: Koeser Rebecca Sutton, Julia

Damerow, Robert Casties and Cole Crawford.

2025. “Undate: humanistic dates for

computation: Because reality is frequently

inaccurate” Computational Humanities
Research, 1:e5,

https://doi.org/10.1017/chr.2025.10006

Received: 15 April 2025

Revised: 27 June 2025

Accepted: 17 July 2025

Keywords:

calendars; dates; software development;

temporal reasoning; uncertainty

Corresponding author:

Rebecca Sutton Koeser;

Email: rebecca.s.koeser@princeton.edu

This article was awarded Open Materials

badge for transparent practices. See the Data

availability statement for details.

© The Author(s), 2025. Published by Cambridge

University Press. This is an Open Access article,

distributed under the terms of the Creative

Commons Attribution licence

(https://creativecommons.org/licenses/by/4.0),

which permits unrestricted re-use, distribution

and reproduction, provided the original article

is properly cited.

Undate: humanistic dates for computation
Because reality is frequently inaccurate

Rebecca Sutton Koeser1 , Julia Damerow2 , Robert Casties3 and

Cole Crawford4

1Center for Digital Humanities, Princeton University, Princeton, NJ, USA; 2School of Complex Adaptive Systems,
Arizona State University, Tempe, AZ, USA; 3DH-Team, Max Planck Institute for the History of Science, Berlin, Germany
and 4Arts and Humanities Research Computing, Harvard University, Cambridge, MA, USA

Abstract

undate is an ambitious, in-progress effort to develop a pragmatic Python package for
computation and analysis of temporal information in humanistic and cultural data, with a
particular emphasis on uncertain, incomplete, and imprecise dates and with support for mul-
tiple calendars. The development of undate is grounded in domain-specific work on digital
and computational humanities projects from multiple institutions, including Shakespeare and
Company Project, Princeton Geniza Project, and Islamic Scientific Manuscript Initiative. With
increasing support for different formats and calendars, Undate aims to bridge technical gaps
across different communities and methodologies. In this article, we describe the undate
software package and the functionality of the core Undate and UndateInterval classes
to work with dates and date intervals. We discuss why this software exists, how it expands on
and generalizes prior work, how it compares to other approaches and tools, and its current
limitations. We describe the development methodology used to create the software, our plans
for active and continuing development, and the potentialundate has to impact computational
humanities research.

Plain language summary

Dates are one of these things that seem very straightforward at first glance but prove to
be complex when working with humanities and cultural data, especially historical content.
Representing a “simple” time period such as the “16th century” is not that simple. Should the
16th century come before or after 1558 when sorting records? How can a computer determine
whether the 16th century includes the year 1558? In other cases, historic dates may be recorded
in a different calendar, such as the Hebrew Anno Mundi or Islamic Hijiri calendars, with years
and months that don’t match up exactly with the standard Gregorian calendar, and we may want
to work with and compare dates across multiple different calendar systems. Existing software
solutions for working with dates are usually not built to deal with these kinds of “fuzzy” dates.
undate is a Python software package developed to make it easier to calculate with fuzzy and
incomplete dates. In this article, we describe its functionality, conceptualization, how it is being
developed, and potential impact.

Introduction

undate is an ambitious in-progress effort to develop a pragmatic Python package for the com-
putation and analysis of temporal information in humanistic and cultural data, with a particular
emphasis on uncertain, incomplete or imprecise dates and with support for multiple calendaring
systems and date formats (Koeser et al. 2025). Humanities and cultural data frequently include
temporal information, and this context is crucial for interpreting and making claims based on
that data. However, historical dates are often imprecise or partially unknown, they may not use
the Gregorian calendar, and even within the same project or dataset dates may be inconsistent
in both format and precision. There are well-known, interoperable solutions for documenting
dates, most notably the ISO 8601 standard and Extended Date-Time Format (EDTF), but these
standards are textual rather than numerical, and serve as more of an “interchange format” that
requires transformation for interpretation and computation (Schmidt 2018, 322, 324). With
undate, we offer a solution for working with messy historical and cultural date information in
a structured way, not simply as text for display or for information retrieval, but for reasoning,
calculation, and comparison.

The undate library provides Undate and UndateInterval classes, which we hope
will eventually be as ubiquitous and easy to use as Python’s built-in datetime.date, but
with support for varying degrees of precision, unknown information, different calendars, and
parsers to convert between a variety of formats and calendars. Undate objects are built to hold

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://dx.doi.org/10.1017/chr.2025.10006
mailto:rebecca.s.koeser@princeton.edu
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-8762-8057
https://orcid.org/0000-0002-0874-0092
https://orcid.org/0009-0008-9370-1303
https://orcid.org/0000-0002-8347-0096
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/chr.2025.10006&domain=pdf
https://doi.org/10.1017/chr.2025.10006


2 Koeser et al.

Figure 1. undate project logo.

potentially imprecise dates, such as cases, where only the year or the
month is known, or only the month and day. UndateInterval
objects build on top of Undate objects to represent date ranges
with imprecise bounds.

The design of undate is based on experiences gained from
working on several exemplary projects, including the Shakespeare
and Company Project, Princeton Geniza Project(PGP), and the
Islamic Scientific Manuscripts Initiative (ISMI). We take additional
inspiration from Lauren Klein’s challenge to be intentional and
explicit about humanities theories and methodologies driving
technical modeling and implementations (Klein 2024), rather than
limiting ourselves to existing software solutions, which prioritize
contemporary and commercial use cases.

Context

The development of undate is a collaborative effort that started
during a week-long community hackathon organized by DHTech1

in 2022. The goal of the hackathon was to develop a reusable
software for working with uncertain and imprecise dates, which
was a shared problem across projects. We came up with the name
“undate” because of the goal of working with temporal information
that are not precisely dates. The “un” prefix is a reminder of the
uncertain and unknown aspects of this information; the obsolete
meaning associated with wavy or undulating lines provides addi-
tional resonance (Undated, adj.1), since temporal information may
not be as linear as we typically assume. The project logo (Figure 1)
gestures at the contrasting needs for nuanced human information
that is computationally tractable. A core group of participants
continued development after the hackathon, with Koeser taking
the lead as the main contributor.

Undate objects differ from Python datetime objects
because they accommodate uncertain and partial temporal data.
An Undate can be initialized by providing any of year, month,
or day as either numerical values or by string values, which can be
used to indicate partially or fully unknown values. For instance, an
Undate object may be initialized with month=3 and day=1,
or with a year="19XX", where X indicates unknown digits;
in this case, a year sometime in the 1900s. Optionally, a label
may be provided to name a date, perhaps to label December 25
as “Christmas Day” or January 29, 2025 as “Lunar New Year.”
The initial values passed into an Undate are stored and used
to determine the precision of the date (currently supported values
are year, month, and day). The library then determines the earliest
and latest possible dates based on the specified initial values, which
are used for comparisons with other dates and calculations such
as duration. To provide compatibility with and interchangeability
between multiple formats, Undate objects can be initialized by

1DHTech is a community of people who work on technical aspects of Digital
Humanities projects, and provides a network for exchange and collaboration.
In 2021, DHTech became a Special Interest Group of the Alliance of Digital
Humanities Organizations (ADHO). The group organizes virtual events such
as meetups as well as in-person events at conferences.

using a parser for a specific format such as ISO8601, EDTF, or a
supported calendar. An Undate is not only calendar-aware but
calendar-explicit: the calendar is always defined, with a default of
Gregorian.2 This means that two Undate objects with the same
numeric day, month, and year values represent different dates if
they use different calendars – but they can be compared and used
together. When anUndate object is initialized, the original values
and precision of the date in the original calendar are preserved, and
calendar conversion is used to determine the earliest and latest
possible dates in the Gregorian calendar for comparison across
calendars.3 This means that we can preserve the precision of the
date in the original calendar, such as a month or a year, even though
that date may not neatly map to a date or year in the Gregorian
calendar, and may have a different number of days than a year or
month in the Gregorian calendar (see Table 1).

An Undate object conceptually represents a single date,
although the support for different types of precision and uncertain
or partially known temporal information makes it technically an
interval; as Allen notes, “we can always decompose times into
subparts” (Allen 1983, 834). An UndateInterval is an explicit
date range between twoUndate objects to support longer and less
precise ranges of time. Like an Undate, an UndateInterval
supports an optional label, since sometimes it is important to
attach a specific name to events such as “20th century” or “Chinese
year of the dragon.” UndateInterval also supports calculating
duration and determining whether one interval overlaps with or
contains another.

Related software

undate builds on work from existing digital humanities research
projects, with the goal of generalizing custom, one-off solutions
into a reusable library. undate exists in an ecosystem of Python
libraries for working with dates and intervals, and is part of a
longer history of various approaches developed by computational
humanities researchers. Our work on undate is inspired by the
ability of humanistic researchers to reason with partial informa-
tion, to infer relationships and develop insights. Software tools
and computational methods often throw out or ignore partial and
uncertain information; we want to support inferential reasoning in
tandem with computation.

Related projects

undate draws on a partial date implementation from the Shake-
speare and Company Project and calendar conversion and mixed
precision dates in the PGP. Calendar logic and representation is
additionally informed by work on the ISMI. The first two projects
are both database-backed web applications built in Python with the
Django web framework, so the uncertain date logic prioritized data
storage and information retrieval. In the Shakespeare and Company
Project, “date precision is stored in flags alongside the dates, and
are used to calculate and display the date accurately based on
the known portion” (Kotin and Koeser 2022, 17). Storing partial

2For convenience and consistency with available software libraries, we use
the Gregorian calendar for all date comparisons and calculations. Technically,
this is “proleptic” Gregorian for dates before 1852, when the Gregorian calendar
was established.

3Currently undate supports the Islamic Hijri calendar and the Hebrew
Anno Mundi, with work in progress to add support for Julian and Seleucid
calendars.

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://doi.org/10.1017/chr.2025.10006


Computational Humanities Research 3

Table 1. Dates in different calendars with varying precision

Date Calendar Undate initialization Precision Earliest Latest Duration

Gregorian days

26 Tammuz 4816 Hebrew Undate(4816, 4, 26, calendar="Hebrew") day 1056-07-17 1056-07-17 1

Tammuz 4816 Hebrew Undate(4816, 4, calendar="Hebrew") month 1056-06-22 1056-07-20 29

4816 Hebrew Undate(4816, calendar="Hebrew") year 1055-10-01 1056-09-17 353

7 Jumādā I 1243 Islamic Undate(1243, 5, 7, calendar=”Islamic”) day 1827-11-26 1827-11-26 1

Jumādā I 1243 Islamic Undate(1243, 5, calendar="Islamic") month 1827-11-20 1827-12-19 30

1243 Islamic Undate(1243, calendar="Islamic") year 1827-07-25 1828-07-13 355

2 June 1863 Gregorian Undate(1863, 6, 2, calendar="Gregorian") day 1863-06-02 1863-06-02 1

June 1863 Gregorian Undate(1863, 6, calendar="Gregorian") month 1863-06-01 1863-06-30 30

1863 Gregorian Undate(1863, calendar="Gregorian") year 1863-01-01 1863-12-31 365

Figure 2. Screenshot from Shakespeare and Company Project admin interface for borrow events showing date filtering for events for unknown years. The built-in Django

date_hierarchy filter displays unknown years as 1900.

dates as datetime objects in the database enables powerful date-
specific functionality, such as hierarchical date filtering (Figure 2).
However, tracking which portions of the date are known or certain
in parallel leaves the potential for error, since the date can be
accessed without consulting those flags, which would result in
using unknown values as if they were fully known. In the PGP,
dates are stored across multiple fields: a text field for the date
in the original calendar, the calendar, and a converted Common
Era (CE) date or date range for indexing and filtering in the Solr
search engine and for display on the public site. We determined
that neither of these approaches could be used directly for the
more ambitious scope of undate, but adapted the strengths of
both in the design of the Undate class: calendar conversion and
imprecise dates with earliest and latest possible values, backed by
datetime objects rather than numbers or strings. We prioritized
functionality for parsing, comparison, and temporal calculations,
and put off decisions on database serialization, since that may be
more project-specific.

The Shakespeare and Company Project is based on the materi-
als of Sylvia Beach and the English-language lending library she
owned and operated in Paris in the 1920s and 1930s (Shakespeare
and Company Project 2020). Despite the fact that this is a modern
archive, data is drawn from handwritten cards jotted down by the
clerks and Beach as they ran the shop, so details are often missing:

“cards and the address books occasionally include incomplete dates
– a year and a month, or just a year or a month, or no date at
all” (Kotin and Koeser 2022, 10). Koeser led the work to develop
a solution to “handle one-day events, like buying a book or closing
out an account, as well as longer-duration activities, like a mem-
bership or borrowing a book,” which the team called “partially
known dates” (Koeser 2019). This solution supports filtering and
sorting records based on available dating information, as well as
duration calculations for book borrowing, even when the year
is unknown. This means that partial dates can be included in
analysis and interpretation of member borrowing activity, such as
books that were borrowed and returned quickly or checked out
for longer times: “did members fail to finish them or devour them
quickly?” (Kotin and Koeser 2020). They can also be included in
broader analysis of borrowing behavior across all library members
or specific individuals (Koeser and LeBlanc 2024, 17–18).

The PGP is a database of documentary geniza fragments from
the Cairo Geniza (Princeton Geniza Project 2022). PGP includes
“material dating from the ninth to the nineteenth centuries,”
although “unevenly distributed, the majority of the documents date
to the eleventh, twelfth and thirteenth centuries, with significant
later clusters from the sixteenth and nineteenth centuries” (Koeser
and Rustow, n.d.). Marina Rustow has enumerated the challenges
of the different kinds of temporal uncertainty raised by these

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://doi.org/10.1017/chr.2025.10006


4 Koeser et al.

materials, which includes: multiple calendars (Jewish, Islamic,
Coptic, Seleucid, Julian, Gregorian); explicit uncertainty due to
gaps or deterioration of the materials; implicit uncertainty of dates
inferred from evidence such as handwriting or named persons,
places, or even coins; and the potential unreliability of both the
original authors and dates inferred by scholars (Rustow 2020). The
PGP codebase supports parsing and converting dates from Jewish,
Islamic, and Seleucid calendars to CE for searching, filtering, and
sorting, and the web interface and datasets include dates in both
original and CE calendars.4 PGP also supports dates with varying
precision, similar to the implementation in the Shakespeare and
Company Project.

The ISMI aims to “make accessible information on all Islamic
manuscripts in the exact sciences” and contains dates from the 9th
to the 19th century CE in Julian, Islamic, and Gregorian calendars
(Ragep and Ragep 2008). The first version of ISMI used a custom
Java implementation of complex dates that allowed the user to
select a calendar (Julian, Hijri/Islamic, Gregorian), select a date in
that calendar, and then specify the accuracy (day, year, or a custom
range). Similar to the PGP implementation, dates are converted
to a standard Gregorian calendar for processing but displayed in
the original calendar. Preserving the original date is important
for historical accuracy, since conversion from historical calendars
is not completely precise.5 The current implementation for ISMI
uses the RDF-based ResearchSpace framework with a data model
based on the CIDOC-CRM Time-Span class, which preserves the
original calendar presentation and accuracy while using ISO8601
Gregorian dates for calculations. Building on the work of two
distinct projects with Hijri dates resulted in more robust calendar
support, and testing undate against data from both projects gives
greater confidence in our implementation.

Other approaches

There have been many attempts to handle temporal uncertainty
in computational humanities research. One approach is based on
specifying uncertainty for single dates, turning them effectively
into intervals, formalizing existing practices like using “193X” for
“sometime in the 1930s,” for example, in the EDTF specification
(Extended Date Time Format (EDTF) Specification 2019). Another
approach is based on temporal intervals with relations, as exem-
plified by the temporal algebra by James Allen, which makes it
possible to model and reason about relative date references even
without specific, known dates (Allen 1983). Relative dating is par-
ticularly important for fields such as archaeology, which is often
dependent on relative and location-specific periods; the software
tool ChronoLog6 provides an implementation for modeling and
calculating relative dates based on networks of relative dates and
periods (Levy et al. 2021). Relative dating is also useful for material
with implicit sequences, such as historical letter editions where a
temporal ordering can be established without exact dates, or photos
in a film roll with “implicit chronological ordering” of other “media
like film and television” (Schmidt 2018, 340). In the Humanities

4The actual date conversion is done with the convertdate library
(https://github.com/fitnr/convertdate), which requires numeric inputs for
months and days; the parsing provides the mapping between named and
numeric months.

5Conversion from the Islamic Hijri calendar to Gregorian has an ambiguity
of one to two days. Refer to Gautschy for a short explanation of the problem of
observable new moon and very thorough astronomical calculations (2018).

6https://chrono.ulb.be/

Data in Rchapter on temporal data, Arnold and Tilton recommend
“separate columns for each numeric component of the date or time”
to make it “easier to avoid errors and to record partial information”
(Arnold and Tilton 2024, 17). This is a practical solution for track-
ing mixed precision information, but makes temporal analysis and
computation more challenging.

One well-known implementation that leverages temporal inter-
vals for uncertain dates is Topotime, developed by Elijah Meeks and
Karl Grossner in 2014 (Grossner 2014). They developed a powerful
data model that made it possible to define periods like “Bronze Age
Britain” or “The Life of George Dance The Younger” using complex
time-span objects with differing certainty and temporal and spatial
relations. As Ben Schmidt explains, “Topotime’s basic unit is not a
line . . . but a polygon; time flows from left to right, but also varies
up and down in probability” (Schmidt 2018, 344). However, this
resulted in a complex data model that was never widely imple-
mented. Grossner, later reused elements in the spatio-temporal
Linked Places Format (Grossner, Janowicz, and Keßler 2016). This
is still in use by the World Historical Gazetteer (Grossner and
Mostern 2021), which focuses on referenceable places with histor-
ical context. This is a contrast to the PeriodO “gazetteer of peri-
ods,” which foregrounds geographical context (Shaw, Rabinowitz,
and Golden 2018). The web-based humanities research platform
Nodegoat provides a similarly complex “chronology statement”
mechanism, which allows to create temporal relations between
items in the database using a complicated user interface (Storing
Chronology Statements).

The CIDOC-CRM ontology accommodates both approaches
separately: it has a Period class that enable relative temporal
reasoning, as well as aTime-Span class, for documenting a single
date with uncertainty. The property at-some-time-within
can be used to indicate “that the phenomenon must have occurred
within the limits of a particular time-span without further spec-
ifying as to when precisely” (CIDOC CRM 2024, 41). In cases,
where the uncertainty does not exactly map to a Gregorian year
or day, properties such as begin-of-the-begin can be used
to describe “the latest point in time the user is sure that the
respective temporal phenomenon is indeed not yet happening,”
with a corresponding end-of-the-end.7 These are similar to
thenotBefore andnotAfter attributes in the TEI XML speci-
fication, which can be used to specify the earliest and latest possible
dates for an event in a standard form (TEI class att.datable.w3c
2025).

Kaše et al. take a different approach, testing probabilistic meth-
ods for analysis of uncertain temporal intervals as an alternative
to avoid problematic solutions such as using the midpoint of a
time period, which results in “overestimating the number of objects
dated to the middle of centuries” or omitting records with large
time periods, which results in “a substantial information loss, as
broadly dated records get completely omitted” (Kaše, Sobotková,
and Heřmánková 2023). While potentially useful for hypothesis
testing, in spite of providing a Python package, their approach is
not yet easily reusable and the code does not seem to be maintained
(Kaše 2023).

It is difficult to balance support for nuance, complexity, and
ambiguity while still providing a solution that is practical and
easy for researchers and software developers to use. A pragmatic
solution must focus on a set of features to successfully satisfy a
chosen set of use cases. For undate, we chose to represent single

7See appendix “Guidelines for using P81a, P81b, P82a, P82b” in Doerr,
Light, and Hibel (2020).

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://github.com/fitnr/convertdate
https://chrono.ulb.be/
https://doi.org/10.1017/chr.2025.10006


Computational Humanities Research 5

Table 2. Minimum and maximum years supported by different tools

Implementation Minimum year Maximum year

datetime 1 9999

pandas.Timestamp 1677 2262

numpy.datetime64[D] 2.5e16 BC 2.5e16 AD

dates with uncertainty along with support for multiple calendar
systems.

Comparison to other Python libraries

Undate differs from the built-in Python datetime.date
object, which requires year, month, and day all be specified, and
only supports years between 1 and 9999 (datetime). In contrast,
Undate supports any of year, year-month, year-month-day,
month-day, supports unknown digits, and tracks the precision
of the date (year, month, or day). Internally, undate uses
numpy.datetime64, which has an extensive range of years
depending on the precision used. We implemented shims to
wrap numpy.datetime64 and numpy.timedelta64 to
make them easier to work with and more consistent with the
datetime.date interface, which were used in earlier versions
of undate. Even though the popular data analysis library Pandas
uses numpy.datetime64 internally, and in spite of support
for converting dates relative to a “Julian” origin, Pandas methods
for parsing dates and converting to Timestamp objects don’t
support dates before 1677AD (Neumayer 2021). Refer to Table 2
for a comparison of minimum and maximum supported years for
these three implementations.

Software tools like these are primarily designed for contempo-
rary data and commercial applications, which is understandable
given their origins in scientific contexts. This is evident in the
fact that numpy.datetime64 object has extensive business day
logic but does not provide a weekday method.8 These are unneces-
sary and inappropriate limitations for humanistic research, which
spans beyond the typically supported years in both directions. It
is more familiar to think of historical dates, but humanities data
may also extend into the future. For example, “The Time Hori-
zons of Futuristic Fiction” dataset “collects 2,564 English-language
narrative works set in the future each marked with the year it was
released and the year it takes place.” The dataset was collected in
order to “systematically measure the depiction of the future in
fiction,” with fictive futures that “range from 1840 CE to 100 trillion
CE” (Wythoff and Leane 2025).

There are other Python packages with similar or overlapping
functionality with undate. DateTimeRange9 provides sim-
ilar functionality to UndateInterval, but for full-precision
datetime objects. The dateparser10 library bills itself as a
“Python parser for human readable dates,” with support for abso-
lute and relative dates, and even two non-Gregorian calendars (Per-
sian Jalali and Hijri/Islamic); its stated use cases are web scraping,
Internet-of-Things, log files, and format conversion.

Similarly, there are other libraries with support for parsing
and serializing dates in standardized formats. The EDTF parsing

8https://numpy.org/doc/stable/reference/routines.datetime.
htmlxxxhashxxxbusiness-day-functions

9https://github.com/thombashi/DateTimeRange
10https://github.com/scrapinghub/dateparser

in undate was implemented with reference to the specification
as well as other implementations, primarily python-edtf11 and
EDTF.js.12 The existing python library was too heavy to use as
direct dependency, and the two projects have different scope and
goals; python-edtf also includes natural language date parsing
as well as optional Django database fields, but we do not intend
to support the full EDTF specification and use a different internal
data model.13 Likewise, existing grammars for parsing could not
be converted directly into the needed format.14

Our comparison with related software here has been primarily
focused on the Python ecosystem, since that is the context for the
undate package and what we are most conversant with. However,
Python is not the only programming language with significant
limitations around dates and temporal logic. As just one exam-
ple, JavaScript has long-standing problems with the Date object
that were inherited in part from the Java implementation (Pint
2017). Support for a new Temporal object was announced earlier
this year (Smith 2025), which includes relevant functionality for
partially known dates such as Temporal.PlainYearMonth
and Temporal.PlainMonthDay, but which will likely remain
an experimental technology for some time (Temporal—JavaScript
2025). As Ben Schmidt says, it is challenging to model time and to
determine the “best possible model” to represent “time in formats
that can be easily understood and easily transformed” (Schmidt
2018, 326).

Development methodology

Development on undate began at a hackathon organized by
DHTech in November 2022. This was the first hackathon organized
by DHTech, and there were no clear expectations for either the
experience or specific outcomes. It was planned as a week-long,
virtual event. We chose the problem space of fuzzy dates because it
became clear during the planning that this was something multiple
people were interested in and it had the potential to impact many
different projects.

The hackathon began with a kickoff meeting. People interested
in participating met to talk through ideas for the week, identify
tasks, and establish processes. The initial meeting was a group of
about eight participants; most attendees were experienced soft-
ware developers, but there were also a few with less experience.
We outlined the functionality we wanted to develop, drafted and
assigned tasks, and identified dependencies among tasks. Partici-
pants met in smaller groups and pairs over the course of the week
for programming sessions, and by the end of the week we had an
alpha version of the software. Not everyone who attended the initial
meeting ended up contributing; this is typical, but the work could
also have been more inclusive with additional planning beforehand
(Koeser 2023). The hackathon concluded with a wrap-up meeting
to discuss the results and follow-up plans. Afterwards, a small
group of participants decided to continue working on the project.

11https://github.com/ixc/python-edtf
12https://github.com/inukshuk/edtf.js
13In addition to the differences in goals, there were concerns about support

for python-edtf. When development began on undate in late 2022, more
than four years had elapsed since the last release, and it was incompatible with
current versions of Python and the Django web framework. The package was
updated in 2024 to support the full EDTF specification finalized by the Library
of Congress in 2019 (Crawford 2024).

14undate parsers are implemented with Lark https://github.com/
lark-parser/lark.

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://numpy.org/doc/stable/reference/routines.datetime.htmlxxxhashxxxbusiness-day-functions
https://github.com/thombashi/DateTimeRange
https://github.com/scrapinghub/dateparser
https://github.com/ixc/python-edtf
https://github.com/inukshuk/edtf.js
https://github.com/lark-parser/lark
https://doi.org/10.1017/chr.2025.10006


6 Koeser et al.

Figure 3. Git commits and open pull requests on the undate-python GitHub repository from late 2022 to mid 2025.

Note: Data and Jupyter notebook for this figure are available on CoCalc https://www.cambridge.org/S2977815825100067/CHR-Notebooks/files/Figure-3.

Prior to the hackathon, we determined the code would be
hosted in a repository within the DHTech GitHub organization. At
the kick-off meeting, participants made decisions about develop-
ment processes. These included using the git-flow feature branch
workflow: every new feature or bug fix is developed in an inde-
pendent branch, and then merged into the develop branch once
the feature is completed. New releases of the software are created
by merging a set of changes in the develop branch into the main
branch, and then tagging the main branch. We use GitHub pull
requests for automated checks and code review of feature branches
before merging new functionality, since we define completing a
feature to include not only writing the code, but also writing
unit tests and documentation. We initially required at least one
review before merging a pull request. However, during the con-
tinued development, a problem quickly emerged: with only one
active developer (Koeser) and two to three occasional contributors,
pull requests tend to go unreviewed (see Figure 3). This is not
uncommon for small open-source projects that are maintained
by a handful of developers, especially for a niche project like
undate. We, therefore, agreed a pull request could be merged
if it went unreviewed over two weeks or a month, depending on
development rhythms, so that progress would not stall.

Towards the end of the hackathon, we began using All Con-
tributors15 to recognize and celebrate the work completed, since
we firmly believe that all contributions to a software package are
valuable. Writing code is often privileged, but many contributions
are crucial: thinking, planning, documenting, testing, reviewing,
and providing sample data and examples, just to name a few. All
Contributors provides GitHub integration and a command line
tool for adding users and contributions. The project recognizes that
an open source project does not only rely on coding but many kinds
of work and makes it easy to recognize different contributions.
For undate, providing sample data and notebooks that demon-
strate specific examples and use cases in context are incredibly
valuable. Contributors are listed in a CONTRIBUTORS.md file in
the undate repository, which is linked from the main README.
This public recognition has not yet resulted in new contributors,
but we think the visibility is important and we hope the list and
types of contributions will grow as more people learn about and
use undate.

Development since the hackathon has been managed by conver-
sations in an #undate-dev project channel within the DHTech
Slack. In May of 2024, we started holding contributor meetings

15https://allcontributors.org/

with roughly monthly frequency. Contributor meetings are used
to check in on completed work, prioritize upcoming work, discuss
possible approaches, and make decisions. They may also serve
as a prompt for signing off on open pull requests. On occasion,
contributor meetings are also used as work meetings, which can
be an effective way of moving the project forward.

Tooling

To ensure code quality and maintainability, we use unit tests and
continuous integration. Unit tests and code coverage checks run for
every code change and pull request using GitHub Actions. We test
against a matrix build of supported Python versions (currently 3.10
through 3.13). We use Treon16 with a GitHub Actions workflow
to check that example notebooks run successfully, which helps
us keep the examples operable with changes to the core library.
We use Sphinx17 for code documentation, which we publish with
Read the Docs18; we have a GitHub Actions workflow to check
documentation compilation and coverage. We use pre-commit
hooks to enforce formatting and other checks before committing
changes to git, notably Ruff19 for code style and mypy20 for type
checking. As a build tool, we use Hatchling21 and for dependency
management we usepyproject.toml, as recommended by the
Scientific Python Library Development Guide (Packaging). We use
GitHub issues for task tracking, GitHub milestones for planning
releases, and GitHub discussions for development meeting notes.

Code review

In addition to automated checks, we rely on code reviews to ensure
quality and as a means to discuss and agree on implementation
decisions. Whenever possible and as contributor time permits, we
aim for at least one review before changes are merged into the
development branch. In the fall of 2024, we started to experiment
with automatic AI code reviews using CodeRabbit22 and Kypso23

in order to gain familiarity with the tooling in this space. This has
been a mediocre success. Initially, we found both tools to be quite

16https://github.com/ReviewNB/treon
17https://www.sphinx-doc.org/
18https://readsthedocs.com/
19https://docs.astral.sh/ruff/
20https://www.mypy-lang.org/
21https://pypi.org/project/hatchling/
22https://www.coderabbit.ai/
23https://kypso.io/

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://www.cambridge.org/S2977815825100067/CHR-Notebooks/files/Figure-3
https://allcontributors.org/
https://github.com/ReviewNB/treon
https://www.sphinx-doc.org/
https://readsthedocs.com/
https://docs.astral.sh/ruff/
https://www.mypy-lang.org/
https://pypi.org/project/hatchling/
https://www.coderabbit.ai/
https://kypso.io/
https://doi.org/10.1017/chr.2025.10006


Computational Humanities Research 7

Figure 4. Heatmap of weekday frequency for PGP 2,285 legal documents and 427 letters

dated with day-level precision. Saturday is the Hebrew Shabbat; Monday and Thursday

are the other traditional convening days for court sessions.

Note: Data and Jupyter notebook for this figure are available on CoCalc https://www.

cambridge.org/S2977815825100067/CHR-Notebooks/files/Figure-4.

brittle and limited, applying static checks from tools like Ruff in a
less efficient way. Since then, we have found CodeRabbit useful for
identifying typos and inconsistencies, and even flagging potential
logic errors; but it also frequently flags details that are irrelevant
or out of scope for a particular feature. We are undecided whether
these AI code review tools are better than nothing, although we
continue to use them.

Audience

Undate is a Python library, and as such it is primarily intended for
developers, data scientists, and researchers writing code or analyz-
ing data in Python who want to work with dates in various formats
and calendars. We are particularly interested to see undate used
by digital and computational humanities researchers and develop-
ers, but we fully expect it to be useful in other domains. We want
to empower people to do more than the basics of storing dates for
information retrieval and display, which is often a challenge with
humanities datasets, so that intellectual capacity can be spent on
more meaningful temporal analysis.

Undate is already useful for data analysis on humanities and
cultural data, and can be used with libraries like Pandas (see
Figure 4) for an example of weekday analysis of documents from
PGP datasets (Rustow et al. 2025) and Figure 5 for an example of
borrowing durations with unknown years from Shakespeare and
Company Project datasets (Koeser and Kotin 2025). It may be
useful for parsing and validating cultural heritage data, such as
publication dates in library catalog data. undate can be used for
sorting, filtering, and comparing disparate dates across calendars
and precisions, and also supports checking if two date intervals
overlap, or if one date or date interval falls within another.

We have been in conversation with other researchers who
have dealt with similar problems. These include Erin McCarthy
(Systems of Transmitting Early Modern Manuscript Verse, 1475-
170024); Taylor Arnold (Digital Documerica25, Photogrammar26);

24https://stemma.universityofgalway.ie/
25https://digitaldocumerica.org/
26https://photogrammar.org

Péter Király (research on cultural heritage metadata quality). These
projects and many others have developed custom solutions for
parsing and storing imprecise, intractable dates; but since the
temporal data work is not their primary research goal, it is hard for
others to learn from or reuse their implementations.

Analysis of “The Time-Horizons of Science Fiction” would also
benefit; this dataset includes fictional works that span “a wide range
of years (e.g., time travel or multi-generational narratives).” For the
published dataset, the authors “entered the median of the years
depicted in the work,” which they note they had to format “as an
integer rather than a date because the Python datetime module
doesn’t support years beyond 9999” (Wythoff and Leane 2025).
More sophisticated modeling of the temporal setting for these
works would require date intervals as well as sets of dates, and
analysis based on the full range of dates could offer a richer and
more complex perspective on the depictions of futurity.

Undate does have a number of limitations; some of those
are due to design choices, while others are because it is still in
development. One deliberate limitation is that we do not support
time, but only dates. We made this choice for pragmatic reasons;
historical dates are already uncertain enough, and specific times
are rarely known. For similar reasons, we are selective in our
support of the EDTF specification.27undate does not yet support
database integration; future versions may add support for the
Django web framework based on the partial date implementation
in the Shakespeare and Company Project codebase, which includes
custom queryset filters and template tags. Available format and
calendar converters are not exhaustive; the calendars undate
currently supports based on existing projects with known use
cases and expert researchers who could inform our work. We
are interested in integrating the French Republican Calendar; the
decimalization of time and 10-day cycles would provide a helpful
challenge to assumptions about seven-day weeks. Parsing also
currently requires specifying the format or calendar, but we have
begun experimenting with an omnibus parser which combines
unambiguous formats from all supported parsers. Although calen-
dar and format support is incomplete, the structure for converters
is designed and documented to be extensible. We plan to continue
expanding support, while keeping the development grounded in
domain-specific research and expertise.

We have begun exploring implementations for ambiguous
durations, such as the number of days in the month of February
in an unknown year. The EDTF specification includes support
for indicating that dates are uncertain, approximate, or both; we
have not yet grappled with these distinctions, since we believe
those decisions should be informed by use cases and examples.
As Ben Schmidt notes, “the distinction between ambiguity and
uncertainty” is a significant challenge for temporal modeling,
since temporal uncertainty may be subjective and context-specific
enough to resist standardization and resist translation across
different datasets or contexts (Schmidt 2018, 344, 346). Another
interesting challenge is invalid dates due to human error, such as
February 29th in a non-leap year, which could be supported and
treated as an approximate date.

27undate only handles EDTF dates without times. We have not imple-
mented seasons, since they require geographical context to be meaningful
and winter of a particular year is ambiguous, since winter in the northern
hemisphere spans years. Other advanced Level 2 EDTF components such as
exponential years, significant digits, set representation, and group qualification
are also not currently supported, though it seems like few projects realistically
need these features.

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://www.cambridge.org/S2977815825100067/CHR-Notebooks/files/Figure-4
https://stemma.universityofgalway.ie/
https://digitaldocumerica.org/
https://photogrammar.org
https://doi.org/10.1017/chr.2025.10006


8 Koeser et al.

Figure 5. Raincloud plot showing how long Gertrude Stein kept the books she borrowed from the Shakespeare and Company lending library, based on Shakespeare and Company
Project data (Koeser and Kotin 2025). Stein has 46 borrow events with calculable duration; of those 7 (15%) have no known year. Borrow events with unknown years are highlighted

in orange in the lower portion of the plot.

Note: Data and Jupyter notebook for this figure are available on CoCalc https://www.cambridge.org/S2977815825100067/CHR-Notebooks/files/Figure-5.

undate does not yet support parsing “human-readable dates.”
Typical solutions to this problem are rule-based and brittle; despite
long-standing interest in this problem, there are no standards, and
the solutions we are aware of are unfortunately not multilingual.
English-only solutions include the cultural_dates ruby
gem28 and arttracks-js JavaScript library29, which came out
of the Art Tracks project for transforming museum provenance
records into searchable data30, and python-edtf. We have
begun experimenting with language models for parsing human-
readable dates into structured format; early tests indicate it has
potential, and could support the design of a solution that takes
context into account.31 Enhancements like these will be released
as optional dependencies or separate packages, so that the core
undate library remains as lightweight as possible.

Another interesting challenge is the “vexing . . . problem of the
year zero” since “depending on convention, the year 0CE either
does not exist at all or is entirely coincident with the year 1CE,”
which is a discontinuity that may cause problems and confusion
(Schmidt 2018, 336). We feel strongly that this is best tackled in
the context of a project or dataset that spans these years, so that the
technical implementation can be worked out and evaluated with
domain experts and real use cases.

Impact

undate is still a new library, but we are already finding it incredi-
bly useful for data analysis and continually discovering more use
cases and datasets, where undate is relevant. Because of the
extensible format and calendar conversion capabilities, undate
has the potential to serve as a bridge across different domains and
modes, from computational and digital humanities and beyond,
from databases to data science, from linked data to spreadsheets,
and will eventually make it possible to do temporal analysis across
different datasets, calendars, and domains. For now, undate is
Python-only, but if successful we hope to expand to other lan-

28https://github.com/arttracks/cultural_dates
29https://github.com/workergnome/arttracks-js
30https://www.museumprovenance.org
31For instance, a photo by Russell Lee in the United States Farm Security

Administration and Office of War Information (FSA-OWI) collection provides
only the text “1941 July.” in the date field, but the title of the photograph includes
the text the “fourth of July.” (Lee 1941)

guages, such as R or JavaScript in collaboration with partners who
have appropriate domain and technical expertise.

We hopeundatewill handle the basics of working with partial,
uncertain temporal information so that researchers can spend less
effort wrangling temporal data and more effort on their research
questions. As the library matures, we hope to support compu-
tational humanities work, such as the probabilistic approaches
to temporal uncertainty mentioned earlier. We are inspired by
Lauren Klein’s call to foreground humanities theories with the
specific temporal example of “operationalizing . . . medium-specific
theories” such as “Twitter-time” by means of dataset partitioning
“around local maxima of tweet frequency, allowing irregular inter-
vals” (Roytburg et al. 2024), and hope undate will enable more
interventions like these.

Use and reuse of code has a direct impact on quality; the more
people and projects that use a piece of software, the more robust
and trustworthy that software will be. We hope that projects will
begin to use undate and contribute to its development. New
contributors are not just welcome but needed. Writing code is only
one aspect; providing use cases and example data, helping with
documentation, thinking through questions and contributing to
decisions about approaches are all invaluable contributions. Up
to this moment, undate contributors represent four different
organizations. We firmly believe that the long-term success of
digital and computational tools like this depend on collaboration
across institutions, countries, and domains.

Supplementary material. Computational Notebook files are available as
supplementary material at https://doi.org/10.1017/chr.2025.10006 and online
at https://www.cambridge.org/S2977815825100067/CHR-Notebooks.

Acknowledgments. Thanks to Jeri Weiringa for helpful comments and sug-
gestions on a previous draft of this essay; to Erin McCarthy, Taylor Arnold,
and Péter Király for sharing their experiences with similar problems; to Marina
Rustow and Rachel Richman, for feedback on data visualizations of PGP data;
and to our reviewers for their invaluable advice on restructuring the essay for
improved clarity and for their suggestions on important additional functionality
for undate.

Data availability statement. The software repository for the undate
Python library, which includes example notebooks to demonstrate function-
ality, is available in a public GitHub repository: https://github.com/dh-tech/
undate-python/

Author contributions. Conceptualization: R.S.K., J.D., R.C., C.C.; Data visu-
alization: R.S.K.; Reviewing and editing: R.S.K., J.D., R.C., C.C.; Software:
R.S.K., J.D., R.C., C.C.; Writing original draft: R.S.K.

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://www.cambridge.org/S2977815825100067/CHR-Notebooks/files/Figure-5
https://github.com/arttracks/cultural_dates
https://github.com/workergnome/arttracks-js
https://www.museumprovenance.org
https://doi.org/10.1017/chr.2025.10006
https://www.cambridge.org/S2977815825100067/CHR-Notebooks
https://github.com/dh-tech/undate-python/
https://doi.org/10.1017/chr.2025.10006


Computational Humanities Research 9

Funding statement. This work was not supported by grant funding. Koeser’s
research is supported by the Center for Digital Humanities, Princeton
University.

Competing interests. The authors declare none.

Ethical standards. The research meets all ethical guidelines and adheres to
legal requirements. No AI was used to write this article. AI code review systems
were used for software development as an experiment, but all code changes were
reviewed and tested.

References

Allen, James F. 1983. “Maintaining Knowledge about Temporal Intervals.”
Communications of the ACM 26, no. 11, 832–843. https://doi.org/10.1145/
182.358434.

Arnold, Taylor, and Lauren Tilton. 2024. Humanities Data in R: Exploring
Networks, Geospatial Data, Images, and Text. Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-031-62566-4.

Crawford, Cole. 2024. “Updating the Open Source Python-Edtf Library
to Support the EDTF 2019 Standard.” https://interaction.net.au/articles/
updating-the-open-source-python-edtf-library-to-support-the-edtf-
2019-standard/.

Definition of the CIDOC Conceptual Reference Model, edited by Chryssoula
Bekiari, George Bruseker, Erin Canning, Martin Doerr, Philippe Michon,
Christian-Emil Ore, Stephen Stead, and Athanasios Velios. 2024. https://
cidoc-crm.org/Version/version-7.3.

Doerr, Martin, Richard Light, and Gerald Hibel. 2020. “Implementing the
CIDOC Conceptual Reference Model in RDF—CIDOC CRM.” https://
cidoc-crm.org/Resources/implementing-the-cidoc-conceptual-reference-
model-in-rdf.

Gautschy, Rita. 2018. “Islamic Calendar.” https://www.gautschy.ch/~rita/
archast/mond/arabcal.html.

Grossner, Karl. 2014. “Topotime: A Data Model and D3 Layout for His-
torical Time.” https://hestia.open.ac.uk/topotime-a-data-model-and-d3-
layout-for-historical-time/.

Grossner, Karl, Krzysztof Janowicz, and Carsten Keβler. 2016. “Place, Period,
and Setting for Linked Data Gazetteers.” In Placing Names: Enriching and
Integrating Gazetteers, edited by Merrick Lex Berman, Ruth Mostern, and
Humphrey Southall, 80–96. Bloomington, IN: Indiana University Press.
https://doi.org/10.2307/j.ctt2005zq7.11.

Grossner, Karl, and Ruth Mostern. 2021. “Linked Places in World Historical
Gazetteer.” In GeoHumanities ’21: Proceedings of the 5th ACM SIGSPATIAL
International Workshop on Geospatial Humanities, edited by Ludovic Mon-
cla, Carmen Brando, Katherine McDonough, 40–43. New York, NY: Associ-
ation for Computing Machinery. https://doi.org/10.1145/3486187.3490203.

Kaše, Vojtěch. 2023. “Tempun.” https://doi.org/10.5281/zenodo.8179346.
Kaše, Vojtěch, Adéla Sobotková, and Petra Heřmánková. 2023. “Modeling

Temporal Uncertainty in Historical Datasets.” In Proceedings of the Compu-
tational Humanities Research Conference 2023, vol. 3558, edited by Artjoms
Šeļa, Fotis Jannidis, and Iza Romanowska, 413–25. CEUR Workshop Pro-
ceedings. Paris, France: CEUR. https://ceur-ws.org/Vol-3558/#paper5123.

Klein, Lauren. 2024. When Theory Leads: Towards a Humanities-Forward
Model of Computational Research. Aarhus: Keynote, Computational Human-
ities Research 2024.

Koeser, Rebecca Sutton. 2019. “Coding with Unknowns.” https://cdh.
princeton.edu/blog/2019/12/05/coding-unknowns/.

Koeser, Rebecca Sutton. 2023. “Join Me for a DHTech Hackathon? Its an Un-
Date!” https://dh-tech.github.io/blog/2023/02/09/hackathon-undate/.

Koeser, Rebecca Sutton, Cole Crawford, Julia Damerow, Malte Vogl, and
Robert Casties. 2025. “Undate Python Library.” Version 0.5.1, July. https://
doi.org/10.5281/zenodo.11068867.

Koeser, Rebecca Sutton, and Joshua Kotin. 2025. Shakespeare and Company
Project Datasets. Princeton: Princeton University. https://doi.org/10.34770/
kf6c-b079.

Koeser, Rebecca Sutton, and Zoe LeBlanc. 2024. “Missing Data, Speculative
Reading.” Journal of Cultural Analytics 9, no. 2, 1–28. https://doi.org/10.
22148/001c.116926.

Koeser, Rebecca Sutton, and Marina Rustow. n.d. “Princeton Geniza Project
Datasets.” Article under review.

Kotin, Joshua, and Rebecca Sutton Koeser. 2020. Shakespeare and Com-
pany: Top Ten Lists. Princeton: Center for Digital Humanities, Prince-
ton University. https://shakespeareandco.princeton.edu/analysis/2020/11/
shakespeare-and-company-top-ten-lists/.

Kotin, Joshua, and Rebecca Sutton Koeser. 2022. “Shakespeare and Company
Project Data Sets.” Journal of Cultural Analytics 7, no. 1, 1–35. https://doi.
org/10.22148/001c.32551.

LAB1100. 2020. “Storing Chronology Statements.” Last modified August 11,
2021. https://nodegoat.net/guide.s/43/storing-chronology-statements.

Lee, Russell. 1941. “Main Street of Vale, Oregon, on the Fourth of July.
Vale is One of the Shopping Centers for the Farmers Who Live and
Work on the Vale-Owyhee Irrigation Project.” still image. Archive Loca-
tion: Oregon–Malheur County–Vale, July. https://www.loc.gov/pictures/
item/2017789888/.

Levy, Eythan, Gilles Geeraerts, Frédéric Pluquet, Eli Piasetzky, and Alexan-
der Fantalkin. 2021. “Chronological Networks in Archaeology: A For-
malised Scheme.” Journal of Archaeological Science 127, 1–27. https://doi.org/
10.1016/j.jas.2020.105225.

Mozilla Foundation. 2025. “Temporal.” Last modified July 10, 2025. https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Temporal.

Neumayer, Wolfgang. 2021. “BC Dates in Python—Part 1—Numpy/Pandas.”
https://wolololf.github.io/fast-blog/datascience/history/python/numpy/
pandas/time/2021/12/23/bc_dates_in_python_part_1.html.

Oxford English Dictionary. 1921. “undated, adj.1” Last modified March 2024.
https://www.oed.com/dictionary/undated_adj1.

Princeton Geniza Project. 2022. Princeton: Center for Digital Humanities,
Princeton University. https://geniza.princeton.edu/.

Pint, Maggie. 2017. “Fixing JavaScript Date Getting Started.” https://
maggiepint.com/2017/04/09/fixing-javascript-date-getting-started/.

Python Software Foundation. n.d. “datetime — Basic date and time types.“
Accessed January 17, 2025. https://docs.python.org/3/library/datetime.html.

Ragep, Jamil F., and Sally P. Ragep. 2008. “The Islamic Scientific Manuscript
Initiative (ISMI) Towards a Sociology of the Exact Sciences in Islam.” In
A Shared Legacy: Islamic Science East and West (Homage to Professor J. M.
Mill à s Vallicrosa), edited by Emilia Calvo, Mercè Comes, Roser Puig, and
Monica Rius, 15–21. Barcelona: University of Barcelona. https://islamsci.
mcgill.ca/ISMI_SharedLegacy.pdf .

Roytburg, Dani, Deborah Olorunisola, Sandeep Soni, and Lauren Klein.
2024. “Words and Action: Modeling Linguistic Leadership in #BlackLives-
Matter Communities.” https://doi.org/10.48550/arXiv.2412.02637.

Rustow, Marina. 2020. “Dating Problems? Ask the Princeton Geniza Project
Team.” https://cdh.princeton.edu/blog/2020/11/18/dating-problems-ask-
princeton-geniza-project-team/.

Rustow, Marina, Rebecca Sutton Koeser, Rachel Richman, Ksenia Ryzhova,
Amel Bensalim, and Abdellatif Mohamed. 2025. “Princeton Geniza Project
Dataset.” https://doi.org/10.5281/zenodo.15839055.

Schmidt, Benjamin. 2018. “Modeling Time.” In The Shape of Data in Digital
Humanities, edited by Julia Flanders and Fotis Jannidis, 150–166. London
and New York: Routledge.

Scientific Python. 2024. “Packaging.” Scientific Python Library Development
Guide. Last modified December 12, 2024. https://learn.scientific-python.
org/development/tutorials/packaging/.

Shaw, Ryan, Adam Rabinowitz, and Patrick Golden. 2018. “A Deep
Gazetteer of Time Periods.” Mexico City. https://dh2018.adho.org/en/a-
deep-gazetteer-of-time-periods/.

Shakespeare and Company Project. 2020. Princeton: Center for
Digital Humanities, Princeton University. https://shakespeareandco.
princeton.edu/.

Smith, Brian. 2025. “JavaScript Temporal is Coming.” https://developer.
mozilla.org/en-US/blog/javascript-temporal-is-coming/.

TEI Consortium. 2025. “TEI class att.datable.w3c.” Last modified January 24,
2025. https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.datable.
w3c.html.

The Library of Congress. 2019. “Extended Date Time Format (EDTF) Spec-
ification.” Last modified February 2, 2022. https://www.loc.gov/standards/
datetime/.

Wythoff, Grant, and Theodore Leane. 2025. “Time Horizons of Futuristic
Fiction.” Post45 Data Collective. https://doi.org/10.18737/552626.

https://doi.org/10.1017/chr.2025.10006 Published online by Cambridge University Press

https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434
https://doi.org/10.1007/978-3-031-62566-4
https://interaction.net.au/articles/updating-the-open-source-python-edtf-library-to-support-the-edtf-2019-standard/
https://interaction.net.au/articles/updating-the-open-source-python-edtf-library-to-support-the-edtf-2019-standard/
https://interaction.net.au/articles/updating-the-open-source-python-edtf-library-to-support-the-edtf-2019-standard/
https://cidoc-crm.org/Version/version-7.3
https://cidoc-crm.org/Version/version-7.3
https://cidoc-crm.org/Resources/implementing-the-cidoc-conceptual-reference-model-in-rdf
https://cidoc-crm.org/Resources/implementing-the-cidoc-conceptual-reference-model-in-rdf
https://cidoc-crm.org/Resources/implementing-the-cidoc-conceptual-reference-model-in-rdf
https://www.gautschy.ch/~rita/archast/mond/arabcal.html
https://www.gautschy.ch/~rita/archast/mond/arabcal.html
https://hestia.open.ac.uk/topotime-a-data-model-and-d3-layout-for-historical-time/
https://hestia.open.ac.uk/topotime-a-data-model-and-d3-layout-for-historical-time/
https://doi.org/10.2307/j.ctt2005zq7.11
https://doi.org/10.1145/3486187.3490203
https://doi.org/10.5281/zenodo.8179346
https://ceur-ws.org/Vol-3558/#paper5123
https://cdh.princeton.edu/blog/2019/12/05/coding-unknowns/
https://cdh.princeton.edu/blog/2019/12/05/coding-unknowns/
https://dh-tech.github.io/blog/2023/02/09/hackathon-undate/
https://doi.org/10.5281/zenodo.11068867
https://doi.org/10.5281/zenodo.11068867
https://doi.org/10.34770/kf6c-b079
https://doi.org/10.34770/kf6c-b079
https://doi.org/10.22148/001c.116926
https://doi.org/10.22148/001c.116926
https://shakespeareandco.princeton.edu/analysis/2020/11/shakespeare-and-company-top-ten-lists/
https://shakespeareandco.princeton.edu/analysis/2020/11/shakespeare-and-company-top-ten-lists/
https://doi.org/10.22148/001c.32551
https://doi.org/10.22148/001c.32551
https://nodegoat.net/guide.s/43/storing-chronology-statements
https://www.loc.gov/pictures/item/2017789888/
https://www.loc.gov/pictures/item/2017789888/
https://doi.org/10.1016/j.jas.2020.105225
https://doi.org/10.1016/j.jas.2020.105225
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Temporal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Temporal
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Temporal
https://wolololf.github.io/fast-blog/datascience/history/python/numpy/pandas/time/2021/12/23/bc_dates_in_python_part_1.html
https://wolololf.github.io/fast-blog/datascience/history/python/numpy/pandas/time/2021/12/23/bc_dates_in_python_part_1.html
https://www.oed.com/dictionary/undated_adj1
https://geniza.princeton.edu/
https://maggiepint.com/2017/04/09/fixing-javascript-date-getting-started/
https://maggiepint.com/2017/04/09/fixing-javascript-date-getting-started/
https://docs.python.org/3/library/datetime.html
https://islamsci.mcgill.ca/ISMI_SharedLegacy.pdf
https://islamsci.mcgill.ca/ISMI_SharedLegacy.pdf
https://doi.org/10.48550/arXiv.2412.02637
https://cdh.princeton.edu/blog/2020/11/18/dating-problems-ask-princeton-geniza-project-team/
https://cdh.princeton.edu/blog/2020/11/18/dating-problems-ask-princeton-geniza-project-team/
https://doi.org/10.5281/zenodo.15839055
https://learn.scientific-python.org/development/tutorials/packaging/
https://learn.scientific-python.org/development/tutorials/packaging/
https://dh2018.adho.org/en/a-deep-gazetteer-of-time-periods/
https://dh2018.adho.org/en/a-deep-gazetteer-of-time-periods/
https://shakespeareandco.princeton.edu/
https://shakespeareandco.princeton.edu/
https://developer.mozilla.org/en-US/blog/javascript-temporal-is-coming/
https://developer.mozilla.org/en-US/blog/javascript-temporal-is-coming/
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.datable.w3c.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.datable.w3c.html
https://www.loc.gov/standards/datetime/
https://www.loc.gov/standards/datetime/
https://doi.org/10.18737/552626
https://doi.org/10.1017/chr.2025.10006

