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Abstract

Accurate prediction of nondispatchable renewable energy sources is essential for grid stability and price prediction.
Regional power supply forecasts are usually indirect through a bottom-up approach of plant-level forecasts, incorporate
lagged power values, and do not use the potential of spatially resolved data. This study presented a comprehensive
methodology for predicting solar and wind power production at a country scale in France using machine learning
models trained with spatially explicit weather data combined with spatial information about production sites’ capacity.
A dataset is built spanning from 2012 to 2023, using daily power production data from Réseau de Transport
d’Electricité (the national grid operator) as the target variable, with daily weather data from ECMWF Re-Analysis
v5, production sites capacity and location, and electricity prices as input features. Three modeling approaches are
explored to handle spatially resolved weather data: spatial averaging over the country, dimension reduction through
principal component analysis, and a computer vision architecture to exploit complex spatial relationships. The study
benchmarks state-of-the-art machine learning models as well as hyperparameter tuning approaches based on cross-
validation methods on daily power production data. Results indicate that cross-validation tailored to time series is best
suited to reach low error. We found that neural networks tend to outperform traditional tree-based models, which face
challenges in extrapolation due to the increasing renewable capacity over time. Model performance ranges from 4% to
10% in normalized root-mean-squared error for midterm horizon, achieving similar error metrics to local models
established at a single-plant level, highlighting the potential of these methods for regional power supply forecasting.

Impact Statement

Accurate power production forecasts, particularly for solar and wind power which are sensitive to weather
conditions, are critical for grid stability, optimizing renewable energy integration, and supporting the transition to
cleaner energy. We predict national power output in France by taking advantage of time-varying images of
weather and power generation units’ capacity as input data for different machine learning models. The key
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finding is that image-based models outperform time series-based models. The results of this research provide a
practical model benchmark usable for practitioners and policymakers.

1. Introduction

To meet the 2050 net-zero scenario (United Nations Convention on Climate Change, 2015) of the
European Union (EU) reinforced by the European Green Deal, which aims at decreasing net greenhouse
gas emissions by 55% by 2030 (European Commission, 2019). Sustainable energy sources have become
key to clean power production and reduced emissions from the energy sector in Europe. As power demand
increases, however, fossil reliance is still high, accounting for 68% of the global primary energy
consumed in 2023 and 40% of the electricity produced in the EU (British Petroleum [BP], 2024; Ritchie
and Rosado, 2020). Electrification, coupledwithmore renewable and other low-carbon power supplies, is
needed to reduce dependence on fossil fuels. To meet the CO2 emissions goals of the EU, solar and wind
power generation need to double their capacity by 2030 to produce 48% of Europe’s energy share
(International Renewable Energy Agency (IRENA), 2020b).

France has set a reduction of 33% of its emissions by 2030 compared to 1990, and pledged to reach
greenhouse gas neutrality in 2050 (Ministère de la Transition Ecologique, 2020). This involves an
increase in renewable power capacity installed throughout the country. The capacity of solar and wind
power plants has tripled since 2012, and this growth is expected to accelerate with the capacity being
planned to double from 2017 to 2028 (Ministère de la Transition Ecologique, 2019). Increasing renewable
capacity comes with grid distribution challenges to prevent gaps between supply and demand, especially
during the daywhen productionmay exceed consumption (Liu et al., 2023a). Accurate forecasts of power
generation can improve the stability, reliability, quality, and penetration level of renewable energy
(International Renewable Energy Agency (IRENA), 2020a). Solar and wind power sources depend on
environmental and climate variables such as temperature, solar radiation, and wind speed, making their
load highly variable (Engeland et al., 2017;Wang et al., 2019b). This variability leads to obstacles for grid
operators as they need to constantly balance the demand with the supply. This is one of the reasons why
specific models for understanding and predicting day-to-day renewable power generation havemotivated
interest from researchers and practitioners.

Many studies addressed the problem of short- (10min–1 h) tomedium-term (3 h–3 days) forecasting of
renewable power using weather data from stations or numerical weather prediction (NWP). The impact of
weather data and variable importance on forecasting energy supply, photovoltaic (PV), and wind power
was studied thoroughly (Vladislavleva et al., 2013; DeGiorgi et al., 2014; Zhong andWu, 2020; Liu et al.,
2023b). At the local scale, Malvoni et al. (2016) used solar radiation and temperature to predict the
generation of aMediterranean PVplant. The effect of various climates throughout the planet on hourly PV
productionwas also investigated byAlcaniz et al. (2023). Other works such asAhmad andHossain (2020)
made use of weather forecasts to maximize hydropower generated from dams while Couto and Estan-
queiro (2022) who examinedmodel-based predictive features for wind power predictions. Frequently, the
availability of accurate weather observation is a bottleneck when working with a dedicated local area, not
to mention their inherent sparsity and noise level, leading to NWP being preferred by researchers. Yet,
when both types of weather data are available, they can be combined (Sharma et al., 2011; López Gómez
et al., 2020).

Recent advances in forecasting variable renewable energy generation have seen statistical, machine
learning, and deep learning models gain popularity among practitioners (Wang et al., 2019a; Iheanetu,
2022; Krechowicz et al., 2022; Tsai et al., 2023). Thanks to the increase in weather and power data
availability and quality, models have proven to be useful in revealing driving factors and learning from
complex patterns (Sweeney et al., 2020). Depending on the spatial and temporal scale, statistical models
can outperform traditional physics-based models, which motivated the development of hybrid models
(Bellinguer et al., 2020; Castillo-Rojas et al., 2023; Gijón et al., 2023). The link function between weather
conditions and PV panels or wind turbines power output has been thoroughly investigated through
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different types of models (Dolara et al., 2015; Mayer and Gróf, 2021; Zhou et al., 2022; Bilendo et al.,
2023). Still, challenges remain when developing models for a large region or country.

Statistical data-driven models such as auto-regressive moving average (ARMA) and their variants
(ARIMA, ARIMAX, SARIMA, and SARIMAX) have demonstrated reasonable performance, as shown
in recent work (Chen and Folly, 2018; Ryu et al., 2022). Support vector machine, k-Nearest Neighbors,
Generalized Additive Model (GAM), and tree-based and boosted models also gave good performance in
forecasting power output from weather data (Kim et al., 2019; Condemi et al., 2021). Current trends have
seen the use of artificial neural networks, computer vision (CV), and natural language processing models.
Their application in renewable power forecasting shows promising performance.Multilayered perceptron
(MLP), convolutionnal neural network (CNN), vision transformers (ViT) (Lim et al., 2022; Keisler and
Naour, 2025), and sequence architectures such as recurrent neural network or long–short term memory
deep learning models were also applied in various renewable energy forecasting frameworks (solar and
wind) (Elsaraiti and Merabet, 2022; Abdul Baseer et al., 2023). A key advantage is their flexibility and
ability to combine several data sources to make predictions, not to mention the different ways they can
exploit complex spatiotemporal data.

Research on statistical models is not limited to model architectures. Data preprocessing techniques are
also important to improve forecast performance. Principal component analysis (PCA), wavelet decom-
position, time series detrending, and exponential smoothing can be applied to extract relevant features,
reduce dimension, remove noise, or reveal pertinent phenomena from the data (Liu and Chen, 2019;
Iheanetu, 2022). These techniques are mainly used as a first step to improve the robustness and
performance of a model. It is important to point out that such techniques can be applied regardless of
the type of data at hand, whether it is time series or gridded data over a region, albeit the second option
being less explored.

Besides the methodology and models used for forecasting, differences between studies arise from
the input and output data. Depending on the purpose and the availability of the data, the time and space
resolution as well as temporal and spatial ranges differ between studies (Engeland et al., 2017).
Research works encompass scales from short-term single plant forecasts with a time resolution of 5–
10 minutes (Malvoni et al., 2017; Ryu et al., 2022; Gijón et al., 2023) to medium-term daily forecasts of
a region (Kim et al., 2017). However, due to the lack of available good quality data, regional forecasts
are often made out of single plant forecasts aggregated to the desired region. This means an indirect
prediction of the regional power supply.Moreover, the temporal scale rarely exceeds a few years’worth
of data (Chen and Folly, 2018; Iheanetu, 2022). Thus, gaps exist between short to medium term and
regional forecasts, leading to difficulties in comparing results between studies and improving modeling
performance.

Most prior studies have used a bottom-up approach based on single-plant models, which neglects the
integration of spatial information for prediction. Additionally, many existing models enhanced their
performance by incorporating lagged data of the target time series itself, such as power supply from the
previous day or hour. To overcome these limitations, in this study, we use supervised machine learning
models and test the impact of using spatially resolved data asmodel inputs.We also decided to exclude the
use of lagged inputs from the time series themselves as model inputs. The first goal is to assess the
influence of the model calibration procedure, especially the cross-validation protocol, on time series-
based model error estimation. The second goal is to compare models ingesting explicit weather “images”
against averaged variables as inputs.

We first explain howwe build input datasets for wind and PV production integrating spatially resolved
weather data and generation units’ capacity and locations. These input images span the period from
January 1, 2012, to December 31, 2023, at hourly resolution as presented in Section 2. Second, we present
three different modeling approaches to handle the weather-gridded data to forecast daily wind and PV
power production in Section 3.1. Finally, we explore cross-validation and hyperparameter optimization
procedures in Section 3.3 to give insights and recommendations for model calibration before bench-
marking widespread state-of-the-art machine learning models on our different modeling approaches in
Section 4.
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2. Data

In this section, we describe the target power supply data, the input weather data and power units data,
and other input data sources, with the processing workflow to prepare them as input for supervised
learning approaches. Figure 1 presents the overall approach, with more details given in the following
sections.

2.1. Target data

We used as target wind and solar power from the RTE eCO2mix database. RTE is the public French
national Transmission System Operator (TSO) managing the whole electrical grid. RTE provides near-
real-time data on electrical consumption, production, flows, and CO2 emissions within the eCO2mix
application.1 Electricity production data from RTE covers eight sectors: coal, oil, gas, nuclear, hydro,
solar, wind, and bioenergy. We recovered production data for nondispatchable renewable wind and solar
power. Solar refers to photovoltaic solar panels and wind to both onshore and offshore turbines.

Time-wise, data are available since January 1, 2012, and were retrieved until December 31, 2023.
Resolution is half-hourly from January 1, 2012, to January 31, 2023, and quarter-hourly from February
1, 2023, to December 31, 2023.2 We aggregated the data to an hourly resolution to be consistent with
the time resolution of our inputs (see Section 2.2). Data being available at the country (NUTS0) or
regional (NUTS1) scale, we chose to work directly with country-scale data. This dataset excluded
Corsica and other French islands or overseas territories, which are considered self-sufficient in
electricity.

France is part of the EU electricity market and the EU grid interconnection. In this work, we aimed to
model the electrical power produced using solar and wind from France only, without taking into account
any connection with neighboring countries. Therefore, we did not integrate imports and exports into our
power supply target and retained only the production data, presented in Figure 2.

Figure 1. Global framework of this study represented schematically.

1 RTE eCO2mix website, available at https://www.rte-france.com/en/eco2mix (accessed 19 September 2024).
2 Resolutions might change for 2023 in future releases. Current resolutions and types of data are given for September 2024 release.
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2.2. Input data

Our input data are based on gridded weather data weighted by the power capacity available at the given
time and location, electricity day-ahead spot price, and other temporal features such as time or day of the
year. We combined several different high-quality open-access databases from French governmental or
government-affiliated organizations to create coherent inputs.

2.2.1. Weather data
We recovered hourly weather data from the ERA5 reanalysis (Hersbach et al., 2020) on single levels for
the period of interest from January 1, 2012, to December 31, 2023. We used the domain bounded by 51°
North, 42.5° South,�4.55°West, and 7.95° East which covers France, re-interpolating the original spatial
grid of 0.25° × 0.25° or 30 km × 30 km. The weather variables we selected are those usually used for
renewable power prediction: temperature at 2 m, Northward and Eastward wind speed at 10 and 100 m,
instantaneous wind gust speed at 10 m, surface solar radiation downwards, total precipitation, evapor-
ation, and runoff (Table A1). To select the variables relevant to wind and solar power, we used the mutual
information between weather variables and power supply targets (Kraskov et al., 2004). We normalized
the mutual information to one and kept only variables that had a score higher than 20%. This leads to
hourly maps with 35 latitude and 51 longitude points for each considered variable in netCDF files.

2.2.2. Power units location, capacity, and activity
To get information on the location of facilities with installed solar panels or wind turbines, we used yearly
released data from the Opérateurs Réseaux Energies (ORE)3 agency database of all electrical facilities
used for producing or storing electricity in France. The inventory published on December 31, 2023,
contained around 84,000 electricity-producing units, among which 2,183 are wind facilities and 72,703
are PV farms. Rooftop PV panels dedicated to autoconsumption are not included. Because the ORE
dataset did not provide the exact location of each facility, we merged it with the French governmental city
database4 using City ID, to allocate each facility to a 30-km grid cell of our weather maps. A city refers to
an NUTS4 entity. City ID is a unique identifier provided to every French city by Institut National de la
Statistique et des Etudes Economiques. Facilities’ city IDs that were missing in ORE accounted for less
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Figure 2. Power supply and capacity time series for wind and solar in France for the period of interest.
The power capacity curves have been smoothed to a yearly resolution.

3 Dataset used can be retrieved from ORE website, available at https://opendata.agenceore.fr/pages/accueil/.
4 This database can be found on the French government Open-Data platform, available at https://data.enseignementsup-

recherche.gouv.fr/explore/dataset/fr-esr-referentiel-geographique/export/.
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than 2% of the data and were discarded. We assigned facilities to their corresponding wind or solar sector,
keeping only PV panels for solar and including both offshore and onshore turbines for wind. The
maximum power that can be produced by each facility in MW provided by ORE was used as its capacity.
Some power capacity data were missing, representing 0.25% fo the data and thus were discarded. To
account for the activity period of each facility, we added its start and stop dates. If the stop date was not
given in the ORE inventory, we assumed that the facility was still in activity. For the start date, we used the
start-up date or the date the plant was connected to the grid. We verified that those two starting dates were
close to each other for facilities where both were reported. After latitude, longitude, sector, power
capacity, and start/stop dates for each facility were added, we only dropped 4.4% of the initial ORE
dataset. Most of those discarded plants are located overseas or in Corsica.

2.2.3. Power-weighted weather maps
Wegenerated power capacity-weighted weather maps, by assigning each power facility to the nearest grid
cell in the gridded hourly weather data. The weather parameters are thus multiplied by the power capacity
weights defined as:

wt
i,j ¼

Pt
i,jP

t

P
i,jP

t
i,j

(2.1)

with the power capacity Pt
i,j at time t and latitude, longitude i, j in MW. We use a spatiotemporal

normalization of the weights to account for the fact that nondispatchable renewable energy sources have
seen their available production capacity increase in the last few years (see Figure 2). Because this behavior
is expected to carry on, it is important to account for it in the model’s input. Figure 3 recaps the weighted
weather map creation schematically.

2.2.4. Additional input features
To ensure that models could grasp all of the seasonality and trend, we added two temporal features as it is
usually done in the electricity forecasting literature (Chatfield, 1986; Taylor, 2010; Goude et al., 2014).
The time step converted to a numerical integer, and the day of the year encoded using a cosine:

doycos ¼ cos 2πdoyint
365

� �
, where doyint is the day of the year encoded as an integer between 1 and 365. We

used those two temporal features for the wind and solar sectors. However, to be more consistent with the
physical process of producing electricity with PV panels, we replaced doycos for solar by the sunshine
duration of the day. This duration was computed from sunrise and sunset times. We did it for every grid
cell and timestep.

Even though PV and wind power supply to the grid are related to weather conditions, they are also
dependent on the demand that electricity providers need to meet. The last few years have seen negative

Figure 3. Illustration of power-weighted weather maps creation for wind.
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electricity prices on the market soar as the electrical demand was low, and the available renewable power
was in oversupply. This led to a new practice from electricity providers called curtailment, which consists
of deliberately restricting the electricity generation from renewable energy sources to prevent negative
prices (De Vita et al., 2020; Biber et al., 2022; Yasuda et al., 2022). Thus, we added as input the electricity
spot price for France at hourly resolution from ENTSO-E.5 There are different ways participants trade
electricity on the market and therefore different electricity prices. We chose to use the auction day-ahead
spot price as it is the only one that can be freely retrieved through ENTSO-E. Auction day-ahead spot price
is the price of an MWh�1

, which was decided the day before delivery through an auction.
The above-described data processing methodology and workflow allowed us to have input and target

datasets for Solar andWind power, designed for a supervised learning approach, and consisting of a set of
X,Yð Þ observations. X refers to hourly weather maps gridded over France for each selected weather
variable, weighted by the power capacity of plants located in the corresponding cells. It also includes day-
ahead spot price and temporal features such as the time and day of the year or sunshine duration. Y refers to
the corresponding electrical power produced during this hour.

3. Models and calibration

This section describes the models we tested to predict electricity power production from weather
variables. It also includes a discussion on model calibration techniques.

3.1. Modeling choices and approaches

As we aimed to develop models able to predict the power production of PVand wind for a day, given the
weather conditions, day-ahead price, and temporal features of that same day, we aggregated all input data
from hourly to daily resolution. Aggregation also helped to increase the signal-to-noise ratio and prevent
overfitting when predicting daily power from hourly data. This leads to a day-to-day prediction approach
without utilizing values of the previous days. In operation, real forecasts could then be easily obtained
with our model by plugging daily weather forecasts from numerical weather prediction models.

3.1.1. Model architectures
We chose to test three modeling architectures of increasing complexity, as summarized in Figure 4: first
using power-weighted weather images averaged over the whole French territory, second applying to power-
weighted weather a dimension reduction method, and third applying a vision or image-based technique.

Models using spatially averaged images as input. The first approach is to train models on spatially
averaged input data, to have a time series-to-time series regression framework. After averaging, weather
time series are combined with price and temporal features series to leverage one-to-one models (models
using one input point to predict the corresponding target point). In this family of models, we tested linear
regressions, generalized additive models, tree-based models, boosting or artificial neural network, all
proven to be capable of reaching state-of-the-art performance (Wood et al., 2014; Gaillard et al., 2016;
Krechowicz et al., 2022; Chen et al., 2023; Liu et al., 2023b).

Models using dimensionally reduced input images. The second approach is to use dimension reduction
techniques to extract key features from our high-dimensional input power-weighted weather maps before
combining them with price and other time features for training a model (Teste et al., 2024). Several
dimension reductionmethods exist, ranging from empirical orthogonal functions, widely used in the earth
sciences community, to autoencoder based on deep network architectures. These methods enable us to
reduce the dimension of the input space while providing rich features. In this work, we focused on PCA

5Transparency Platfor Transparency Platform, available at https://transparency.entsoe.eu/.
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and optimized the number of principal components as any other model hyperparameter. After obtaining
the principal components that behave as time series, we applied the samemodels as for the spatial average:
tree-based models, GAM, and NN.

Models using images as input. The third approach consists of building models capable of directly
ingesting the power-weighted weather maps alongside price and temporal features. Here, we used a CNN
architecture, previously shown to be capable in image classification, segmentation, or regression tasks,
even though they are now slowly being replaced by better performing ViT (Keisler and Naour, 2025).

3.2. Train, validation, and test subsets

We split our dataset into a training and a test subset for the evaluation ofmodel performance. As our data is
time-dependent, power production changed throughout the years, mainly due to openings of new
facilities. We chose the period from January 1, 2012, to December 31, 2022, to be the train set and
January 1, 2023, toDecember 31, 2023, to be the test set. Nonetheless, hyperparameter tuning is a key step
of model development as it often makes the difference between poor and high-performing models. To
perform hyperparameter optimization (HPO) we can use different CV methods as well as different
optimization frameworks. To ensure the robustness of our model selection procedure, we chose to keep a
validation set dedicated to the investigation of cross-validation and optimization methods. This validation
set spans the period from January 1, 2022, toDecember 31, 2022. After choosing a propermodel selection
andHPO procedure, it is included in the train set for final HPO andmodel calibration before evaluation on
the test set, as described later.

3.3. Cross-validation and HPO

Cross-validation is used to approximate the generalization error, that is, the error of the trained model
exposed to new unseen data (Hyndman and Athanasopoulos, 2018). Different techniques are used for

Figure 4. Representation of the three modeling approaches used in this work to make use of
weather maps.
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splitting the training set into a new training set to train the model and a new left-out test set to evaluate its
performance for computing the approximated generalization error. This step is usually combined with
HPO to select the best set of hyperparameters for a given model architecture. Selecting the best-suited
calibration procedure is a complicated process (Arlot and Celisse, 2009; Bergstra et al., 2011), and we
explain later the proposed optimization scheme.

3.3.1. Procedures inspected
Our data are time-dependent because our target is a power supply time series. Different studies
investigated which cross-validation procedure was best suited in this case (Tashman, 2000; Bergmeir
and Benítez, 2012; Cerqueira et al., 2019). However, the scope of those studies was mainly synthetic
and stationary, not to mention small, that is, a few hundred points, time series. Another major limitation
is that even though real datasets were used, those modeling approaches involved lagged values of the
target time series as predictors, which were excluded in our case. Therefore, we chose to study different
cross-validation procedures and HPO algorithms to guide the choices for the calibration of our models.
We did these experiments using only the models based on spatial averages of input weather images. The
following cross-validation procedures were used:

• Hold-out: Split the training set into a train set and a test set.
• K-fold: Split the training set into K folds. At each iteration, a fold is chosen to be the test set while
theK�1 others form the train set. Iterate until all folds were used as test once. After all the iterations,
the approximated generalization error is taken to be the average of the error made on each test fold.

• Expanding: Split the training set into K folds following the order of the samples. During the ith

iteration, the first i folds are used as the train set and the i+ 1 fold is used as the test. Repeat until the
entire training set has been used. After all the iterations, the approximated generalization error is
taken to be the average of the errors made on each test fold.

• Sliding: Split the training set intoK folds following the order of the samples. During the ith iteration,
the i fold is used as the train set, and the i+ 1 fold is used as the test. Repeat until the entire training set
has been used. After all the iterations, the approximated generalization error is taken to be the
average of the errors made on each test fold.

• Blocking: Choose a block length l based on the temporal structure to conserve most of the
correlation between neighboring samples. Split the training set into blocks of length l. Attribute
blocks to the train or test set at random (inspired by Wood, 2024).

Figure 5 shows the scheme of these five cross-validation methods.We split the data into a 1-year test set
for the Hold-Out method, 10 splits to get yearly folds for every method using folds and blocks of 7 days
for the blocking method. The block size was chosen to keep most of the temporal structure using
autocorrelation and partial autocorrelation analysis. We also considered the shuffling variants of the
K-fold and hold-out methods, which involve randomly shuffling the samples before the folds or subset
attributions.

Regarding hyperparameter optimization, we compared two optimization algorithms: Random
search and Bayesian search using Gaussian Processes (Bergstra et al., 2011; Bischl et al., 2023).

To assess the impacts of cross-validation and HPO for different model architectures, we repeated the
experiments using three models: a random forest, a tree-based boosting scheme (XGBoost), and a feed-
forward neural network or MLP. In total, this led to 7 cross-validations × 2 HPO × 3 models estimators
of the generalization error. At first glance, one might think that cross-validation procedures that respect
the temporal order of the data are best suited to our approach. Still, we wanted to make an informed
decision by doing the experiments. Our final goal is to choose the pairs of cross-validation techniques
and HPO algorithms that give the “best” estimator of the generalization error. Here, best refers to
different criteria ranging from the precision of the generalization error estimate to the computational
resource usage.
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3.3.2. Cross-validation experiments
As cross-validation’s main goal is to obtain an approximation of the generalization errorbε, we monitored
how far the estimate was from the real error. To do so, we recorded for each of the 100 optimization
iterations the test error made during cross-validation on the training part of the data for a given set of
hyperparameters. Then, we compared it to the real generalization error εmade on the validation set. Here,
the training and validation part refers to the one visible in Figure 1. Since we are dealing with a regression
task, the error ε was taken to be the root-mean-squared error (RMSE) of the modeled and observed daily
power production. See Appendix B for metrics definition. Our target being a power production daily time
series, the unit of RMSE is MW. Given the real generalization error ε and its estimate bε from cross-
validation, for each procedure, we computed the difference between the two quantities as Δε¼ ε�bε
and analyzed the average Δε and its standard deviation σ Δεð Þ across the HPs. We also determined the
optimum value of bε reach after optimization and compared it with the real error in Δεmin.

During the experiments, we monitored the time taken to perform one iteration and the permutation
feature importance of each feature obtained during cross-validation compared to the one obtained on
the validation set. These times of computation tell us how costly each error estimation method was. The
feature importance tells us if the cross-validation technique impacted the interpretability of the model.
Last, we experimented with different dataset sizes to inspect the influence of data size on cross-
validation methods since the literature only deals with small sample sizes. As the dataset size increases,
older and older data are utilized for training. Computation times can be found in Table 1 and results for
random forest on solar are presented in Figures 6 and 7. Results for other models on solar are in
Appendix C and on wind in Appendix D, Figures D1–D6. Results about permutation feature import-
ance showed that despite the different cross-validation methods, the ranking of the features stayed the
same for the different hyperparameter combinations explored, meaning that the method does not impact
the model interpretability.

On the radar chart of Figure 6, we can see that Δε is positive on average and for the optimum. This
means that our generalization error estimates bε is lower than the real error ε. In other words, the cross-
validation tends to overestimate the model performance leading to overconfidence in the model. We can
also see that methods that do not preserve the chronological order or shuffling perform worse than those

Figure 5. Different cross-validation procedures considered in this work represented schematically. For
Hold-Out and K-Fold, only the method without prior random shuffling is represented.
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Table 1. Average and standard deviation of computing times for 1 iteration for each cross-validation method in seconds

Model Sector Hold-Out Hold-Out (S) K-Fold K-Fold (S) Expanding Sliding Blocking

Forest Solar 2.3 ± 1.6 2.1 ± 1.8 22.7 ± 11.8 14.1 ± 14 15.4 ± 9.3 19.8 ± 1.5 2.3 ± 1.7
Boosting Solar 3.0 ± 3.9 3.9 ± 4.5 21.2 ± 17.8 53.2 ± 41.6 33.4 ± 27.7 1.7 ± 1.4 4.6 ± 5.7
Neural network Solar 2.7 ± 2.3 2.8 ± 2.4 27.6 ± 24.1 27.8 ± 23.9 16.3 ± 14.0 4.3 ± 3.3 2.7 ± 2.3
Forest Wind 2.4 ± 2.4 3.8 ± 2.5 19.6 ± 19.1 37.0 ± 23.2 9.9 ± 10.9 1.9 ± 1.0 1.8 ± 1.8
Boosting Wind 3.7 ± 2.6 4.5 ± 3.9 61.2 ± 78.7 122.6 ± 92.2 78.4 ± 75.5 6.9 ± 3.9 6.2 ± 3.7
Neural network Wind 2.8 ± 2.4 2.8 ± 2.4 28.1 ± 24.4 57.5 ± 53.3 33.0 ± 30.0 8.7 ± 7.4 2.8 ± 2.4

Note. The (S) indicates the shuffling variant of the method. Medals indicate the top three fastest methods for each model and dataset.
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Figure 6.Results of different cross-validation techniques for random forest on solar. Each axis represents
a monitored quantity for a given HPO optimization procedure. The values for each method are plotted as
points, and only the worst and best values for each axis are printed. The (S) indicates the shuffling variant
of the method.
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Figure 7. Robustness of cross-validation procedure regarding the dataset size for random forest on solar.
The marker indicates the average ∣Δε∣, while the error bars display the standard deviation. The
(S) indicates the shuffling variant of the method.
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that do. Specifically, hold-out, expanding, and sliding lead to the closest estimate on average and the
optimum for both searches. However, sliding is the most sensitive to the set of hyperparameters as its
variability σ Δεð Þ is the highest. Thismight stem from its small training set size which never exceeds 1 year
of data. This is also confirmed by the error bars of Figure 7. This same figure shows that increasing the
dataset size by appending older and older data leads to a slight increase in ∣Δε∣ meaning that our
generalization error estimate is moving away from the real one. This is because older data such as
2012 carry less meaningful information than more recent data such as 2020 for predicting the validation
set which is the year 2022. This behavior also explains why somemethods display an inflection point for a
certain dataset size meaning that there is an optimum past period of time to consider to make better
predictions on the validation set.

The same conclusions hold for boosting and feed-forward neural networks on the solar dataset (see
Figures C1–C4). It is worth mentioning that the neural network shows a high variability and a high Δε for
the Bayesian search HPO, suggesting that this algorithm might not be the best for optimizing neural
network hyperparameters. For theWind dataset (see Appendix D, Figures D1–D6), hold-out, sliding, and
expanding methods are the best methods to estimate the generalization error for all three model
architectures. Yet, we can see for the random forest and boosting models that increasing the dataset size
with older data does help better approximate the generalization error with the expanding and sliding
methods. This means that in the wind dataset, older data still carry meaningful information for predicting
the most recent validation set, even if there is a pronounced annual trend in the wind power production
time series (see Figure 2).

Finally, Table 1 shows that cross-validation procedures involving folds are more computationally
intensive per iteration, as one can expect. Combined with the previous graphs we can conclude that the
longer computing times arising from the use of K-fold methods are not worth it since hold-out and sliding
are better performers and between 5 and 10 times faster to compute per iteration.

From the result of those experiments testing different cross-validations, with different HPO and
different model architectures we were able to make recommendations on how to choose amodel selection
procedure when dealing with time series to time series forecasting from covariates. We found that
dedicated procedures that keep the chronological order during cross-validation perform better than
standard K-fold or shuffled hold-out. Depending on the model architecture and the underlying data,
some techniques tend to overestimate or underestimate model performance leading to underconfidence or
overconfidence in our model. This systematic work could be extended to deep learning models that
directly ingest images as inputs, to also get recommendations to push their performance even further.

4. Benchmark results and discussion

In this section, we present the results of our calibrated models on the training + validation set and
evaluated on the test set. The best hyperparameters for each model were selected from the best
generalization error, based on experiments from the previous section, that is, using Bayesian search with
either an expanding or hold-out cross-validation method, depending on the model complexity, to save
computing time. Expanding was preferred over sliding cross-validation due to the high sensitivity of
sliding to hyperparameter sets.We assessed the performance of themodel using theRMSE,mean absolute
error (MAE), mean absolute percentage error (MAPE), normalized root-mean-squared error (nRMSE),
andR2 score (R2). The definitions of thesemetrics are given inAppendix B. Table 2 contains all our results
on the solar dataset, while results for wind can be found in Appendix E, Table E1.

As nondispatchable renewables capacity increased throughout our study period, solar and wind power
production time series have an increasing trend from 2012 to 2023 as highlighted by Figure 2. This trend
requires the models to be able to extrapolate on the test set. Despite reaching state-of-the-art performance
inmany tasks, tree-basedmodels such as random forest and boosting are known to face difficultieswhen it
comes to extrapolation outside of the training domain (Hengl et al., 2018; Malistov and Trushin, 2019).
Our case makes no exception, despite low errors on the train set, random forest, and boosting models
errors soared on the test set (see Tables 2 and E1). To address this issue, many research works propose
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Table 2. Benchmark results for different models using three different modeling approaches on the solar dataset

Metrics MAE MAPE (%) RMSE nRMSE (%) R2

Approach Model Detrend Train Test Train Test Train Test Train Test Train Test

Average Linear Regression 106 350 14.0 15.8 140 423 3.59 9.57 0.96 0.86
Average Random Forest 50.7 300 6.12 13.9 69.3 375 1.78 8.5 0.99 0.89
Average Random Forest ✓ 57.4 179 6.95 9.83 82.3 279 2.12 6.33 0.99 0.94
Average Linear Forest 78.0 300 9.54 13.9 109 374 2.80 8.45 0.98 0.89
Average Tree Boosting 47.3 253 6.26 13.9 63.2 331 1.63 7.48 0.99 0.91
Average Tree Boosting ✓ 56.9 176 7.10 9.71 80.7 271 2.07 6.14 0.99 0.94
Average Linear Tree Boosting 106 352 14.0 15.8 140 425 3.59 9.62 0.96 0.86
Average GAM 82.0 321 10.3 16.0 113 401 2.91 9.10 0.98 0.87
Average MLP 123 229 16.4 11.8 164 310 4.21 7.01 0.95 0.93
PCA Linear Regression 100 310 9.09 12.7 135 394 3.47 8.92 0.97 0.88
PCA Random Forest 62.1 349 7.49 16.9 86.9 436 2.23 9.86 0.99 0.85
PCA Linear Forest 79.1 282 9.84 13.3 109 364 2.79 8.23 0.98 0.90
PCA Tree Boosting 53.7 268 7.43 14.4 70.3 381 1.81 8.63 0.99 0.89
PCA Linear Tree Boosting 96.9 319 12.3 14.5 133 403 3.40 9.12 0.97 0.87
PCA GAM 83.3 434 10.9 20.4 112 501 2.87 11.3 0.98 0.80
PCA MLP 85.6 195 9.52 10.7 129 294 3.33 6.65 0.97 0.93
Vision CNN 147 182 15.2 10.1 200 277 5.1 6.30 0.93 0.94

Note. Medals indicate the top three best-performing models on the test set for each metric.
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alternatives such as stochastic or linear trees (Gama and Brazdil, 1999; Zhang et al., 2019; Numata and
Tanaka, 2020; Ilic et al., 2021; Raymaekers et al., 2024).We chose to apply two different methods to try to
solve this extrapolation problem: linear trees and detrending of the time series.

Our detrending scheme consisted of applying a trend estimation method, such as seasonal trend
decomposition using loess, on the entire dataset. Once the trend is estimated, we remove it from the data.
The transformed data were thus passed to the model for calibration. The predictions were obtained by
reconstruction from the model’s output and trend estimate. The detrending was done on both weather
input and power output data, as the weighting scheme introduced trends in the covariates.

Linear trees did not seem to be a silver bullet on the solar dataset as their performance was only
marginally better for the forest and worse in the case of boosting. In contrast, for the wind dataset, they
prove to be useful in enhancing the extrapolation performance. However, their performance was still far
from the tree-based models predicting detrended power supply from detrended weather averages before
reconstructing the proper production time series. Despite the error induced by the trend estimation and
reconstruction step, this method displays some of the best results on both solar and wind within the spatial
average method and even outside. Such behavior could be expected because the trend is estimated on the
whole dataset. The extrapolation problem is weaker for GAM andMLP as theymanage to better grasp the
trend, achieving better performance on the test set.

Compared with the spatial input averaging approach, using tree-based models with PCA did not
achieve better performance due to the extracted principal components exhibiting the same trend as the
spatial averages. This time, we only applied linear trees, as detrending principal components was more
challenging. They exhibited a small improvement on the solar dataset but a bigger decrease in perform-
ance when used to predict wind power supply. Combining PCA with GAM does not seem to improve
performance on both datasets. For MLP, it depends on the sector, but one thing that we noticed after our
calibration is that networks combined with PCA are deeper than networks without it, meaning that it
requires more layers to extract meaningful information from the principal components.

Although the increase in complexity between dimension reduction and spatial average approach did
not lead to clear improvements in model performance for every model architecture, leveraging the entire
weather maps with a more complex computer vision architecture, such as a CNN clearly did. This
phenomenom stems from the unsupervised nature of the PCA compared to the supervised CNN. In fact,
the CNN is the best-performing model on the wind dataset and the second-best on the solar dataset. By
utilizing our spatiotemporal weighting scheme, the CNN has a better grasp of the trends in renewables
implementation, as highlighted in Figure 8, and avoids extrapolation difficulties. Combinedwith theMLP
results, it highlights the versatility and suitability of neural network-based models for predicting power
production from renewable sources.

Tables 2 and E1 illustrate the challenges that tree-based models face with extrapolation. Without the
detrending scheme, these models would not rank among the top three performers. Instead, neural networks
would dominate the podium, with the rankings reflecting the increasing complexity of the modeling
approaches. Specifically, as models incorporate more spatially explicit data, their performance improves,
with vision models outperforming MLPs combined with PCA, which in turn surpass MLPs on time series.
Therefore, we recommend that practitioners incorporate spatial information when designing forecasting
models.

The work conducted on cross-validation procedures and HPO schemes allowed us to push state-of-the-
art machine learning architecture to their best performance. However, such a study could be extended to
include deep learning models such as CNN to improve their performance. As deep convolutional neural
networks are already amongst the bestmodels for both solar andwind,we did not pursue this path.However,
it is worthmentioning that a systematic studywould benefit deep learningmodels and strengthen their edge.

5. Conclusion

This study presented datasets and tested a modeling framework based on machine learning and climate as
well as facility locations as an input for predicting daily solar and wind supply at the country level in
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France. Several different machine learning models with different complexities were applied to create a
benchmark. Attention was paid to the methods used for calibrating the model to avoid displaying
overconfident metrics. The method proposed was applied over France and could be extended to any
other country or region.

Our model calibration experiments showed that there is no “silver bullet”model, as it is dependent on
the data and the model at hand. Under- or overconfidence can arise depending on the calibration, leading
to desillusions if the model is chosen to be run in operations based on the calibration results. Thus, a
thorough validation procedure and analysis are required to avoid such phenomena and improve the
production launch. Still, some general recommendations can bemade towards preferring cross-validation
methods, keeping the temporal structure of the data intact, as they are both more computationally efficient
and less biased, leading to more robust models.

Trying to model renewable power supply fromweather inputs without including the power capacity at
facility locations in the inputs is pointless, as some state-of-the-art already failed to correctly model the
trendwith this added information.Models that are able to ingest the entire high-dimensional weather input
can learn from spatial patterns to achieve better predictions, improving the forecasts. This means that
being spatially explicit in both the data curation and preparation, aswell as in themodelling process, is key
to achieving good predictions. Therefore, we encourage other practitioners to include geospatial data in
their framework. However, one must bear in mind that power capacity inventories are not available
everywhere and can be of different quality depending on the data source.

In summary, geospatial weather information is key for renewable energy forecasting. By providing an
open dataset and benchmark, we hope to foster research and improve comparison between studies.

Figure 8. Power capacity, occlusion attribution, and regional realized power supply for early and late
2023 for Wind. Occlusion is an interpretation method that hides part of the input and sees how it impacts
the CNN prediction. The higher the impact is, the higher the hidden part’s importance (Zeiler and Fergus,
2014). Power supply data are obtained from RTE for all of France’s regions (NUTS1).
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A. Appendix A: Weather variables

B. Appendix B: Metrics Definition
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where ymax, ymin, and y are the maximum, minimum, and the average of the true target y, respectively.

Table A1. Description of climate variables

Variable full
name

Variable
abbreviation Unit Description Sector

2-m temperature t2m K Temperature of air at 2 m above the surface Solar, Wind
Surface solar

radiation
downward

ssrd Jm�2 Amount of solar radiation (direct and diffuse)
reaching a horizontal plane at the surface of the
Earth

Solar

10-m U wind
component

u10 ms�1 Northward component of the wind speed at 10m Wind

10-m V wind
component

v10 ms�1 Eastward component of the wind speed at 10m Wind

100-m U wind
component

u100 ms�1 Northward component of the wind speed at 100m Wind

100-m V wind
component

v100 ms�1 Eastward component of the wind speed at 100m Wind

Instantaneous
10-m wind
gust

i10fg ms�1 Maximum wind gust speed at 10m Solar, Wind

Total
precipitation

tp m Accumulated liquid and frozen water that falls to
the Earth’s surface

Wind

Evaporation e m Accumulated amount of water that has evaporated
from the Earth’s surface

Solar

Runoff ro m Water from rainfall, snow melt or deep soil that
drains away over the surface or under the ground

Wind

Source: ERA5 Documentation (https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation).
Note. There are 110,808 hourly weather observations spanning 4383 days with a 35 × 51 grid for each time step.
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C. Appendix C: Cross-validation experiment results for solar

C.1. Boosting
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Figure C1. Results of different cross-validation techniques for boosted trees on solar. Only the worst and
best values for each axis are printed. The (S) indicates the shuffling variant of the method.
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Figure C2. Robustness of cross-validation procedure regarding dataset size for boosted tress on Solar.
The marker indicates the average ∣Δε∣, while the error bars display the standard deviation. The
(S) indicates the shuffling variant of the method.
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C.2. Feed-forward neural network (MLP)
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Figure C3. Results of different cross-validation techniques for feed-forward neural network on solar. Only
the worst and best values for each axis are printed. The (S) indicates the shuffling variant of the method.
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Figure C4. Robustness of cross-validation procedure regarding dataset size for feed-forward neural
network on solar. The marker indicates the average ∣Δε∣, while the error bars display the standard
deviation. The (S) indicates the shuffling variant of the method.
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D. Appendix D: Cross-validation experiment results for wind

D.1. Random forest
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Figure D1.Results of different cross-validation techniques for random forest on wind. Only the worst and
best values for each axis are printed. The (S) indicates the shuffling variant of the method.
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Figure D2. Robustness of cross-validation procedure regarding dataset size for random forest on wind.
The marker indicates the average ∣Δε∣, while the error bars display the standard deviation. The
(S) indicates the shuffling variant of the method.
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D.2. Boosting

Random Search

Random SearchBayesian Search

Bayesian Search

Bayesian Search Random Search

0

200

400

600

800

155
-34

181

51
48

-19

375

570

759

433405

813

Hold-Out Hold-Out (S) K-Fold K-Fold (S) Expanding Sliding Blocking

Figure D3. Results of different cross-validation techniques for boosted trees on wind. Only the worst and
best values for each axis are printed. The (S) indicates the shuffling variant of the method.
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Figure D4. Robustness of cross-validation procedure regarding dataset size for boosted trees on wind.
The marker indicates the average ∣Δε∣, while the error bars display the standard deviation. The
(S) indicates the shuffling variant of the method.
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D.3. Feed-forward neural network (MLP)
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Figure D5. Results of different cross-validation techniques for feed-forward neural network on wind. Only
the worst and best values for each axis are printed. The (S) indicates the shuffling variant of the method.
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Figure D6. Robustness of cross-validation procedure regarding dataset size for feed-forward neural
network on wind. The marker indicates the average ∣Δε∣, while the error bars display the standard
deviation. The (S) indicates the shuffling variant of the method.
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Table E1. Benchmark results for different models using three different modeling approaches on the wind dataset

Metrics MAE MAPE (%) RMSE nRMSE (%) R2

Approach Model Detrend Train Test Train Test Train Test Train Test Train Test

Average Linear Regression 313 834 15.8 19.5 424 1,104 2.73 7.24 0.97 0.90
Average Random Forest 99.2 1,180 4.27 25.6 140 1,464 0.90 9.60 1.0 0.83
Average Random Forest ✓ 112 483 4.80 11.3 159 650 1.03 4.26 1.0 0.97
Average Linear Forest 260 707 12.2 19.8 354 967 2.28 6.35 0.98 0.93
Average Tree Boosting 92.6 901 2.90 19.1 145 1,173 0.93 7.70 1.0 0.89
Average Tree Boosting ✓ 181 496 8.04 11.9 250 650 1.61 4.26 0.99 0.97
Average Linear Tree Boosting 361 748 17.2 19.8 484 1,042 3.12 6.84 0.96 0.92
Average GAM 243 628 11.8 17.4 332 807 2.14 5.29 0.98 0.95
Average MLP 267 438 10.8 9.56 383 608 2.47 3.99 0.98 0.97
PCA Linear Regression 484 799 22.6 19.1 654 1,089 4.21 7.14 0.93 0.91
PCA Random Forest 177 1,168 8.27 26.1 252 1,500 1.63 9.84 0.99 0.82
PCA Linear Forest 159 1,233 7.24 30.3 240 1,551 1.55 10.2 0.99 0.81
PCA Tree Boosting 156 803 8.14 17.5 204 1,057 1.32 6.93 0.99 0.91
PCA Linear Tree Boosting 423 801 19.7 19.0 574 1,066 3.70 6.99 0.94 0.91
PCA GAM 328 750 16.3 20.2 438 929 2.82 6.10 0.97 0.93
PCA MLP 283 508 12.6 11.5 373 693 2.40 4.54 0.98 0.96
Vision CNN 240 417 9.98 9.12 340 575 2.19 3.77 0.98 0.97

Note. Medals indicate the top three best-performing models on the test set for each metric.

E. Appendix E: Benchmark results for wind
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F. Appendix F: Comparison with ENTSO-E day-ahead forecasts
In the literature of renewable energy forecasting,most of the studies use numerical weather predictions, that is, forecastedweather, as
inputs to themodels, andmainly focus on a local scale, such as a single solar or wind farm. In this work, we used re-analysis ERA5 data
as the weather inputs, which do not account for the weather forecasting error, and we directly predict the supply at the regional scale
without any lags. These aspects make the comparison with other work difficult. However, we provide in Table F1 a comparison of the
spatially explicit CNN results with theENTSO-Eday-ahead forecasts forwind and solar generation in France.6 The day-ahead forecasts
available on ENTSO-E are sourced from each TSO, and since they are run operationally, they must use numerical weather forecasts.
Since the available forecast data granularity is hourly, we aggregated it to daily forecasts for the sake of comparison.We can see that our
approach, combined with the use of re-analysis data, improved the forecasts by 18% on solar and around 20% on wind.

G. Appendix G: Sensitivity of CNN model to Gaussian noise applied to the weather inputs
Since this study’s weather aspect is based on re-analysis data and not forecasted data, we study the degradation of the CNN model
performance when mimicking weather forecasts as inputs. To do so, a Gaussian white noise without any correlation between the
different weather variables is added to each weather map. The noise level is controlled, and the results of the performance
degradation are reported in Table G1. It is worth mentioning that adding the same noise level to all the weather predictors does not

Table F1. Comparison of ENTSO-E day ahead renewable Forecast performance for France with our
model forecast performance in 2023 (test set)

Sector
ENTSO-E Day-Ahead Forecast RMSE

(MW)
CNN Forecast RMSE

(MW)
Relative Improvement

(%)

Solar 337 276 18.1
Wind 717 575 19.8

Note. The hourly ENTSO-E forecasts were aggregated to daily to match our work’s granularity.

Table G1. Comparison of our model performance when adding Gaussian noise to the weather inputs
to mimic weather forecast data

Sector Model
Noise level

(%)

RMSE
(MW)

RMSE 95% empirical
confidence interval

(MW) (%)
Relative

change (%)

Relative change 95%
empirical confidence

interval (%)

Mean
Lower
bound

Upper
bound Mean

Lower
bound

Upper
bound

Solar CNN 0 276.5
Solar CNN 5 276.8 274.8 279.1 0.11 �0.61 0.94
Solar CNN 10 278.8 274.8 282.7 0.83 �0.61 2.24
Solar CNN 15 284.7 278.3 290.5 2.90 0.65 5.10
Solar CNN 20 295.6 287.4 302.7 6.90 3.90 9.50
Solar CNN 30 336.4 324.6 347.1 21.6 17.4 25.5
Wind CNN 0 575.1
Wind CNN 5 636.3 624.8 647.5 10.6 8.6 12.6
Wind CNN 10 800.5 782.0 813.7 39.2 36.0 41.5
Wind CNN 15 1,009.2 983.2 1,032.1 75.5 71.0 79.5
Wind CNN 20 1,227.3 1,194.6 1,252.6 113.4 107.7 117.8
Wind CNN 30 1,664.1 1,625.6 1,701.6 189.4 182.7 195.9

Note. The RMSE is computed on 2023 (test set). The relative change compares the metric with the noise to the metric without. Negative values mean
improvement. The experiment was repeated 100 times before computing the mean and a 95% empirical confidence interval.

6 Generation Day-Ahead Forecasts for wind and solar can be accessed at: https://transparency.entsoe.eu/.
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translate into the same error for every weather variable. Even though this analysis is simple, we can notice that the solar model is less
sensitive to the noise added than the Wind model. When looking at the score/metrics given by European Center for Medium-range
Weather Forecast for their forecasts in their reference document,7 we can see in Figure 26 that the RMSE for wind at 10m is less than
0:5ms�1 (around 0:25ms�1) for 60- and 72-hour ahead forecasts. Our range ofwind speed values is between�14 and 14ms�1, with
an average of 3–4ms�1, where thewind turbines are located. This wouldmean an error on forecast variables of around 5-10%,which
would lead to a decrease of 10–40% of our predictions for a “fake” 3-day-ahead forecast.

7 ECMWF Reference Document 2021 Release, available at https://www.ecmwf.int/en/elibrary/81235-evaluation-ecmwf-fore
casts-including-2021-upgrade.
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