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In this paper we develop the calculus of pseudo-differential operators corresponding
to the quantizations of the form

Au(x) =

∫
Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ,

where τ : R
n → R

n is a general function. In particular, for the linear choices
τ(x) = 0, τ(x) = x and τ(x) = x/2 this covers the well-known Kohn–Nirenberg,
anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such
type appear naturally in the analysis on nilpotent Lie groups for polynomial
functions τ and here we investigate the corresponding calculus in the model case of
R

n. We also give examples of nonlinear τ appearing on the polarized and
non-polarized Heisenberg groups.

Keywords: Pseudo-differential operators; quantizations; Weyl quantization;
Heisenberg group
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1. Introduction

There are many ways (quantizations) of associating the operator to a function
of variables (x, ξ) on the phase space. In this paper we are going to discuss a
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generalization of the well-known quantization procedures:

Weyl
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξσ
(

x + y

2
, ξ

)
u(y) dy dξ,

Kohn–Nirenberg
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξσ(x, ξ)u(y) dy dξ,

Anti-Kohn–Nirenberg
1

(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξσ(y, ξ)u(y) dy dξ.

More specifically, we are going to study pseudo-differential operators of the form

1
(2π)n

∫
Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ, (1.1)

where τ is a function satisfying certain admissibility conditions. In particular, we
can recover the above listed quantizations by taking τ(x) = x/2 (Weyl), τ(x) = 0
(Kohn–Nirenberg), and τ(x) = x (anti-Kohn–Nirenberg). In the more general spe-
cial case of a linear function τ(x) = sx with 0 � s � 1 we recover the quantizations
analysed in detail by Shubin [10]. The quantizations with linear τ of the form
τ(x) = Mx for some nondegenerate matrix M have been also considered recently
in the context of modulation spaces [13] or [1], and Gelfand–Shilov spaces [3].

In this paper we will consider two cases of τ , with unbounded and with bounded
derivatives, and also symbols satisfying inequalities of the form

|∂α
x ∂β

y ∂γ
ξ [σ(x + τ(y − x), ξ)] | � Cα,β,γ〈ξ〉m−|γ|〈x− y〉d(|α|+β|), (1.2)

or of the form

|∂α
x ∂β

y ∂γ
ξ [σ(x + τ(y − x), ξ)] | � Cα,β,γ〈ξ〉m−|γ|, (1.3)

where α, β, γ ∈ N
n are multi-indices, m, d ∈ R are numbers depending on the

symbol σ and on τ , and 〈ξ〉 = (1 + |ξ|2)1/2.
We are going to develop a calculus for (1.1), i.e. we prove the adjoint, composition

and other formulae, make links between quantizations for different choices of τ ,
and investigate different properties of operators of this kind. Moreover, we discuss
the Calderón–Vaillancourt theorem, ellipticity and parametrix, and the G̊arding
inequality.

We may skip the constant 1/(2π)n on most occasions but we have put it in (1.1)
to ensure that the constant 1 is quantized into the identity operator.

The quantizations of the form (1.1) appear naturally in the analysis on nilpo-
tent Lie groups, in particular in the question of finding suitable analogues of
the Weyl quantizations in the noncommutative setting. In [6], a class of the so-
called symmetric quantizations was identified inheriting the important property for
quantum physics, that the self-adjoint symbols (real-valued scalar symbols in the
commutative case, and self-adjoint operator symbols in the noncommutative case)
are quantized into self-adjoint operators. When written in local coordinates, this
reduces to quantizing the symbol in the form σ(x + τ(y − x), ξ) for suitable choices
of nonlinear functions τ .
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τ -quantizations of pseudo-differential operators 105

For example, if G is a locally compact unimodular group of type I, and τ : G→ G
is a measurable function, general τ -quantizations on G were considered in [6] in the
form

Opτ (σ)u(x) =
∫

G

(∫
Ĝ

Trξ

[
ξ(y−1x)σ

(
xτ(y−1x)−1, ξ

)]
dμ(ξ)

)
u(y) dm(y), (1.4)

where dm and dμ are the Haar and the Plancherel measures on G and Ĝ, respec-
tively. We refer to [6] for the details, but here we can say that it was shown in
[6, proposition 4.3] that Opτ (σ)∗ = Opτ (σ∗) if and only if τ(x) = τ(x−1)x for all
x ∈ G, and functions τ satisfying this condition were called symmetry functions.
Moreover, it was also shown that if G is an exponential group (i.e. the exponential
mapping is a global diffeomorphism) then such symmetry functions always exist,
e.g. given by

τ(x) :=
∫ 1

0

exp[s log x] ds. (1.5)

In the case of G = R
n the quantization (1.4) reduces to (1.1), and since both map-

pings exp and log are identities, formula (1.5) boils down (modulo signs) to τ(x) =
(1/2)x, yielding the usual Weyl quantization, so that real-valued (self-adjoint in the
noncommutative case) symbols are quantized into self-adjoint operators. However,
already on nilpotent Lie groups different from R

n, since the group law is polynomial,
the symmetry functions τ in (1.5) do not have to be linear.

We give a further example for this construction in the setting of the Heisenberg
group in §A, in particular, the symmetry function (1.5) on the Heisenberg group
H � R

3 is already nonlinear, taking the form (A.4), namely,

τ(a, b, c) =
(

a

2
,
b

2
,
c

2
+

ab

6

)
. (1.6)

Consequently, we get the formula for the ‘midpoint’ function m(x, y) = xτ(y−1x)−1

from (A.2) in the Weyl-type quantization (1.4) as

m((a1, b1, c1), (a2, b2, c2)) =
(

a1 + a2

2
,
b1 + b2

2
,
c1 + c2

2
− (a1 − a2)(b1 − b2)

6

)
.

Curiously, such a midpoint between x and x−1 is not the origin but

m((a, b, c), (a, b, c)−1) =
(

0, 0,−2ab

3

)
.

Since such quantizations appear not studied even in the simplest settings, we
took it as an incentive to analyse them in this paper first in the simplest classical
setting of R

n. This already yields some insights and further intuition into such
quantizations.

Throughout this paper symbols will be mainly denoted with σ, while their asso-
ciated τ -quantization will be marked with a subscript τ . Also, instead of writing
inequalities like |∂α

x ∂β
ξ σ(x, ξ)| � Cα〈ξ〉m−|β| we will often write |∂α

x ∂β
ξ σ(x, ξ)| �α
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〈ξ〉m−|β| to denote a possible dependence on a constant Cα. Similarly, we will sim-
ply write A � B if there is a constant C > 0 such that A � CB. We will be also
using the notation N0 = N ∪ {0}.

The authors would like to thank Julio Delgado for discussions and for comments
on the preliminary version of the manuscript.

2. Admissible τ -quantizations

In this section we are going to introduce an admissible class of functions τ and the
corresponding classes of symbols and amplitudes.

Definition 2.1. A function τ : R
n → R

n will be called admissible if τ ∈ C∞ and
τ(0) = 0, and if there exists μ � 0 such that

|∂α
x τ(x)| �α 〈x〉μ (2.1)

holds for all multi-indices α ∈ N
n
0\{0} and all x ∈ R

n. We will often say that in this
case τ is admissible of order μ. We will also often call τ the quantizing function.

We are now going to introduce the class of symbols and amplitudes that we will
use and the associated operators. Given an admissible τ , we say that a smooth func-
tion σ : R

n × R
n → C belongs to the class Sm

d,τ , where m and d are real numbers,
if for all multi-indices α, β, γ ∈ N

n
0 and all (x, y, ξ) ∈ R

n × R
n × R

n we have

|∂α
x ∂β

y ∂γ
ξ [σ(x + τ(y − x), ξ)] | �α,β,γ 〈ξ〉m−|γ|〈x− y〉d·(|α|+|β|). (2.2)

A typical situation would be to take σ ∈ Sm, that is, satisfying

|∂α
x ∂γ

ξ σ(x, ξ)| �α,γ 〈ξ〉m−|γ|.

Consequently, if τ is an admissible quantizing function of order μ, then σ ∈ Sm
μ,τ .

We note that the derivatives in y can be eliminated from the assumption (2.2),
namely, the class Sm

d,τ can be also characterized by the condition that for all multi-
indices α, γ � 0 and all (x, y, ξ) ∈ R

n × R
n × R

n we have

|∂α
x ∂γ

ξ [σ(x + τ(y − x), ξ)] | �α,γ 〈ξ〉m−|γ|〈x− y〉d|α|. (2.3)

Given σ ∈ Sm
d,τ and u ∈ S(Rn) we define the operator Aσ,τ ≡ Opτ (σ) associated

to σ as

Aσ,τu(x) = Opτ (σ)u(x) :=
∫

Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ. (2.4)

In this case we also say that Aσ,τ ∈ OPτSm
d,τ . For τ(x) = 0 we have the usual Kohn–

Nirenberg quantization, and we can abbreviate this case by writing Op = Opτ≡0.
We also define the corresponding class of amplitudes a(x, y, ξ). Namely, a smooth

function a : R
n × R

n × R
n → C belongs to the class Am

d , where m and d are real
numbers if for any α, β, γ � 0 and for all (x, y, ξ) ∈ R

n × R
n × R

n one has the
inequalities

|∂α
x ∂β

y ∂γ
ξ a(x, y, ξ)| �α,β,γ 〈ξ〉m−|γ|〈x− y〉d(|α|+|β|). (2.5)

Clearly the classes Sm
d,τ depend on τ , but for simplicity we may sometimes suppress

the letter τ from their notation as it should cause no confusion when τ is fixed.
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Given a ∈ Am
d and u ∈ S(Rn), we denote the operator Aa := Op(a) associated to

a as

Aau(x) = Op(a)u(x) :=
∫

Rn

∫
Rn

ei(x−y)·ξa(x, y, ξ)u(y) dy dξ. (2.6)

In this case we also write Aa ∈ OPAm
d .

3. Calculus associated to τ -quantization

In this section we are going to show the calculus properties of general operators of
the forms (2.4) and (2.6). In particular we will prove that any operator of the form
(2.6) is almost equivalent to an operator of the form (2.4). For this we will need
the following preparatory basic statements.

We say that a function a : R
n × R

n × R
n → C belongs to the class Am,k, where

m ∈ R and k ∈ N if for all (x, y, ξ) ∈ R
n × R

n × R
n one has the inequalities

|∂α
x ∂β

y ∂γ
ξ a(x, y, ξ)| �α,β,γ 〈ξ〉m−|γ| (3.1)

for any multi-indices |α|, |β| � k and any γ.

Lemma 3.1. If an amplitude operator Aa is associated to the amplitude a ∈ Am
d

then for any k ∈ N there exists ak ∈ Am,k such that Aa = Aak
.

If the above property holds we will sometimes say that Aa weakly belongs to Am,
or that Aa is weakly equivalent to an operator with an amplitude in Am.

For many questions this is actually as good as the strong identification, especially
for obtaining results depending only on a finite number of derivatives of symbols
(such as e.g. Calderón–Vaillancourt theorem, see theorem 5.2, and many other
results in the theory of pseudo-differential operators).

Proof. Let us denote

L :=
1−Δξ

1 + |x− y|2 ,

where Δξ is the usual Laplacian on R
n. For any N ∈ N, applying LN to ei(x−y)·ξ we

have LNei(x−y)·ξ = ei(x−y)·ξ. Substituting this inside Aa and integrating by parts
we get

Aaf(x) =
∫

Rn

∫
Rn

ei(x−y)·ξa(x, y, ξ)f(y) dy dξ

=
∫

Rn

∫
Rn

LNei(x−y)·ξa(x, y, ξ)f(y) dy dξ

=
∫

Rn

∫
Rn

ei(x−y)·ξ (1−Δξ)N

(1 + |x− y|2)N
a(x, y, ξ)f(y) dy dξ.

Then we can take ak(x, y, ξ) := [((1−Δξ)N )/((1 + |x− y|2)N )]a(x, y, ξ) for any
N > μk. �

Let us also record the following property which will be of use later. As usual, for
w ∈ R

n and a multi-index γ we will be using the notation wγ = wγ1
1 · · ·wγn

n .
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Lemma 3.2. Given a function τ : R
n → R

n of the form

τ(w) =
∑

1�|γ|�N−1

cγ(τ)wγ +
∑

|γ|=N

cγ(τ, w)wγ (3.2)

with an integer N � 2,

cγ(τ) = (c1
γ(τ), c2

γ(τ), . . . , cn
γ (τ)) ∈ R

n

and

cγ(τ, w) = (c1
γ(τ, w), c2

γ(τ, w), . . . , cn
γ (τ, w)),

for all multi-indices α, β ∈ N
d
0 we have

[τ(w)]α[w − τ(w)]β =
∑

|α|+|β|�|δ|�N ·(|α|+|β|)
Eδ(τ, w)

n∏
i=1

wδi
i (3.3)

where each Eδ(τ, w) is either a constant or the product of at most |α|+ |β| constants
cγ(τ) or functions cγ(τ, w). In particular, we have E0(τ, w) ≡ 1.

The statement follows by observing that the left-hand side of (3.3) has zero at
w = 0 of order at least |α|+ |β|.

We will now show that any amplitude operator (2.6) with the amplitude in Am
d

can be written as a τ -quantization of some symbol.

Theorem 3.3. Let a ∈ Am
d and let us consider the associated operator Aa defined

by

Aau(x) :=
∫

Rn

∫
Rn

ei(x−y)·ξa(x, y, ξ)u(y) dy dξ, u ∈ S(Rn).

Then, for any admissible function τ of order μ � 0, there exists a symbol σ such
that

Aau(x) =
∫

Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ,

and σ has the following weak asymptotic expansion

σ(x + τ(y − x), ξ) ∼
∑

α,β�0

∑
|α|+|β|�|δ|�N(|α|+|β|)

kδ(τ, α, β, x− y)

× ∂α
x ∂β

y ∂δ
ξa(v, v, ξ)|v=x+τ(y−x), (3.4)

where we can take any N � 1, and where each of the terms

kδ(τ, α, β, x− y)∂α
x ∂β

y ∂δ
ξa(v, v, ξ)|v=x+τ(y−x)

is a symbol in S
m−|δ|
μ(|α|+|β|),τ . Moreover, we have k0(τ, 0, 0, x− y) ≡ 1.
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τ -quantizations of pseudo-differential operators 109

The weak asymptotic expansion, in (3.4) and in the sequel, will mean that it is
an asymptotic expansion in ξ in the classical sense locally in space variables, and
globally, for any M ∈ N0, we have

σ(x + τ(y − x), ξ)−
∑

|α|+|β|�M

∑
|α|+|β|�|δ|�N(|α|+|β|)

kδ(τ, α, β, x− y)

× ∂α
x ∂β

y ∂δ
ξa(v, v, ξ)|v=x+τ(y−x) ∈ Am−M

(μ+d)M . (3.5)

In such cases we will also say that σ is an asymptotic sum with terms in S
m−(|α|+|β|)
μ(|α|+|β|),τ

and remainder in A
m−(|α|+|β|)
(μ+d)(|α|+|β|).

By lemma 3.1 each of the symbols kδ(τ, α, β, x− y)∂α
x ∂β

y ∂δ
ξa(v, v, ξ)|v=x+τ(y−x) ∈

S
m−|δ|
μ(|α|+|β|),τ gives rise to a pseudo-differential operator with an amplitude weakly

belonging to A
m−|δ|
0 .

Remark 3.4. We note that the number N in (3.4) can be any integer number.
It is related to how many terms in the Taylor expansion of τ we will take in the
proof in formula (3.8). The simplest formulae are obtained by taking N = 1, in
which case all the asymptotic expansions in this paper are simplified since then the
sum

∑
|α|+|β|�|δ|�N(|α|+|β|) is just a simple sum

∑
|δ|=|α|+|β|. However, for more

flexibility we allow for any N in the expressions allowing for a slightly more general
form of the expansions. These are useful in the case when τ is polynomial, as e.g.
in (1.6).

Proof of theorem 3.3. Let us consider the changes of variables{
v := x + τ(y − x),
w := x− y,

so that we have {
x = v − τ(−w),
y = v − w − τ(−w).

Then in these new variables we can write

a(x, y, ξ) = a(v − τ(−w), v − w − τ(−w), ξ).

We now expand a(x, y, ξ) in the Taylor series in the first two variables around the
point (v, v, ξ) obtaining, for any M ∈ N, that

a(x, y, ξ) =
∑

|α|+|β|<M

∂α
x ∂β

y a(v, v, ξ)[−τ(−w)]α[−w − τ(−w)]β

α!β!
+ rM (x, y, ξ),

(3.6)
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with the remainder given by

rM (x, y, ξ) =
1

(M − 1)!

∑
|α|+|β|=M

[−τ(−w)]α[−w − τ(−w)]β

×
∫ 1

0

(1− t)M−1∂α
x ∂β

y a
(
v − tτ(−w), v + t(−w − τ(−w)), ξ

)
dt.

(3.7)

To analyse the terms [τ(−w)]α[−w − τ(−w)]β , we do another Taylor expansion of
τ around 0 writing it in the form (3.2), that is, for any N � 1,

τ(w) =
∑

1�|α0|�N−1

cα0(τ)wα0 +
∑

|β0|=N

cβ0(τ, w)wβ0 . (3.8)

By lemma 3.2 we can write it in the form

[τ(−w)]α[−w − τ(−w)]β =
∑

|α|+|β|�|δ|�N ·(|α|+|β|)
Eδ(τ, w)wδ, (3.9)

for some Eδ up to the signs coinciding with that in (3.3). Now recalling that w =
x− y, for any |α|+ |β| < M we have

∂α
x ∂β

y a(v, v, ξ)[τ(−w)]α[−w − τ(−w)]β

=
∑

|α|+|β|�|δ|�N ·(|α|+|β|)
Eδ(τ, x− y)∂α

x ∂β
y a(v, v, ξ)(x− y)δ.

We note that integrating by parts in ξ under the quantization integral, the
operator associated to the amplitude Eδ(τ, x− y)∂α

x ∂β
y a(v, v, ξ)(x− y)δ is the

same as the one associated to the amplitude Eδ(τ, x− y)(−1/i)|δ|∂α
x ∂β

y ∂δ
ξa(v, v, ξ).

Consequently, we obtain the equality

Op
(
∂α

x ∂β
y a(v, v, ξ)[τ(−w)]α[−w − τ(−w)]β

)
=

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

Op
(
i|δ|Eδ(τ, x− y)∂α

x ∂β
y ∂δ

ξa(v, v, ξ)
)
.

According to (3.6), defining

kδ(τ, α, β, x− y) :=
i|δ|Eδ(τ, x− y)

α!β!
(3.10)

we can set

στ M (v, ξ) :=
∑

|α|+|β|<M

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ, α, β, x− y)∂α
x ∂β

y ∂δ
ξa(v, v, ξ).

(3.11)
Note that for any |α|+ |β| � |δ| � N · (|α|+ |β|), we have

kδ(τ, α, β, x− y)∂α
x ∂β

y ∂δ
ξa(v, v, ξ) ∈ S

m−|δ|
μ(|α|+|β|),

where μ is the order of τ .
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Indeed the element kδ(τ, α, β, x− y) is composed, as shown in lemma 3.2, by
at most |α|+ |β| functions of x− y, each of which comes in our case from the
remainder of the Taylor expansion of τi, ith component of τ , which has the form

|β|
β!

∫ 1

0

(1− t)|β|−1∂βτi(t(x− y)) dt, (3.12)

where β is a multi-index of length N. In view of definition 2.1 this product can
be majorized by 〈x− y〉μ(|α|+|β|). Also when we differentiate kδ(τ, α, β, x− y) with
respect to some components of x or y, let us say yj , we will get, due to the Leibniz
rule, a sum of products of at most |α|+ |β| functions of x− y. For example, the
function corresponding to ∂yj

would have the form

∂yj

|β|
β!

∫ 1

0

(1− t)|β|−1∂βτi(t(x− y)) dt

=
|β|
β!

∫ 1

0

(1− t)|β|−1(−t)∂β+δj τi(t(x− y)) dt,

that can be again dominated, when one passes to the modulus, by a constant
multiple of 〈x− y〉μ. All the other functions will be identical to (3.12), therefore, the
whole product will be again majorized by 〈x− y〉μ(|α|+|β|). Iterating this argument
it follows that kδ(τ, α, β, x− y) is always dominated by 〈x− y〉μ(|α|+|β|).

When we differentiate with respect to some yj the term ∂α
x ∂β

y ∂δ
ξa(v, v, ξ) we get

instead

∂yj
∂α

x ∂β
y ∂δ

ξa(v, v, ξ) = ∇(∂α
x ∂β

y ∂δ
ξa(x, y, ξ))|x=y=v ∂yj

(τ(y − x), τ(y − x)),

which is a sum of products of a derivative with respect to a space variable of the
amplitude ∂α

x ∂β
y ∂δ

ξa(x, y, ξ) evaluated in x = y = v multiplied by some ∂yj
τi(x− y).

The modulus can be dominated by 〈ξ〉m−|δ|〈x− y〉μ. A similar argument runs for
xj . Finally if one iterates this, it follows that

|∂δ′
ξ ∂α′

x ∂β′
y (∂α

x ∂β
y ∂δ

ξa(x, y, ξ))| �α′,β′,δ′ 〈ξ〉m−|δ|−|δ′|〈x− y〉μ(|α′|+|β′|).

Since the derivative with respect to ∂δ′
ξ ∂α′

x ∂β′
y of kδ(τ, α, β, x− y)∂α

x ∂β
y ∂δ

ξa(v, v, ξ)
will be a combination of the derivatives of kδ(τ, α, β, x− y) and those of
∂α

x ∂β
y ∂δ

ξa(v, v, ξ), due to the Leibniz rule, we have that

|∂δ′
ξ ∂α′

x ∂β′
y (kδ(τ, α, β, x− y)∂α

x ∂β
y ∂δ

ξa(x, y, ξ))|
�α′,β′,δ′ 〈ξ〉m−|δ|−|δ′|〈x− y〉μ(|α′|+|β′|)〈x− y〉μ(|α|+|β|).

�α′,β′,δ′ 〈ξ〉m−|δ|−|δ′|〈x− y〉μ(|α|+|β|)(|α′|+|β′|).

If all of the multi-indices α, β, α′, β′ are nonzero, the last inequality is justified by
the fact |α|+ |β|+ |α′|+ |β′| � (|α|+ |β|) · (|α′|+ |β′|). If some of them are zero, a
similar argument can be applied with the zero index not taken into account. All of
this together gives us that kδ(τ, α, β, x− y)∂α

x ∂β
y ∂δ

ξa(v, v, ξ) in S
m−|δ|
μ(|α|+|β|). Apply-

ing lemma 3.1 we have kδ(τ, α, β, x− y)∂α
x ∂β

y ∂δ
ξa(v, v, ξ), and thus στM

, produce
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quantizations equivalent to that of symbols in S
m−|δ|
0 , up to any finite number of

derivatives.
It remains to estimate the amplitude rM (x, y, ξ) defined in (3.7). We have,

substituting again (3.9) in (3.7), that

rM (x, y, ξ) =
1

(M − 1)!

∑
|α|+|β|=M

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

Eδ(τ, x− y)(x− y)δ

×
∫ 1

0

(1− t)M−1∂α
x ∂β

y a
(
v − tτ(−w), v + t(−w − τ(−w)), ξ

)
dt.

Now the operator coming from the term

Eδ(τ, x− y)(x− y)δ

∫ 1

0

(1− t)M−1∂α
x ∂β

y a
(
v − tτ(−w), v + t(−w − τ(−w)), ξ

)
dt

is equivalent to the operator coming from the term

rM,δ(x, y, ξ) = (−1)|δ|Eδ(τ, x− y)
∫ 1

0

(1− t)M−1∂α
x ∂β

y

× ∂δ
ξa
(
v − tτ(−w), v + t(−w − τ(−w)), ξ

)
dt.

Thus in order to study rM (x, y, ξ) it is enough to study each of rM,δ(x, y, ξ). For the
latter, due to the fact we are using an amplitude from Am

d , we have the following
estimate for the integrand

|∂α
x ∂β

y ∂δ
ξa
(
v − tτ(−w), v + t(−w − τ(−w)), ξ

)
| � 〈ξ〉m−|δ|〈tw〉d·(|α|+|β|)

� 〈ξ〉m−|δ|〈w〉d·(|α|+|β|)

= 〈ξ〉m−|δ|〈x− y〉d·(|α|+|β|),

which is thus uniform in t ∈ [0, 1].
In order to have a complete understanding of rM,δ(x, y, ξ) we are left to analysing

Eδ(τ, x− y). Again in view of lemma 3.2 we know that this is the product of at
most |α|+ |β| functions of w. These functions, as we have already observed, have
the form∫ 1

0

(1− t)|β|−1∂βτi(t(x− y)) dt, with β a multi-index of order N.

Since τ is admissible of order μ � 0, each of these integrals can be dominated in
the following way∫ 1

0

(1− t)|β|−1∂βτi(t(x− y)) dt � 〈t(x− y)〉μ � 〈x− y〉μ.

Therefore, we have |Eδ(τ, x− y)| � 〈x− y〉μ(|α|+|β|) and, subsequently, also
rM,δ(x, y, ξ) is in A

m−|δ|
(μ+d)(|α|+|β|), which gives that rM (x, y, ξ) is in A

m−|δ|
(μ+d)(|α|+|β|) ⊂

A
m−(|α|+|β|)
(μ+d)(|α|+|β|).
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Again using lemma 3.1 we have that the operator with the amplitude rM (x, y, ξ)
is weakly equivalent to an operator with an amplitude in A

m−|δ|
0 , and in view of

the |δ| going to infinity, to a smoothing one. �

As a corollary of theorem 3.3 and in view of the properties of pseudo-differential
operators in Hörmander’s classes, we get the following corollary:

Corollary 3.5. The operators with amplitudes in the class Am
d can be represented

as the Weyl, Kohn–Nirenberg, or anti-Kohn–Nirenberg operators with symbols in
Sm modulo a smoothing pseudo-differential operator, with remainders with symbols
in Am−M

dM , for any M � 1.

We note that since the above quantizing functions are linear we use theorem 3.3
with μ = 0.

As a further consequence we have a formula to pass from a τ1-representation of
an operator A to a τ2-representation of the same operator, for different admissible
functions τ1 and τ2.

Corollary 3.6. Let τ1 and τ2 be admissible quantizing functions of respective
orders μ1, μ2 � 0. Given an operator with a τ1-symbol,

Aστ1
u(x) =

∫
Rn

∫
Rn

ei(x−y)·ξστ1(x + τ1(y − x), ξ)u(y) dy dξ,

it is possible to represent it also as an operator with a τ2-symbol, for any N ∈ N,
with its asymptotic expansion given by

στ2(x + τ2(y − x), ξ) ∼
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ2, α, β, x− y)

× ∂α
x ∂β

y ∂δ
ξ [στ1(x + τ1(y − x), ξ)] |x+τ2(y−x). (3.13)

Moreover, we have k0(τ2, 0, 0, x− y) = 1 (for α = β = δ = 0).
In the above, if στ1 ∈ Sm, then also στ1 ∈ Sm

μ1,τ1
, and (3.13) is a weak asymptotic

expansion with terms in S
m−(|α|+|β|)
μ(|α|+|β|) and remainder in Am−M

(μ1+μ2)M
, for any M � 1.

The notation for the derivatives in (3.13) means that we first differentiate the
function στ1(x + τ1(y − x), ξ) by applying the operator ∂α

x ∂β
y ∂δ

ξ to it, and then we
plug in x + τ2(y − x) in the place of the first variable of στ1(·, ξ).

Proof. We can set as an amplitude a(x, y, ξ) the symbol στ1(x + τ1(y − x), ξ), and
then apply theorem 3.3. �

We can also compute the adjoint and the transpose of an operator Aσ,τ and give
an asymptotic expansion of these two new operators in terms of σ and τ . We will
adopt the notation of functions kδ(τ, α, β, x− y) arising from theorem 3.3.
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Proposition 3.7. Let τ be an admissible quantizing function of order μ � 0. Let
σ ∈ Sm and let Aσ,τ be the corresponding τ -quantized operator as in (2.4). Let us
denote

τ∗(z) := z + τ(−z), z ∈ R
n, (3.14)

which is also an admissible quantizing function of the same order μ. Then the
transpose operator At

σ,τ is the operator with the amplitude given by σ(x + τ∗(y −
x)),−ξ) with the quantizing function τ∗, i.e.

At
σ,τv(x) =

∫
Rn

∫
Rn

ei(x−y)·ξσ(x + τ∗(y − x),−ξ)v(y) dy dξ.

We can view it as a τ∗-quantized operator with the symbol σt(x, ξ) = σ(x,−ξ), i.e.

At
σ,τ = Aσt,τ∗ .

Furthermore, At
σ,τ can be also seen as a τ -quantization with a symbol σ′: denot-

ing στt(x, y, ξ) := σ(x + τ∗(y − x),−ξ), for any N ∈ N it has the weak asymptotic
expansion

σ′(x + τ(y − x), ξ) ∼
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ, α, β, x− y)

× ∂α
x ∂β

y ∂δ
ξστt(v, v,−ξ)|x+τ(y−x), (3.15)

with terms in S
m−(|α|+|β|)
μ(|α|+|β|) and remainder in Am−M

2μM , for any M � 1.
The adjoint A∗

σ,τ of Aσ,τ is the operator with the symbol σ but with the
quantization function τ∗, i.e.

A∗
σ,τ = Aσ,τ∗ .

Furthermore, A∗
σ,τ can be also seen as a τ -quantization with the symbol σ′′: denoting

στ∗(x, y, ξ) := σ(x + τ∗(y − x), ξ), for any N ∈ N it has the asymptotic expansion

σ′′(x + τ(y − x)) ∼
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ, α, β, x− y)

× ∂α
x ∂β

y ∂δ
ξστ∗(v, v, ξ)|x+τ(y−x), (3.16)

with terms in S
m−|α|−|β|
μ(|α|+|β|) and remainder in Am−M

2μM , for any M � 1.

Proof. We want to find an operator At
σ,τ such that

〈Aσ,τu, v〉 = 〈u,At
σ,τv〉 u, v ∈ S(Rd),
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in the sense of the distributional pairing. Using a change of variable ξ �→ (−ξ) we
can write

〈Aσ,τu, v〉 =
∫

Rn

∫
Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y)v(x) dxdy dξ

=
∫

Rn

u(y) dy

∫
Rn

∫
Rn

ei(x−y)·ξσ(y + x− y + τ(y − x), ξ)v(x) dxdξ

=
∫

Rn

u(y) dy

∫
Rn

∫
Rn

ei(y−x)·ξσ(y + τ∗(x− y),−ξ)v(x) dxdξ

= 〈u,At
σ,τv〉.

From this we see that the transpose operator At
σ,τ of Aσ,τ is the operator with

symbol σ(y + τ∗(x− y),−ξ) with τ∗ given by (3.14). Consequently At
σ,τ can be

rewritten in the following form switching x and y:

At
σ,τv(x) =

∫
Rn

∫
Rn

ei(x−y)·ξσ(x + τ∗(y − x),−ξ)v(y) dy dξ,

and that τ∗ still verifies the condition of definition 2.1. By theorem 3.3 viewing it
as an amplitude operator we can also view it as a τ∗-quantization with the symbol
having the asymptotic expansion given by (3.15).

Similarly, for the adjoint operator A∗
σ,τ we use the equality∫

Rd

∫
Rd

∫
Rd

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y)v(x) dxdy dξ

=
∫

Rd

u(y) dy

∫
Rd

∫
Rd

ei(y−x)·ξσ(x + τ(y − x), ξ)v(x) dxdξ

=
∫

Rd

u(y) dy

∫
Rd

∫
Rd

ei(y−x)·ξσ(y + x− y + τ(y − x), ξ)v(x) dxdξ

=
∫

Rd

u(y) dy

∫
Rd

∫
Rd

ei(y−x)·ξσ(y + τ∗(x− y), ξ)v(x) dxdξ.

We see from this that the adjoint A∗
σ,τ is a τ∗-quantized pseudo-differential operator

(i.e. its quantization function is τ∗ and symbol σ). By theorem 3.3 viewing it as
an amplitude operator we can also view it as a τ∗-quantization with the symbol
having the asymptotic expansion given by (3.16). �

We are now ready to prove also the composition formula for τ -quantized symbols.
For this, we will freely rely on corollary 3.6 allowing one to change quantizations
whenever it is convenient.

Theorem 3.8. Let τ1, τ2, τ3 be admissible quantizing functions of corresponding
orders μ1, μ2, μ3 � 0. Let A1, A2 be two operators associated, respectively, to two
τ1- and τ2-quantized symbols in Sm1 and Sm2 . Then their composition A1 ◦A2 can
be viewed as a τ3-quantized operator with the symbol σ, for any N ∈ N having the
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weak asymptotic expansion

σ(x + τ3(y − x), ξ) ∼
∑

α,β�0

∑
|α|+|β|�|δ|�N(|α|+|β|)

∑
γ+ε=δ

kδ(τ, α, β, γ, ε, x− y)

× [∂γ
ξ ∂α

x σ′
KN (x, ξ)∂ε

ξ∂
β
y σ′′

AKN (y, ξ)]|x=y=v.

with respective terms in S
m1+m2−(|α|+|β|)
μ3(|α|+|β|) and remainder in Am1+m2−M

(μ1+μ2+μ3)M
, for any

M � 1. In the above formula, at the end we plug in v = x + τ3(y − x) and, σ′
KN is

the symbol one gets when expressing A1 as an operator with Kohn–Nirenberg symbol
as in corollary 3.6 and, similarly, σ′′

AKN is the symbol one gets when expressing A2

as an operator with the anti-Kohn–Nirenberg symbol. Moreover, k′
δ(τ3, α, β, γ, ε, x−

y) = δ!
γ!ε!kδ(τ3, α, β, x− y), with kδ(τ3, α, β, x− y) as in theorem 3.3.

In particular, if we take τ1 = τ2 = τ3 we see that the operator classes OP0
τ and

∪m∈ROPm
τ form algebras of operators, modulo remainders.

Proof. The proof follows almost verbatim [10] in the first part, while the second part
has changes due to our different quantization. By using corollaries 3.5 and 3.6, let us
represent our operators A1 and A2 via Kohn–Nirenberg and anti-Kohn–Nirenberg
symbols, respectively, modulo some errors which are smoothing operators, so that
we can write

A1v(x) =
∫

Rn

∫
Rn

ei(x−y)·ξσ′
KN (x, ξ)v(y) dy dξ + E′v(x) =: Iv(x) + E′v(x),

and

A2u(x) =
∫

Rn

∫
Rn

ei(x−y)·ξσ′′
AKN (y, ξ)u(y) dy dξ + E′′u(x) =: IIu(x) + E′′u(x),

where E′, E′′ are smoothing remainders as in corollary 3.5. Consequently, Iv(x) can
be rewritten as

Iv(x) =
∫

Rn

eix·ξσ′
KN (x, ξ)v̂(ξ) dξ, (3.17)

while the Fourier transform of IIu(x) is ÎIu(ξ) =
∫

Rn e−iy·ξσ′′
AKN (y, ξ)u(y) dy. If

we compose I and II we then have

I(IIu(x)) =
∫

Rn

eix·ξσ′
KN (x, ξ)ÎIu(ξ) dξ

=
∫

Rn

∫
Rn

ei(x−y)·ξσ′
KN (x, ξ)σ′′

AKN (y, ξ)u(y) dy dξ.

Therefore we have that I ◦ II is the operator with the amplitude σ′
KN(x, ξ)σ′′

AKN(y, ξ)
of order m1 + m2. In turn, this can be also written as a τ3-quantized sym-
bol, σ(x + τ3(y − x)), with the asymptotic expansion given by theorem 3.3. More
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precisely, with v = x + τ3(y − x), we have

σ(x + τ3(y − x), ξ) ∼
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ3, α, β, x− y)

× [∂α
x ∂β

y ∂δ
ξ (σ′

KN (x, ξ)σ′′
AKN (y, ξ))]x=y=v

=
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ3, α, β, x− y)

× ∂δ
ξ [∂α

x σ′
KN (x, ξ)∂β

y σ′′
AKN (y, ξ)]|x=y=v

=
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

kδ(τ3, α, β, x− y)

×
∑

γ+ε=δ

δ!
γ!ε!

[∂γ
ξ ∂α

x σ′
KN (x, ξ)∂ε

ξ∂
β
y σ′′

AKN (y, ξ)]

=
∑

α,β�0

∑
|α|+|β|�|δ|�N ·(|α|+|β|)

∑
γ+ε=δ

k′
δ(τ3, α, β, γ, ε, x− y)

× [∂γ
ξ ∂α

x σ′
KN (x, ξ)∂ε

ξ∂
β
y σ′′

AKN (y, ξ)]x=y=v,

where we have used in the third line Leibniz formula with respect to ξ and also
k′

δ(τ3, α, β, γ, ε, x− y) := kδ(τ3, α, β, x− y) · δ!
γ!ε! in the last equality. �

We now discuss elliptic τ -quantized operators and their parametrices.

Proposition 3.9. Let τ be an admissible quantizing function of order μ � 0, and
let σ ∈ Sm be an elliptic symbol, that is,

|σ(x, ξ)| � C(1 + |ξ|)m for all x, ξ ∈ R
n, |ξ| � R0,

for some R0 > 0. Then there exists a symbol κ ∈ S−m such that

Aκ,τAσ,τ = I + R (3.18)

and

Aσ,τAκ,τ = I + S, (3.19)

where Aσ,τ and Aκ,τ are τ -quantized operators as in (2.4), and R and S are
smoothing pseudo-differential operators.

Proof. We will prove (3.18) since the proof of (3.19) is analogous. In view of
theorem 3.3 we can write

Aσ,τ = Aσ1,KN + R1, (3.20)

where R1 is a smoothing operator and Aσ1,KN is the Kohn–Nirenberg quan-
tized pseudo-differential operator with the corresponding symbol σ1 ∈ Sm with the
asymptotic expansion given in corollary 3.6. It follows also that the symbol σ1 is
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elliptic, so that using the usual parametrix for Kohn–Nirenberg quantization (see
e.g. [5,9]), there exists an operator Aκ1,KN such that

Aκ1,KNAσ1,KN = I + R2, (3.21)

for some κ1 ∈ S−m, and where R2 is a smoothing operator. Again applying corollary
3.6 to Aκ1,KN we have

Aκ,τ = Aκ1,KN + R3,

for some κ ∈ S−m. Using this together with (3.20) and (3.21), we have

Aκ,τAσ,τ = (Aκ1,KN + R3)(Aσ1,KN + R1)

= Aκ1,KNAσ1,KN + Aκ1,KNR1 + R3Aσ1,KN + R3R1

= I + R2 + Aκ1,KNR1 + R3Aσ1,KN + R3R1

= I + R,

where we have set R := R2 + Aκ1,KNR1 + R3Aσ1,KN + R3R1, which has the
symbol in S−∞. �

Similar to the proof of proposition 3.9, using corollary 3.6 we can extend other
results for pseudo-differential operators to the τ -quantizations and to Sm

μ,τ -classes.
Let us give the G̊arding inequality as an example.

Proposition 3.10 (G̊arding inequality). Let τ be an admissible quantizing function
as in definition 2.1, and assume that a symbol σ ∈ S2m, m ∈ R, satisfies

Re σ(x, ξ) � C(1 + |ξ|)2m, |ξ| � R, (3.22)

for some R > 0 and all x ∈ R
n. Then for any s ∈ R there exist positive constants

C1 and C2 such that

Re (Aσ,τu, u) � C1‖u‖2Hm − C2‖u‖2Hs , (3.23)

for all u ∈ Hm(Rn).

Proof. First, using corollary 3.6 we can rewrite Aσ,τ as a Kohn–Nirenberg operator
with some symbol σ1 ∈ S2m. We note that the ellipticity condition is preserved
by such transformation. Consequently, the estimate (3.23) follows from the usual
G̊arding inequality (see e.g. [12, theorem 6.1]), with the remainder only influencing
the constant C2. �

4. τ -quantizations with bounded derivatives

The special case of admissible quantizing functions from definition 2.1 are the func-
tions that have linear growth in x, while still being (possibly) nonlinear. In this
case one can always work with the usual Hörmander classes Sm without going to
Sm

d . For such quantized functions we set μ = 0 in definition 2.1. For clarity, let us
make this explicit:
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Definition 4.1. A function τ : R
n → R

n will be called admissible with bounded
derivatives if τ ∈ C∞ and τ(0) = 0, and if

sup
x∈Rn

|∂α
x τ(x)| <∞ (4.1)

holds for all multi-indices α ∈ N
n
0\{0}.

We note that by the Taylor expansion formula these assumptions actually imply
that |τ(x)| � 〈x〉.

Now if we compose our τ function as in definition 4.1 with a symbol in Sm we
get an amplitude in Am = Am

0 , i.e. if τ is admissible with bounded derivatives and
σ ∈ Sm, then the function a(x, y, ξ) := σ(x + τ(y − x), ξ) belongs to the class Am.
This follows by the repeated application of the chain rule.

In this section we are going to discuss another approach to move from a τ -quan-
tization of an operator with symbol in Sm to another quantization. More precisely,
instead of passing from one quantization to another through an amplitude operator
as we did in the proof of corollary 3.6, we are going to consider the operator

Au(x) =
∫

Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ

and to perform a change of variable with respect to the space variable in the function
σ(x + τ(y − x), ξ) inside the integral. To do so it is natural to consider x fixed and
to ask for the invertibility of the mapping

τx : y �→ x + τ(y − x). (4.2)

To have τx invertible we can use the following criterion, see e.g. [7] and historical
references therein, for this remarkable property:

Theorem 4.2 (Hadamard). A C1 map f : R
n → R

n is a global C1-diffeomorphism
if and only if the Jacobian det(∂f(x)/∂x) never vanishes and |f(x)| → ∞ whenever
|x| → ∞.

In our case, in order to have τx invertible we then ask for |τx(y)| → ∞ whenever
|y| → ∞, which is equivalent to asking that |τ(z)| → ∞ whenever |z| → ∞. One
can also readily check the other properties in the following

Corollary 4.3. Let τ : R
n → R

n be an admissible quantizing function with
bounded derivatives. Assume that the Jacobian det(∂τ(x)/∂x) never vanishes and
that |τ(x)| → ∞ whenever |x| → ∞. Then both τ and τx for any x ∈ R

n are global
diffeomorphisms, with their inverses satisfying |τ−1(y)| → ∞ and |τ−1

x (y)| → ∞
whenever |y| → ∞.

Moreover, if infx∈Rn |det(∂τ(x)/∂x)| �= 0 then τ−1 is also an admissible quantiz-
ing function with bounded derivatives.
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Using the above observations we have the following property:

Proposition 4.4. Let τ be an admissible quantizing function with bounded deriva-
tives such that infx∈Rn |det(∂τ(x)/∂x)| �= 0 and |τ(x)| → ∞ whenever |x| → ∞. Let
σ ∈ Sm. Then the operator

Aσ,τu(x) =
∫

Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ (4.3)

can be written in the Kohn–Nirenberg type form composed with the change of
variables, i.e.

Aσ,τu(x) =
∫

Rn

∫
Rn

ei(x−y)·ξb(x, ξ)u(τ−1
x )(y) dy dξ + Eu(x), (4.4)

for some b ∈ Sm, where E is a smoothing operator.

Proof. Setting w := x + τ(y − x) we have

w − x = τ(y − x),

−τ−1(w − x) = x− y.

Using the function τx(y) = x + τ(y − x) from (4.2), we also have

τ−1
x (w) = y.

Since τx(x) = x + τ(0) = x, we also have τ−1
x (x) = x in view of theorem 4.2.

Inserting all of these in (4.3) we get

Aσ,τu(x) =
∫

Rn

∫
Rn

ei(τ−1
x (x)−τ−1

x (w))·ξσ(w, ξ)u(τ−1
x (w))

∣∣∣∣det
(

∂τ−1
x (w)
∂w

)∣∣∣∣ dw dξ.

Now we can observe that the main contribution here is from the w close to x.
Indeed, let χ(x,w) be a cut-off function supported in a small neighbourhood of
w = x and such that χ(x, x) = 1. Then we can write

Aσ,τ u(x) =

∫
Rn

∫
Rn

ei(τ−1
x (x)−τ−1

x (w))·ξσ(w, ξ)(1 − χ(x, w))u(τ−1
x (w))

∣∣∣∣∣det

(
∂τ−1

x (w)

∂w

)∣∣∣∣∣ dw dξ︸ ︷︷ ︸
I1

+

∫
Rn

∫
Rn

ei(τ−1
x (x)−τ−1

x (w))·ξσ(w, ξ)χ(x, w)u(τ−1
x (w))

∣∣∣∣∣det

(
∂τ−1

x (w)

∂w

)∣∣∣∣∣ dw dξ︸ ︷︷ ︸
I2

.
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For w away from x we can integrate by parts in ξ using the property

∂α
ξ ei(τ−1

x (x)−τ−1
x (w))·ξ = i|α|(τ−1

x (x)− τ−1
x (w))αei(τ−1

x (x)−τ−1
x (w))·ξ,

so that we have

I1 = (−i)|α|
∫

Rn

∫
Rn

ei(τ−1
x (x)−τ−1

x (w))·ξ(1− χ(x,w))
[
(τ−1

x (x)− τ−1
x (w))α

]−1

× ∂α
ξ σ(w, ξ)u(τ−1

x (w))
∣∣∣∣det

(
∂τ−1

x (w)
∂w

)∣∣∣∣ dw dξ.

Since infx∈Rn |det(∂τ(x)/∂x)| �= 0, for any w in the support of the integrand of
I1, we can find α with |α| as large as we want such that |(τ−1

x (x)− τ−1
x (w))α| is

uniformly bounded away from 0. By corollary 4.3 and since σ ∈ Sm, we have that
[(τ−1

x (x)− τ−1
x (w))α]−1∂α

ξ σ(w, ξ) is in Sm−|α|, so that the term I1 is smoothing.
For I2, since w and x are close to each other, we can write

τ−1
x (x)− τ−1

x (w) = Lxw(x− w),

where Lxw is a linear mapping which depends smoothly on x,w. Now we can write

I2 =
∫

Rn

∫
Rn

eiLxw(x−w)·ξχ(x,w)σ(w, ξ)u(τ−1
x (w))

∣∣∣∣det
(

∂τ−1
x (w)
∂w

)∣∣∣∣ dw dξ

=
∫

Rn

∫
Rn

ei(x−w)·ξχ(x,w)σ(w,L′
xwξ)u(τ−1

x (w))
∣∣∣∣det

(
∂τ−1

x (w)
∂w

)∣∣∣∣
× ∣∣det L−1

xw

∣∣ dw dξ,

where L′
xw = [Lxw

t]
−1

. From now on, by modifying a well-known reduction for
amplitude operators, see e.g. [9, theorem 2.5.8], we see that the pseudo-differential
operator with the amplitude

a(x,w, ξ) = χ(x,w)σ(w,L′
xwξ)

∣∣∣∣det
(

∂τ−1
x (w)
∂w

)∣∣∣∣ ∣∣det L−1
xw

∣∣
can be reduced to a Kohn–Nirenberg operator with symbol b(x, ξ) with the
asymptotic expansion of the form

b(x, ξ) ∼
∑
α�0

i−|α|

α!
∂α

ξ ∂α
wa(x,w, ξ)|w=x,

completing the proof. �

5. Calderón–Vaillancourt theorem

In this section we discuss the L2-boundedness of the appearing operators. It is
convenient to look at this problem from the point of view of more general amplitude
operators. First we note that lemma 3.1 and the L2-boundedness of the pseudo-
differential operators with symbols in the Hörmander class S0 immediately imply
the following property:
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Corollary 5.1. Let a ∈ A0
d for some d ∈ R. Then the associated amplitude

operator

Au(x) =
∫

Rn

∫
Rn

ei(x−y)ξa(x, y, ξ)u(y) dy dξ

extends to a bounded operator from L2(Rn) to L2(Rn).
Consequently, if τ is an admissible quantizing function (of any order μ � 0) and

σ ∈ Sm, then the operator Aσ,τ defined by

Aσ,τu(x) =
∫

Rn

eix·ξσ(x + τ(y − x), ξ)û(ξ) dξ

extends to a bounded operator from L2(Rn) to L2(Rn).

However, an interesting and important question is how many derivatives of
the symbol/amplitude should be bounded to ensure the L2-boundedness of
pseudo-differential operators in the spirit of the celebrated Calderón–Vaillancourt
theorem [2]. Similar results for classes of Fourier integral operators have been
obtained in [8]. We now prove a variant of the Calderón–Vaillancourt theorem
for amplitude operators.

Theorem 5.2. Let a = a(x, y, ξ) : R
n × R

n × R
n → C be such that

sup
x,y,ξ∈Rn

|∂α
x ∂β

y ∂γ
ξ a(x, y, ξ)| <∞ (5.1)

holds for all multi-indices α, β, γ such that |α|, |β|, |γ| � 2n + 1. Then the operator

Au(x) =
∫

Rn

∫
Rn

ei(x−y)ξa(x, y, ξ)u(y) dy dξ

extends to a bounded operator from L2(Rn) to L2(Rn). Moreover, we have

‖A‖L2→L2 � C sup
|α|,|β|,|γ|�2n+1

sup
x,y,ξ∈Rn

|∂α
x ∂β

y ∂γ
ξ a(x, y, ξ)|. (5.2)

Proof. We follow the strategy of the proof of [8, theorem 2.1]. Let χ ∈ C∞
0 (Rn) be a

real-valued non-negative functions such that the family of shifts, χk(x) = χ(x− k),
k ∈ Z

n, forms a partition of unity. Then we decompose

A =
∑

i,j,k∈Zn

Ai,j,k,

with the operators

Ai,j,ku(x) =
∫

Rn

∫
Rn

ei(x−y)·ξa(x, y, ξ)χi(x)χj(y)χk(ξ)u(y) dy dξ.

By the hypothesis on A by Schur’s lemma we have the uniform bound

‖Ai,j,k‖L2→L2 � C
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for all i, j, k. The adjoint operators become

A∗
i′,j′,k′u(y) =

∫
Rn

∫
Rn

ei(y−z)·ηa(z, y, η)χj′(z)χi′(y)χk′(η)u(z) dz dη.

Now composing A∗
i′,j′,k′ ◦Ai,j,k we get

A∗
i′,j′,k′(Ai,j,ku)(x)

=
∫

R2n

χi′(y)χj′(x)χk′(ξ)ei(x−y)·ξa(y, x, ξ)Ai,j,ku(y) dy dξ

=
∫

R4n

χi′(y)χj′(x)χk′(ξ)ei(x−y)·ξa(y, x, ξ)

× χi(y)χj(z)χk(η)ei(y−z)·ηa(y, z, η)u(z) dz dη dy dξ

=
∫

Rn

u(z) dz

∫
R3n

χi′(y)χj′(x)χk′(ξ)χi(y)χj(z)χk(η)ei(x−y)·ξ

× ei(y−z)·ηa(y, x, ξ)a(y, z, η) dy dξ dη

=
∫

Rn

Ki,j,k,i′,j′,k′(x, z)u(z) dz,

where we denote

Ki,j,k,i′,j′,k′(x, z) =
∫

R3n

χi′(y)χj′(x)χk′(ξ)χi(y)χj(z)χk(η)ei(x−y)·ξ

× ei(y−z)·ηa(y, x, ξ)a(y, z, η) dy dξ dη.

First we note that there is a constant N1 such that for |i− i′| > N1 we have
Ki,j,k,i′,j′,k′(x, z) = 0, so that we can restrict to |i− i′| � N1.

We can integrate inside K with the operator Ly with the transpose

tLy =
1
i

η − ξ

|η − ξ|2 · ∇y,

so that for |k − k′| > N2, for some N2, we have

Ki,j,k,i′,j′,k′(x, z) =
∫

R3n

ei(x−y)·ξei(y−z)·ηχi′(y)χj′(x)χk′(ξ)χi(y)χj(z)χk(η)

× a(y, x, ξ)a(y, z, η) dy dξ dη

=
∫

R3n

ei(x−y)·ξei(y−z)·ηL2n+1
y

(
χi′(y)χj′(x)

× χk′(ξ)χi(y)χj(z)χk(η)a(y, x, ξ)a(y, z, η)
)

dy dξ dη (5.3)

From the assumptions, altogether, we obtain the estimate

|Ki,j,k,i′,j′,k′(x, z)| � C
1

〈k − k′〉2n+1
1|i−i′|�N1 . (5.4)
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Furthermore, let us define operators Lξ and Lη by their transposes

tLξ =
1
i

x− y

|x− y|2 · ∇ξ,
tLη =

1
i

y − z

|y − z|2 · ∇η.

Then we can integrate by parts with these operators similar to and continuing (5.3),
so that

Ki,j,k,i′,j′,k′(x, z) =
∫

R3n

ei(x−y)·ξei(y−z)·ηL2n+1
ξ L2n+1

η L2n+1
y

(
χi′(y)χj′(x)χk′(ξ)

χi(y)χj(z)χk(η)a(y, x, ξ)a(y, z, η)
)

dy dξ dη.

Combining this with (5.4), we can estimate

|Ki,j,k,i′,j′,k′(x, z)| � C
1

〈k − k′〉2n+1

1
〈j − i′〉2n+1

1
〈i− j′〉2n+1

1|i−i′|�N1 . (5.5)

We can now estimate

|i− j′|+ |j − i′| � |i− i′ + j − j′| � |j − j′| − |i− i′| � |j − j′| −N1.

Consequently, we have

|j − j′| � |i− j′|+ |j − i′|+ N1,

and hence also

〈j − j′〉 � C〈i− j′〉〈j − i′〉.
Therefore, the estimate (5.5) implies

|Ki,j,k,i′,j′,k′(x, z)| � C
1

〈k − k′〉2n+1

1
〈j − j′〉2n+1

1
〈i− i′〉2n+1

. (5.6)

Since the support of Ki,j,k,i′,j′,k′(x, z) is uniformly bounded in x and z, and
observing that the constants are quadratic in derivatives of the amplitude, we obtain

sup
x

∫
Rn

|Ki,j,k,i′,j′,k′(x, z)|dz � CM2h(i− i′, j − j′, k − k′)2,

sup
z

∫
Rn

|Ki,j,k,i′,j′,k′(x, z)|dx � CM2h(i− i′, j − j′, k − k′)2,

where

M = sup
|α|,|β|,|γ|�2n+1

‖∂α
x ∂β

y ∂γ
ξ a‖L∞(Rn

x×Rn
y×R

n
ξ ),

and

h(i− i′, j − j′, k − k′) =
(

1
〈k − k′〉2n+1

1
〈j − j′〉2n+1

1
〈i− i′〉2n+1

)1/2

.
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Therefore, by Schur’s lemma (see e.g. [11, p. 284] or [8, lemma 2.1]), we obtain

‖A∗
i,j,kAi′,j′,k′‖L2→L2 � CM2h(i− i′, j − j′, k − k′)2.

By a similar argument it can be also shown that

‖Ai,j,kA∗
i′,j′,k′‖L2→L2 � CM2h(i− i′, j − j′, k − k′)2.

Consequently, Cotlar’s lemma (see e.g. [11, Chapter VII, § 2] or [8, lemma 2.2])
implies that

‖A‖L2→L2 � CM,

yielding the boundedness and (5.2). �

As a consequence of theorem 5.2 we also get a version of the Calderón–
Vaillancourt theorem for τ -quantized operators.

Corollary 5.3. Let τ : R
n → R

n be such that τ ∈ C4n+2, τ(0) = 0, and

sup
x∈Rn

|∂ατ(x)| <∞ for all 0 < |α| � 4n + 2. (5.7)

Let σ : R
n × R

n → C be such that

sup
x,ξ∈Rn

|∂β
x ∂γ

ξ σ(x, ξ)| <∞ for all |β|, |γ| � 2n + 1. (5.8)

Then the operator

Aσ,τu(x) = Opτ (σ)u(x) :=
∫

Rn

∫
Rn

ei(x−y)·ξσ(x + τ(y − x), ξ)u(y) dy dξ

is bounded from L2(Rn) to L2(Rn)

Proof. It is enough to use the chain rule applied to a(x, y, ξ) := σ(x + τ(y − x), ξ)
and observe that one can apply theorem 5.2 since conditions (5.7) and (5.8)
imply (5.1). �

Appendix A. Symmetry functions

In this section we show how τ -quantizations appear naturally in the analysis of
operators in noncommutative settings. The trivial choice of τ = id in (1.4) corre-
sponding to the Kohn–Nirenberg type quantization has been extensively studied in
the setting of general graded Lie groups in [4].

Quantizations with general measurable functions τ in the form (1.4) have been
studied in [6]. Especially, as explained in the introduction, for the exponential
groups the symmetry functions always exist and lead to quantizations having the
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property of the Weyl quantization. Such symmetry functions may be given by the
formula (1.5), that is, by

τ(x) =
∫ 1

0

exp[s log x] ds. (A.1)

Consequently, with this choice of τ , the analogue of the ‘midpoint’ m(x, y) between
points x and y is given by the formula

m(x, y) = xτ(y−1x)−1. (A.2)

In this appendix we work out explicit examples of such symmetry functions in
simple noncommutative settings of the polarized and of the standard Heisenberg
groups. In the latter case we also calculate the explicit form of the ‘midpoint’
function m(x, y).

A.1. Polarized Heisenberg group

We will be using the matrix descriptions of the Heisenberg group and of its
polarized version, see e.g. [4, § 6.1] for more details on various descriptions of these
groups.

Thus, we first consider the example of the polarized Heisenberg group Hpol, which
may be identified with the space of matrices

x = (a, b, c) ←→
⎡⎣1 a c

0 1 b
0 0 1

⎤⎦ ,

with the Lie algebra Hpol given by ⎡⎣0 ã c̃

0 0 b̃
0 0 0

⎤⎦ ,

where a, b, c, ã, b̃, c̃ ∈ R. Indeed, since the group Hpol is nilpotent (and hence also of
exponential type), one can move from Hpol to Hpol using the exponential function:

exp

⎡⎣0 ã c̃

0 0 b̃
0 0 0

⎤⎦ =
∞∑

k=0

1
k!

⎡⎣0 ã c̃

0 0 b̃
0 0 0

⎤⎦k

=

⎡⎢⎣1 ã c̃ + 1
2 ãb̃

0 1 b̃
0 0 1

⎤⎥⎦ .

It is also possible to do the reverse operation, in which case we have

log

⎡⎣1 a c
0 1 b
0 0 1

⎤⎦ =

⎡⎢⎣0 a c− 1
2
ab

0 0 b
0 0 0

⎤⎥⎦ .

According to (1.5) a symmetry function on the polarized Heisenberg group Hpol

can be given by the formula

τ(x) =
∫ 1

0

exp[s log x] ds.
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In particular, for x = (a, b, c), we can calculate it explicitly:

τ(x) =
∫ 1

0

exp

⎡⎣s log

⎡⎣1 a c
0 1 b
0 0 1

⎤⎦⎤⎦ ds

=
∫ 1

0

exp s

⎡⎣0 a c− 1
2ab

0 0 b
0 0 0

⎤⎦ ds

=
∫ 1

0

exp

⎡⎣0 sa sc− s 1
2ab

0 0 sb
0 0 0

⎤⎦ ds

=
∫ 1

0

⎡⎣1 sa sc− s 1
2ab + s2 1

2ab
0 1 sb
0 0 1

⎤⎦ ds

=

⎧⎨⎩
⎡⎣s s2

2 a s2

2 c− s2

4 ab + s3

6 ab

0 s s2

2 b
0 0 s

⎤⎦⎫⎬⎭
1

0

=

⎡⎣1 1
2a 1

2c− 1
12ab

0 1 1
2b

0 0 1

⎤⎦ .

Identifying the points of Hpol with points in R
3, we get the formula

Hpol � x = (a, b, c) �→ τ(x) =
(

a

2
,
b

2
,
c

2
− ab

12

)
. (A.3)

According to the discussion in the introduction, it follows from [6, proposition 4.3]
that the τ -quantization with τ given by (A.3) would play the role of the Weyl
quantization on the Heisenberg group in the sense that τ -quantized operators with
self-adjoint symbols would be also self-adjoint. Here we can note an interesting twist
in the last variable on Hpol while it remains being the mid-point in the variables of
the first stratum.

A.2. Heisenberg group

In a similar way we can do the same computations for the Heisenberg group
which we will denote by H, and its Lie algebra by H. This group is given by the
triples (a, b, c) ∈ R

3 that verify the group law

(a, b, c) · (u, v, s) =
(

a + u, b + v, c + s +
1
2
(ub− va)

)
.
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It is also possible to identify any element (a, b, c) ∈ H with an upper triangular
matrix via the association

x = (a, b, c) ←→

⎡⎢⎣1 a
ab

2
+ c

0 1 b
0 0 1

⎤⎥⎦ .

Similarly the elements of the Lie algebra of the Heisenberg group are given via the
association

(ã, b̃, c̃) ←→
⎡⎣0 ã c̃

0 0 b̃
0 0 0

⎤⎦ .

As before it is possible to pass from the Lie algebra H to the group H via the
exponential mapping

exp

⎡⎣0 ã c̃

0 0 b̃
0 0 0

⎤⎦ =
∞∑

k=0

1
k!

⎡⎣0 ã c̃

0 0 b̃
0 0 0

⎤⎦k

=

⎡⎣1 ã ãb̃
2 + c̃

0 1 b̃
0 0 1

⎤⎦ .

Therefore, the logarithmic function is given by

log

⎡⎢⎣1 a
ab

2
+ c

0 1 b
0 0 1

⎤⎥⎦ =

⎡⎣0 a c
0 0 b
0 0 0

⎤⎦ .

According to (1.5), for x = (a, b, c), a symmetry function on the Heisenberg group
takes the form∫ 1

0

exp(s log x)ds =
∫ 1

0

exp

⎛⎝s log

⎡⎣1 a ab
2 + c

0 1 b
0 0 1

⎤⎦⎞⎠ ds

=
∫ 1

0

exp

⎛⎝s

⎡⎣0 a c
0 0 b
0 0 0

⎤⎦⎞⎠ ds

=
∫ 1

0

exp

⎛⎝⎡⎣0 sa sc
0 0 sb
0 0 0

⎤⎦⎞⎠ ds

=
∫ 1

0

⎡⎣1 sa s2ab
2 + sc

0 1 sb
0 0 1

⎤⎦ ds

=

⎡⎣1 a
2

ab
6 + c

2

0 1 b
2

0 0 1

⎤⎦ .
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Thus, a symmetry function can be given by the formula

H � x = (a, b, c) �→ τ(x) =
(

a

2
,
b

2
,
c

2
+

ab

6

)
. (A.4)

Furthermore, we have

τ [(a, b, c)−1] = τ [(−a,−b,−c)] =
(
−a

2
,− b

2
,− c

2
+

ab

6

)
.

Thus, if x = (a1, b1, c1) and y = (a2, b2, c2), we get

τ(y−1x) = τ((a1 − a2, b1 − b2, c1 − c2 +
1
2
(b1a2 − b2a1)))

=
(

a1 − a2

2
,
b1 − b2

2
,
c1 − c2 + (1/2)(b1a2 − b2a1)

2
+

(a1 − a2)(b1 − b2)
6

)
=
(

a1 − a2

2
,
b1 − b2

2
,
c1 − c2

2
+

b1a2 − b2a1

4
+

(a1 − a2)(b1 − b2)
6

)
.

Consequently, we get the formula for the ‘midpoint’ function from (A.2) as

m(x, y) = xτ(y−1x)−1

= (a1, b1, c1)
(
−a1 − a2

2
,−b1 − b2

2
,−c1 − c2

2

− b1a2 − b2a1

4
− (a1 − a2)(b1 − b2)

6

)
=
(

a1 + a2

2
,
b1 + b2

2
,
c1 + c2

2
− (a1 − a2)(b1 − b2)

6

)
.

In particular, we observe that if a1 = a2 or if b1 = b2, then

m((a1, b1, c1), (a2, b2, c2)) =
(

a1 + a2

2
,
b1 + b2

2
,
c1 + c2

2

)
,

but an additional quadratic twist appears in the central variable if a1 �= a2 and
b1 �= b2.
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2010).

10 M. A. Shubin. Pseudodifferential operators and spectral theory (Springer, 2001).

11 E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory
integrals (Princeton: Princeton University Press, 1993).

12 M. E. Taylor. Partial differential equations II. Qualitative studies of linear equations, 2nd
edn. Applied Mathematical Sciences, 116 (New York: Springer, 2011).

13 J. Toft. Matrix parameterized pseudo-differential calculi on modulation spaces. Generalized
functions and Fourier analysis, 215–235, Oper. Theory Adv. Appl., 260, Adv. Partial Differ.
Equ. (Basel) (Cham: Birkhäuser/Springer, 2017).
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