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Abstract

This article presents a highly integrated 300-GHz frequency-modulated continuous wave radar
sensor using a custom-developed dual-function transceiver MMIC. The system can either be
configured as a stand-alone ultra-wide-band radar sensor or as a flexible RF front-end, enabling
up-conversion and down-conversion of modulated signals to and from the terahertz range. The
transceiver MMIC is manufactured using a 90 nm SiGe BiCMOS process, featuring high-speed
hetero-junction bipolar transistors with an f; of 300 GHz and f, ,,, of 520 GHz. Using on-chip
antennas and a focusing lens, the EIRP of the system for radar operation is greater than 3.2 dBm
in a bandwidth of 54 GHz. The full potential of the system’s 90 GHz tuning range is demon-
strated in radar measurements. A calibration method is applied to expand the usable tuning
range, achieving an extraordinary spatial resolution of 1.97 mm with a frequency sweep from
330 to 240 GHz in 5 ms for a target at a distance of 0.35 m. The potential industrial use of this
spatial resolution is demonstrated in a plastic thickness measurement scenario. Additionally
a 100 Mbd OKK communication link with a BER of 0.55% is presented using two systems at
0.3 m distance.

Introduction

Integrated systems in SiGe technologies are reaching increasingly high operating frequencies.
The large and continuous frequency ranges available in the WR 3.4 waveguide band, including
the J-band, offer unique opportunities and challenges for wireless applications from sensing to
communication [1, 2]. High resolution and high precision frequency-modulated continuous
wave (FMCW) radar systems in the D-band and above have been shown to benefit greatly from
these large available bandwidths. Examples from precise thickness measurements in rolling
mills [3, 4] and non-destructive testing of composite fiber materials [5, 6] to high-resolution
imaging [7, 8] and material characterization [9] demonstrate this clearly.

Short-range communication systems have shown a similar trend. The IEEE 802.15.3d family
of standards allocates up to 69 GHz of continuous bandwidth from 252.72 to 321.84 GHz for
(sub)THz communication [10]. An 80 Gb/s link, using a 300 GHz transceiver in CMOS [11],
and a 110 Gb/s link, using a 230 GHz transceiver in SiGe [12], have shown that this bandwidth
can be leveraged to achieve enormous data rates over short distances.

The co-integration of both sensing and communication functionality on one hardware
platform has generated much interest [13, 14]. Since the architectures of FMCW radar and
communication transceivers are similar, reconfigurable front-ends can be developed that reuse
a large part of their components [15-17].

This work is an extended version of our recently published conference paper [18], where we
presented a transceiver based on a custom-developed SiGe MMIC that integrates both radar
and communication functionalities. We have shown radar measurements with an FMCW chirp
from 330 to 240 GHz, that achieve a spatial resolution of 3.9 mm with a target at a distance
of 0.5m. Additionally, a two-stage up-conversion mixer in the transmit path was presented,
which allows the system to be configured either as a standalone radar system or as a flexible RF
front-end, which can up-convert and down-convert arbitrary external signals. The system uses
on-chip antennas, eliminating the need for costly RF interfaces.

This paper expands on the radar capabilities of this system in unlocking its full bandwidth
potential. With the use of a calibration method, the spatial resolution is improved significantly
and the potential industrial use of this resolution is demonstrated in a plastic thickness mea-
surement scenario. In addition to this, the transmit path is characterized extensively for radar
operation and as an up-converting front-end. The design methodologies used to extend the usu-
ally narrow bandwidth of systems relying on on-chip patch antennas are expanded upon. Finally
initial communication measurements that use this system as an RF front-end in conjunction
with laboratory equipment are shown.
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Figure 1. Photographs of the 300-GHz transceiver. (a) Assembled transceiver with PTFE lens. (b) Disassembled PCBs used in the transceiver. (c) Top side of the transceiver

with visible MMIC.

The paper is organized as follows: Section 2 describes the design
and realization of the proposed transceiver and system with a focus
on the custom-developed MMIC. Section 3 presents results char-
acterizing the system and is followed by Section 4, where calibrated
and uncalibrated distance measurements are shown and discussed.
Communication measurements are presented in Section 5. A com-
parison with the state of the art for integrated radar sensors and
transceivers is made in Section 6.

System concept and realization

Figure 1 shows the compact transceiver system. Its electronic com-
ponents are housed on a stack three low cost FR4 printed circuit
boards (PCB), which are connected by pin headers. The custom-
developed transceiver MMIC is glued and wire-bonded directly
to top side of the topmost PCB in the stack, the front-end PCB.
This board includes a phase locked loop (PLL) for frequency sta-
bilization of the voltage controlled oscillator (VCO) on the MMIC
and FMCW ramp generation, as well as sockets for the external
IF signals coming from or going to the MMIC. For FMCW radar
operation the IF signal coming from the MMIC can also be pro-
cessed internally by the sensor. To that end the front-end PCB
houses an IF pre-amplification stage. Its output is routed to the
other PCBs in the stack. The middle PCB serves as a breakout
board and as an adapter to the bottommost PCB, the back-end.
This back-end module is an advanced revision on the module pre-
sented in [19]. On this module the IF signal for radar operation
is sampled using an analog-to-digital converter (ADC) after being
sent through a second amplification stage and an anti-aliasing fil-
ter. A micro-controller is used to configure the ADC and the PLL
on the front-end. It is also used to transmit the sampled data from
the ADC to a PC via a USB connection for signal processing. The
back-end also includes the power supply for all components of the
system powered by the same USB connection. Finally the reference
quartz oscillator for the PLL is placed on the back-end PCB.
Mechanically the stack of three PCBs is mounted inside of a 3D-
printed casing. An elliptical PTFE (polytetrafluoroethylene) lens
is mounted over the MMIC to focus the radiated signal of the
integrated on-chip antennas. The use of on-chip antennas elim-
inates the need for costly high frequency interfaces, by handling
all signals with frequencies above 10.5 GHz on the chip. This way,
an easy integration using only commercial of the shelf (COTS)
components and low cost FR4 PCBs in conjunction with the cus-
tom MMIC is possible. The MMIC consumes 700 mW of DC
power from a 3.3V power supply, while the entire system con-
sumes 3.13 W from a the 5V USB power supply. This results in a
very compact system with approximate dimensions of 70 mm X
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Figure 2. Block diagram of the proposed 300-GHz transceiver. Differential signals
are drawn as two parallel lines.
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Figure 3. Micrograph of the transceiver MMIC.

60mm x 45mm including the lens, that can be operated as a
standalone radar system with only one USB connection to a PC.

The presented system is made up of three main building blocks
spread over the MMIC and the PCBs. These blocks will be dis-
cussed in detail in the following subsections. The first building
block is the ultra wide-band LO generation in the D-band. This
D-band LO is used in the second and third building blocks, the
receive path (RX) and the transmit path (TX). Figure 2 shows the
block diagram of the whole system. Wether a component is inte-
grated on the MMIGC, the front-end PCB or the back-end PCB, is
shown by the gray-scale background.

Figure 3 shows a micrograph of the SiGe transceiver MMIC.
The chip has a size of 2.7mm by 1.3 mm. Components on the
chip belonging to one of the building blocks are marked as such.
The differential on-chip patch antennas are clearly visible on the
leftmost side of the micrograph. This MMIC is fabricated using
the SiGe BiCMOS technology B12HFC by Infineon Technologys
AG. This process features high-speed hetero-junction bipolar
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Figure 4. Measured tuning curve and phase noise at 1 MHz offset of the D-band LO
generation breakout circuit, including the E-band VCO and the frequency doubler.

transistors with a f; of 300 GHz and f;,, of 520 GHz in addition
to a 90 nm CMOS node. The metal stack consists of eight layers.
The topmost aluminum layer is used for pads and for the on-chip
antennas, two thick metal layers are used for transmission lines and
passive components, one intermediate layer is used as the ground
reference for the transmission lines and four thin metal layers are
used for routing.

2.1. LO generation

The core of the LO generation block is an ultra-wide-band VCO
with a center frequency of 75 GHz. Its output is fed into a push-
push frequency doubler to generate the D-band LO signal required
for receive and transmit paths. The oscillators output is also fed
into a static divide-by-eight chain to provide a signal for frequency
stabilization. These three components integrated on the MMIC
are largely derived from components developed in Infineon’s pre-
ceding technology B11HFC. [6] describes the design and config-
uration of these preceding components most closely. The VCO
and divider chain were first reported in [20], whereas the used
Collpits-Clapp topology was first discussed in [21]. By carefully
co-designing the VCO and the frequency doubler, a signal genera-
tion block tunable from 121.6 to 178.0 GHz was realized in [6]. This
corresponds to a relative tuning range (rFTR) of 37.7%. The mini-
mum phase noise at an offset frequency of 1 MHz was observed to
be —94 dBc/Hz.

The conversion of the signal generation block from B11HFC
to B12HFC, while being very similar technologies, still required
an extensive redesign. To validate its performance the VCO, dou-
bler and divider chain was manufactured as a breakout circuit.
Figure 4 shows the measured output frequency of the doubler, as a
function of VCO tuning voltage, as well as the phase noise at
the same output with an offset frequency of 1 MHz. The sig-
nal generation block used in this work is tunable from 116.8 to
167.8 GHz, which corresponds to a rFTR of 35.8%. The phase
noise is —89 dBc/Hz at its lowest point increasing by 4 dB toward
the band edges. The slightly worse and shifted tuning range and
the increased phase noise show that this LO generation block is
less optimized than its version in the previous technology. Having
access to higher speed transistors should ideally reduce the noise
figure. While there is no improvement gained from the technology
shift in the LO generation block, the higher f; transistors are indis-
pensable to achieve sufficient performance in the highest frequency
components in the transmit path and the receive path.

In order to operate in the J-band, the common D-band LO
undergoes another frequency doubling in the receive path or the
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transmit path. Therefore the transmit signal used for radar oper-
ation can be tuned from 233.6 to 335.6 GHz. While the relative
tuning range does not change, the phase noise is expected to
increase by 6 dB due to the frequency doubling.

The PLL integrated on the front-end PCB to stabilize the VCOs
frequency and to generate FMCW ramps is build up around the
ADF4169 fractional-N frequency synthesizer. It uses the MMICs
divider chain output and a 100 MHz reference signal generated by
the CVSS-945 ultra-low noise crystal oscillator placed on the back-
end PCB as inputs. Its output, filtered by a forth order active loop
filter using a LT6202 operational amplifier, is used to regulate the
VCOs tuning voltage.

This phase locked loop is stable for J-band output frequencies
between 238 and 331 GHz, a range lower than the maximum pos-
sible tuning range. All radar measurements are done using down
chirps from 330 to 240 GHz to ensure reliable locking. This results
in the reported tuning range of 90 GHz around a center frequency
of 285 GHz.

Receive path

The receive path is made up of components placed on the MMIC
as well as components integrated on the front-end and back-end
PCBs. To down-convert the received signal from the J-band to the
kHz-range for FMCW radar operation or several GHz, if the result-
ing IF signal is processed externally, a Gilbert-Cell based mixer is
integrated on the MMIC. To enable the mixer to drive low ohmic
loads, if an external IF is connected, as well as the high ohmic input
of the IF amplifier on the front-end PCB, two common collector
circuits are integrated at the differential IF outputs of the Gilbert
cell. The radio frequency input of this mixer, the bases of the dif-
ferential pair in Gilbert cell, is connected to one of the differential
on-chip patch antennas using a transmission line for matching.
These antennas will be discussed in more detail in Section 2.4. To
generate the required LO signal for the mixer the common D-band
LO signal coming from the LO generation building block needs
to be doubled in frequency. This doubling is done using a push-
push frequency doubler. It is similar in topology to the doubler
used in the LO generation. Since push push frequency doublers
require a differential input signal and generate a single ended out-
put signal, two transmission line based rat-race couplers needed to
be designed. One coupler operating in the J-band, to accommodate
the differential LO input of the Gilbert cell mixer, and one operat-
ing in the D-band, to generate a differential signal from the single
ended output of the LO generation building block. To maximize
the output signal strength of the doubler, an inter-stage amplifier
was placed between the D-band rat-race coupler and the frequency
doubler. This amplifier, consisting of a differential pair with a cas-
code stage, biased by a current mirror, ensures that the frequency
doublers LO input is saturated.

Figure 5 shows the simulated conversion gain of the receive path
as well as its simulated noise figure. The simulated conversion gains
maximum is centered around 300 GHz as is the antenna gain of
the on-chip antenna. Its maximum is at 1.22 dB and the peak has a
6 dB width of 51.3 GHz. Its frequency selectivity is mainly caused
by variation of LO power in the receive path.

The IF output of the MMIC can take one of two paths on the
front-end PCB. To that end the differential signal is routed into two
single-pull-double-throw (SPDT) switches. These HMC536 model
switches are rated to operate from DC to 6 GHz and can be config-
ured by the micro-controller on the back-end PCB. If the IF signal
from the MMIC needs to be accessed externally, the switches are
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Figure 5. Simulated conversion gain and noise figure of the receiver components
on the MMIC swept over LO frequency for an IF of 2 GHz.

configured to route one of differential lines into a mini-SMP socket,
while the other line is terminated with 50 €. This allows any num-
ber of devices to be connected via coaxial cable to the IF output
of the mixer. Alternatively the SPDTs can be configured to route
the MMICs IF output differentially into the IF pre-amplifier on the
front end, which is based on two LT6203 operational amplifiers.
Its output is routed to the back-end PCB where it is filtered by an
anti-aliasing filter (AAF) with a corner frequency of 400 kHz before
being digitized using the 16-Bit ADC LTC2378IMS-16. The corner
frequency of the AAF limits the maximum range of the radar sys-
tem for a given set of ramp parameters. All radar measurements
presented in this paper use a 5ms long down-chirp with a ramp
bandwidth of 90 GHz, which results in a maximum range of 3.3 m
for stationary targets. The range of the system can only be increased
by using longer ramp times, since the filters cannot be dynamically
adjusted.

Transmit path

The transmit path needs to be able to serve two functions. Up-
conversion of an external IF signal and frequency doubling for
radar operation. Its architecture is based around two Gilbert cell
mixers as shown in Figure 6. The RF output of the first mixer serves
as the IF input of the second mixer. Both mixers operate with the
common D-Band LO signal at their LO inputs. The external IF sig-
nal at the input of the first mixer gets modulated to the D-band.
This high frequency D-band IF signal gets mixed with a D-band
signal originating from the same LO in the second mixer, to arrive
at the targeted frequencies in the J-band, that are radiated using the
on-chip antenna.

The external IF signal for up-conversion is connected to the sys-
tem using a mini-SMP socket on the front-end PCB. This single
ended signal is converted to differential by an active balun circuit
on the MMIC, which is based on a differential pair. Its output serves
as the IF input of the first up-conversion mixer. Frequency dou-
bling with this set-up can be achieved by effectively choosing an
IF frequency of 0 Hz at the first mixer. Since this is not practically
possible using the external IF due, to DC blocking capacitors in the
signal path, two MOS transistors where placed at the base nodes of
the differential pair in the Gilbert cell of the first mixer. If the digi-
tal Mode-pin is activated (see Figure 6), these MOS transistors shift
the bias potentials of both bases in opposite directions, which max-
imizes LO feed-through. For this “feed-through mode” no external
IF signal is present. Now that the LO signal is present at the out-
put of the first mixer, the second mixer get the same LO signal at
both its IF input and its LO input. In this way the second mixer get
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reconfigured to act as a Gilbert cell based doubler. The Mode-pin

and the input of the CMOS inverter that drives the Mode-pin are
routed to a pad and connected directly to the micro-controller on
the back-end PCB. If the micro-controller sets this pin to 0V the
TX-path operates in up-conversion mode. If it is set to 3.3V the
two stage mixer acts as a frequency doubler.

This architecture is in many ways similar to a subharmonic
approach, which has been shown to be effective in the required
frequency range [22, 23] and in the used technology [24]. When
operating close to or above the transit frequency of the given tech-
nology, generating sufficient LO power becomes challenging. This
is alleviated by the two-stage mixing architecture, which allows
for the LO signal to be generated more efficiently at half of the
targeted frequency. To provide the two Gilbert cells with differ-
ential D-band LO signals, generated from the single ended out-
put of the common LO generation building block, a network of
lumped-element Wilkinson power dividers, in conjunction with
a D-band rat-race coupler and two inter-stage amplifiers, iden-
tical the components discussed for the receive path, is used (see
Figure 2).

The entire transmit path including both mixers, inter-stage
amplifiers and the on-chip antenna was comprehensively co-
designed to maximize the bandwidth of the radiated power. 100 €2
matching between the components was not followed, the com-
ponents where matched to each other directly. Additionally the
frequency at which the components transfer maximum power was
slightly shifted in respect to the frequency at which the antenna
generates its maximum gain. This technique can extend the band-
width of the system, at the cost of output power resulting in
exceptional range resolution.

Antenna system

Both transmit path and receive path use two identical on-chip
antennas in a quasi-mono-static configuration. As can be seen in
the chip micrograph in Figure 3, this antenna is a differential patch
fabricated in the top most aluminum layer with a transmission
line based matching network. The patch is a square with an edge
length of 253 um. The center points of the receive and transmit
patches are 500 um apart from one another. The performance of
this antenna, which is similar to [25] and [26], is limited by the
fixed configuration of the metal stack and compliance with strict
metal density rules. Figure 7 shows the simulated gain and the
reflection coefficient S; of the antenna, assuming a 100 (2 source
impedance. In a frequency range of 41 GHz centered on 300 GHz
the gain of the antenna is within 3 dB of its maximum of 0.19 dBi,
assuming perfect matching. This can be used as a metric for the
bandwidth of the on-chip antenna, even though the bandwidth of
the radiated power, that will be discussed in Section 3, is larger.
One contributing factor to the low gain of the on-chip antenna is its
poor radiation efficiency. At the center frequency only 30% of the
accepted power is radiated, due to the very close proximity of the
patch on the top most metal layer and its ground plane on the bot-
tom most metal layer. To enhance the gain and increase the range
of the system, an elliptical PFTE lens is used to focus the radiation
of the antennas. The lens is based on the concept presented in [27].
With the lens, the gain of the resulting antenna system is increased
to 32.5 dBi. Ideally, the on-chip antennas need to be placed in the
focus point of the lens. Since a quasi-mono-static configuration is
used, the focus point of the lens lies in between the two antennas.
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Figure 7. Simulated reflection coefficient S;; and gain of the on-chip antenna over
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Figure 8. Simulated normalized directivity of the on-chip antenna with PTFE lens
in the E-plane and H-plane.

This results in a slight shift of main lobe direction of 1.5° in the E-
plane. As can be seen in Figure 8, the gain in the direction normal
to the antenna plane is reduced by 1.9 dB.
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System measurement results
Free space EIRP measurements

To characterize the performance of the system its output power
was measured under several system conditions. These measure-
ments needed to be done over the air, since the system only has
an on-chip antenna as its high frequency interface. The equivalent
isotropic radiated power (EIRP), the product of the antennas gain
and the power accepted by the same antenna, was measured using
a R&S FPL1007 spectrum analyzer in conjunction with a VDI SAX
WR3.4 spectrum analyzer extension module, equipped with a Mi-
Wave 261]-20 20 dBi standard gain horn antenna. The external LO
input of the SAX was swept using a HP 83640A signal generator so
that the entire WR3.4 waveguide band could be down-converted
to a number of slices around 400 MHz, that the spectrum analyzer
could measure. Assuming far-field conditions and perfect align-
ment of the device under test and the horn antenna, the EIRP can
be calculated from the measured power at the spectrum analyzer
with

47r-d-f>27

EIRP = —Lmes (
[

(1)
GRX ) Gconv

where P, ., is the power measured by the spectrum analyzer, Grx
is the antenna gain of the receiving standard horn and G, is the

daf

2
s : . 4 .
conversion gain of SAX. The expression (—) is also known as

c
the free space path loss FSPL derived from the Friis transmission
equation. It is calculated with the distance d from the transmit-
ting antenna under test to the receiving antenna, the operating
frequency f and the light speed in air c.

Figure 9 shows the EIRP measurement set-up. The system under
test is placed on a fixture, adjustable by micrometer screws to
allow alignment, which is in turn fixed on a high precision trans-
lation stage. The distance at which the EIRP measurement is taken
can be varied while maintaining alignment with this set-up. Every
measurement is done for a number of distances. Results for low
distances that do not agree with the i distance relation from the
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Figure 10. EIRP of the TX in feed-through mode as a function LO Frequency. The
solid line marks the measured result and the dashed line the corresponding
simulation result.

Friis equation are discarded, since they imply that far field condi-
tions are not met. The mean value of the remaining results is used
as the result of the EIRP measurement. This has the added advan-
tage of mitigating standing wave effects between the DUT and the
SAX module, that could skew the results for specific combinations
of operating frequencies and distances. All EIRP measurements of
the presented system are done without the PTFE lens. Its very high
directivity made alignment difficult for large distances, while the
far-field distance is increased considerably by the greater aperture
size.

Figure 10 shows the EIRP of the system configured as a radar
system, in feed-through mode. The measured radiated power has
6 dB bandwidth of 54 GHz from 258 to 312 GHz. Two almost equal
maxima at 274 and 298 GHz lie in this range with EIRP of -21.2
and —-22.6 dBm respectively. The second maximum corresponds to
the antenna gain maximum shown in Figure 7, whereas the first
maximum is at the frequency where the two stage mixer trans-
fers its maximum power. All EIRP simulation results are produced
using combined EM and circuit simulations of the entire transmit
path. Parasitics close to critical active devices are RC extracted and
load networks and matching networks for frequencies in or above
the D-band are modeled using EM simulations. The antenna is
modeled using the broadband S-parameters from a full wave simu-
lation. The power accepted by the antenna model is combined with
the radiation efficiency and directivity from the full wave simula-
tion to arrive at the simulated EIRP. The measured results agree well
with the simulated results for high frequencies. The considerable
mismatch at lower frequencies may be caused by an overestima-
tion of the antenna gain or matching far from its center frequency.
With the simulated directivity improvement from PTFE lens, the
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Figure 11. EIRP of the TX in up-conversion mode as a function of LO frequency for
two IF input Powers. IF frequency is set to 2 GHz and only the upper sideband is
shown. The solid lines mark the measured results and the dashed lines the
corresponding simulation results.
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Figure 12. EIRP of the TX in up-conversion mode as a function of IF Power. Both
the upper and lower sideband are shown. IF frequency is set to 2 GHz and the LO
frequency set to 300 GHz. The solid lines mark the measured results and the dashed
lines the corresponding simulation resultsThe dotted line marks the OP1dB of the
measured results, where the EIRP is compressed by 1dB.

EIRP of the system is expected to be as high as 9.2 dBm, for radar
operation.

To understand the capabilities of the system as an up-converting
RF front-end a number of EIRP measurements were done with an
external IF signal source. A Keysight E8257D PSG signal generator
is connected to the external IF input on the front-end PCB using
a coaxial cable and the measurement process as described before
is repeated with the transmit path configured for up-conversion.
Figure 11 shows the first of these measurements. The LO frequency
is swept using the PLL of the system for two IF power levels, while
the IF frequency is kept constant at 2 GHz. At 0 dBm input power
the system operates in saturation, while it operates in the linear
region at —15 dBm (see Figure 12). The saturated power swept over
the LO frequency is considerably lower than the EIRP recorded in
feed-through mode (see Figure 10). This suggests, that the maxi-
mum voltage amplitude at the bases of the differential pair in the
first mixer, generated by the external IF, is lower than the voltage
level shift generated by the feed-through mode MOS transistors.
This implies that the active balun circuit between the differen-
tial IF input of the first mixer and the single ended external IF
input was improperly modeled and cannot generate sufficient out-
put power to saturate the first mixing stage. The LO frequency
dependence of EIRP is similar to the feed-through mode case with
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Figure 13. EIRP of the TX in up-conversion mode as a function of IF frequency. The
IF power is set to ~15dBm, the LO frequency is set to 300 GHz and only the upper
sideband mixing product is shown. The solid line marks the measured result and
the dashed line the corresponding simulation result.

a 6 dB bandwidth of 49 GHz for 0 dBm IF input power. To ana-
lyze the linearity of the transmit path, Figure 12 shows the EIRP
dependent on the input power level. The LO frequency and IF fre-
quency are held constant at 300 and 2 GHz respectively. Both the
upper mixing product at 302 GHz and the lower mixing product
at 298 GHz, which are almost identical as expected for a dual side-
band mixer, are shown in this plot. The mixer is linear up to the
OP1dB input power —11.5 dBm, which corresponds to an EIRP of
-35.3 dBm. Simulations and measurement agree well for the linear
region but differ significantly in the saturated region. The simu-
lated saturated EIRP is very similar to the simulated and measured
result in feed-through mode at 300 GHz (see Figure 10), support-
ing the claim that the active balun was improperly modeled and
limits the linearity of the mixers. Finally the IF bandwidth is inves-
tigated by sweeping the IF frequency for a fixed LO frequency of
300 GHz, while operating in the linear region, with an input power
of —15 dBm. Figure 13 shows a very flat response in the 6 dB width
of the EIRP, which spans from 260 MHz to 6.8 GHz.

These measurements show, that this system can up-convert an
arbitrary IF signal with a bandwidth of up to 6.5 GHz, like a QAM
signal or an OFDM waveform modulated on to a carrier frequency
of 3.25 GHz, to the J-band. The system can place this up-converted
signal in a large part of the frequency range allocated by IEEE
802.15.3d while maintaining an EIRP greater than —16.9 dBm for
the 6 dB bandwidths in LO and IF frequency. This is done in
conjunction with the lens, while operating linearly at the OP1dB.

PLL stabilized phase noise

Finally the PLL stabilized phase noise of the transmit signal in feed-
through mode was investigated. The measurement set-up is iden-
tical to the set-up used for EIRP measurements in feed-through
mode, only this time the spectrum analyzer in combination with
the extension module was used to measure the phase noise instead
of the output power. Figure 14 shows the result of this measurement
at several frequencies as well as a simulation of the systems phase
noise at 300 GHz, which agree very well. At an offset frequency of
1 MHz and carrier frequency of 300 GHz the measurements done
with the D-band LO generation breakout circuit give a phase noise
of —87 dBc/Hz (see Figure 4). These results only deviate by 2 dB
from the PLL stabilized results in Figure 14, which are =79 dBc/Hz
at a 1 MHz offset, if the 6 dB increase in phase noise expected by
the frequency doubling in the transmit path building block is taken
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Figure 14. PLL stabilized phase noise of the system measured at several
frequencies (solid lines) and simulated at 300 GHz (dashed line).

Figure 15. Photograph of the radar measurement set-up.

into account. The measurements are limited by the noise of the
spectrum analyzer for frequencies very close to the carrier. This
is why the simulation deviates from the measured results for offset
frequencies under 20 kHz.

Distance measurements

The capabilities of the presented system were validated by per-
forming several short range radar measurements. Figure 15 shows
the used measurement set up. A fixture for radar targets is placed
roughly 0.35 m in front of the sensor. All radar measurements were
performed with a FMCW down chirp from 330 to 240 GHz, limited
by the frequency range in which the PLL is stable. A ramp duration
of 5 ms was used. Figure 16 shows a time domain representation of
the measured IF signal for one down ramp with a metal plate placed
in the fixture. The X axis shows the corresponding frequency points
as well as the ramp time of the chirp in reversed order. The IF
signal shows a strong frequency selectivity. At the targeted design
frequency of 300 GHz, the IF signal is at its maximum.

To derive range information, a Fourier transform was applied
to the measured IF signal. Figure 17 shows the frequency domain
representation of the IF signal, normalized its maximum ampli-
tude. At a distance of 0.35 m the main peak can be observed. This
peak presents a signal to noise ratio (SNR) of 60 dB. Apart from
this, multiple smaller peaks can be distinguished. These have multi-
ple origins, which are annotated in Figure 17. Due to the unwanted
feed-through of the input signals at all doublers, unwanted FMCW
ramps are present. In this case peaks caused by ramps at half
and three quarters of the intended frequency are visible at the
corresponding distances. Clutter and multi-path propagation is
mitigated by the very high directivity lens.
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Figure 18. Distance deviation from the mean distance for 1000 consecutive
measurements with the same target at 0.35m.

To validate the stability of the system, 1000 measurements were
taken, with a metal plate as a target. Figure 18 shows the distance
deviation from the mean recorded distance, as well as the result of
a sliding average over ten measurements. The standard deviation is
0.39 ym without averaging and 0.14 ym with averaging. This shows
the capability of the system to achieve sub-micrometer stability in
its distance measurements.
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The spatial resolution of an idealized FMCW radar system, is
given by

c

AR: ﬁ.

2

The theoretical limit for a system with a bandwidth B of 90 GHz
is 1.67 mm. The resolution of this radar system for uncalibrated
measurements lies well above this limit at 4.1 mm, as can be dis-
cerned from the 6 dB width of its main peak in Figure 17. This
mismatch is caused by the non-ideal frequency response of the
presented radar system, which can be interpreted as an additional
windowing function modulating the received IF signal. Window
functions have the effect of widening the target peaks in the Fourier
transformed IF signal [28]. Since the frequency response depends
almost entirely on the characteristics of the systems components,
which do not change between measurements, this effect can be
calibrated using the method described in [8] and [29].

The measured IF-signal Y is assumed to be the product of the
ideal TF-signal X for a given target scenario and the transfer func-
tion H of the radar sensor. The ideal IF-signal for single target
at known distance is given by X = e/“r?, which corresponds
to a unit impulse at the targets distance in its frequency domain
representation. To compute the transfer function the average IF-
signal from the aforementioned 1000 consecutive measurements
is used as a reference measurement. To only correct the frequency
components of the IF-signal corresponding to the main target, a
rectangular window is applied to reference measurement data in
the frequency domain. The width of this window is marked by the
orange dashed lines in Figure 17. The transfer function is com-
puted by dividing the reference data by the ideal IF-signal and
plotted in its normalized form as the orange line in Figure 16.
This frequency response closely resembles the product of measured
EIRP (see Figure 10), simulated conversion gain of the receive path
(see Figure 5) and the simulated gain of the receive antenna. The
coinciding maxima of the transmit path and receive path around
300 GHz correspond to the transfer functions maximum at the
same frequency. The transmit paths maximum at 274 GHz clearly
extends the usable ramp bandwidth to lower frequencies.

Figure 19 shows the Fourier transformed IF signal for a second
measurement with a metal plate as a target in its uncalibrated form
and calibrated by dividing the measured IF data by the previously
calculated transfer function. Applying the calibration decreases the
width of the main peak considerably to only 1.97 mm. The effective
bandwidth of ideal system with this resolution, calculated using
equation 2, would correspond to 76 GHz. The increased resolution
comes at the cost of decreased dynamic range, as can be seen in
Figure 19. The remaining difference in range resolution to the opti-
mum of 1.67 mm can be explained by ramp-non linearity due to the
high loop gain variation of the PLL [30].

An industrial application of FMCW radar where bandwidth
and spatial resolution are especially important is the precise mea-
surement of material thickness. To demonstrate the presented
systems capabilities in such an application, a 3.4 mm thick disk
made of 3D-printed poly-propylene plastic was placed in the target
fixture shown in Figure 15. The IF data of this measurement is cal-
ibrated using the same transfer function as before (see Figure 16),
recorded with a metal plate instead of the plastic sample. Figure 20
shows both calibrated and uncalibrated results. The target peaks for
both sides of the plastic sample are visible and distinguishable in
both cases. The depth of the minimum between the target peaks is
only 3.2 dB in the uncalibrated case, too little to separate the targets
reliably, while it is 15.3 dB when calibrated. This shows the ability
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Figure 19. Frequency domain representation for a calibrated and uncalibrated IF
signal recorded with a metal plate at 0.35m distance.
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Figure 20. Frequency domain representation for a calibrated and uncalibrated IF
signal recorded with a 3.4 mm thick plastic disk at 0.35m distance.

of the calibration to increase the range resolution of the radar sys-
tem considerably by making more of the tuning range of the system
usable, ensuring the reliable separation of the targets. Such an effec-
tive calibration is only possible due to the already extraordinarily
large EIRP bandwidth described in Section 3.

Communication measurements

To show the potential of the presented system in a communica-
tion context a superheterodyne on-off keying (OOK) link is set
up. As can be seen in Figure 21(a) two systems, configured as RF
front-ends, are aligned to one another with a distance of 0.3 m.
One acts as a transmitter and one acts as a receiver. The IF-signals
are generated and recorded directly using high-performance lab-
oratory equipment. A Keysight M8190A arbitrary waveform gen-
erator (AWG) is used to generate the signal that is up-converted
by the transmitting system. A pseudo-random binary sequence
(PRBS) with a symbol rate of 100 MBd is used to modulate a
500 MHz carrier signal. This on-off keyed IF-signal can be seen in
Figure 21(b). The transmitter mixes this signal with an LO-
frequency of 300 GHz, resulting in the radiation of two mixing
products around 299.5 and 300.5 GHz. The PLL of the receiving
system was set to 302 GHz to ensure that the down-converted
mixing products do not overlap. The IF-output of the receiving
system is recorded using a Keysight MSOS804A oscilloscope, at
a sample rate of 10 GSa/s. A trigger signal from the AWG is con-
nected directly to the Oscilloscope. It marks the beginning of the
PRBS. The IF signal is recorded for 10 ys before and after this trig-
ger. It provides a known time reference to more easily compare
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the demodulated signal against the original PBRS. Figure 21(c)
shows the frequency components of received IF-singal. The down-
converted mixing products of the AWGs signal are visible around
1.5 and 2.5GHz, in addition to the down-converted LO feed-
through of the transmitting system at 2 GHz. This strong LO
feed-though is caused by asymmetries in the layout of the transmit
mixers.

The following demodulation steps (see Figure 21(d))are done
entirely in the digital domain, independent from the measurement
set-up. First, the lower mixing product is isolated by applying a
bandpass filter with a 175 MHz wide rectangular transfer function
centered on the peak at 1.5 GHz. The width of this filter is a trade-
off between noise and quality of the usable signal. Figure 21(e)
shows the filtered IF-Signal. The maxima corresponding to the
PRBS (comp. Figure 21(b)) are visible again, but its rectangular
character is lost, since the filter width only includes the second har-
monic of the highest frequency components of the PRBS. To sepa-
rate the baseband component from the 1.5 GHz carrier, the signal
envelope of the filtered IF-signal is calculated (see Figure 21(e)).
This simple demodulation method, while only allowing for ampli-
tude modulations, does not require any form of carrier recovery,
which mitigates the effect of the phase and frequency uncertainty
introduced by the unsynchronized PLLs of the transmitter and
receiver. Using the trigger signal as a time reference and the known
symbol rate of 100 MBd, the average of the signal envelope is calcu-
lated for each symbol. This symbol value is plotted for all recorded
symbols as a histogram with 100 bins in Figure 21(f). The bit string
is recovered by assigning 1 to symbols with values above the mean
of all symbol values and 0 to symbols below the mean value. When
the recovered bit string is compared to the initial PRBS used by the
AWG, a bit error rate (BER) of 0.55% is calculated.

These results show that a short range link with moderate data
rates can be set up using two ultra-wide-band radar sensors as
RF front-ends. The use of simple modulation and demodulation
methods like OOK relaxes the requirements on the baseband com-
ponents and the signal processing. A promising approach is to
co-integrate compact SDR-like front-ends with the radar sensor
to replace the laboratory equipment and build up self-contained
nodes in a wireless sensor network.

Comparison

Table 1 gives an overview of comparable wide-band radar sys-
tems and transceivers. All of them are highly integrated and use
on-chip antennas. This work with a center frequency of 285 GHz
falls in the middle range of the compared systems. Transceivers in
comparable SiGe technologies like [31], [26] or [32] can work at
much higher frequencies. Yet these transceivers have lower abso-
lute and relative tuning ranges, which is the key metric to achieve
high range resolution. By leveraging its ultra-wide-band VCO the
presented system reports the second highest relative and absolute
tuning range of compared systems, the highest in systems using
an integrated VCO for their signal generation. The spatial resolu-
tion was only reported in [25, 31, 33-35]. No radar measurements
are presented in [26, 32], as they only present transceiver MMICs.
The InGaAs mHEMT based system in [7] does present radar mea-
surements in an imaging application, but does not report a spatial
resolution. The resolution for this system is expected to be near
the optimum for a tuning range of 80 GHz, which would corre-
spond to 1.87 mm, very close to the results of the presented system.
The results reported in the original conference publication of this
system [18] fall at the low end of compared systems, with 3.9 mm.
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Figure 21. Communication measurements and digital signal processing.

Table 1. Comparison of integrated wide-band radar sensors and transceivers around 300 GHz using on-chip antennas

Ref., Year Technology Freq. (GHz) FTR (GHz) rFTR (%) AR (mm) Peirp ~ (dBm) Ppc (W) Synthesizer
[26], 2022 SiGe 130 nm 469.5 43 9.2 - -6.5¢ 0.8773 Int. VCO
[25], 2019 SiGe 130 nm 224 52 23.2 3.2 2512 3.54 Int. VCO + PLL
[33], 2016 SiGe 130 nm 240 60 25 2.6 3012 1.6* x16 mult.
[31], 2024 SiGe 90 nm 490 60 12 3.25 -8.8 0.640° x24 mult.
[34], 2019 SiGe 55 nm 221.1 62.4 28.2 2.7 1412 0.0873 Int. VCO
[32], 2018 SiGe 130 nm 340 70 21 - 18.4% 1.7 Int. VCO
[7], 2022 InGaAs 35 nm 383 80 21 - 17t - x48 mult.
[35], 2022 CMOS 65nm 276 100° 36 1.5 20? 0.84° x16 mult.
[18], 2024 SiGe 90 nm 285 90 31.6 3.9 - 3.13* (0.7%) Int. VCO + PLL
This Work SiGe 90 nm 285 90 31.6 1.97 9.2? 3.13% (0.7%) Int. VCO + PLL

INot explicitly given.

2Using lens.

30nly MMIC DC power consumption.

4System DC power consumption.

SFive combined channels with 20 GHz BW each.

Using the calibration method presented in this paper much more
of the very large tuning range is made usable in measurements,
boosting the range resolution to just below 2 mm. To the best of the
authors knowledge only [35] has reported a higher range resolution
for FMCW radar sensors. This system uses an innovative, but much
more complex, approach where five narrow-band on-chip radar
channels, with offset frequencies, are combined to function as a sin-
gle system with extraordinary bandwidth and range resolution. The
greatest shortfall of this system is its low EIRP, being the lowest for
systems using a lens, making this system only applicable for short
range use-cases. The final advantage of presented system is its high
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level of integration. No external laboratory equipment is needed for
signal generation, as in the systems using multiplier chains, mak-
ing a compact and straight forward stand-alone integration in an
industrial setting possible.

Conclusion

In this article, we presented a high-resolution FMCW radar sensor
that is built around a custom-developed SiGe transceiver MMIC.
The dual-function of this transceiver system was realized by inte-
grating a reconfigurable two-stage up-conversion mixer in the


https://doi.org/10.1017/S1759078725101918

International Journal of Microwave and Wireless Technologies

transmit path. The ability to act as a frequency doubler, allows the
system to be either used as a standalone radar sensor or as a flex-
ible RF front-end capable of up-converting and down-converting
arbitrary modulated IF signals.

The ultra-wide-band integrated VCO on the MMIC in con-
junction with PLL integrated off-chip allows for a rFTR of 31.6%,
making stabilized output frequencies in a tuning range of 90 GHz
centered on 285 GHz possible.

Two on-chip patch antennas in conjunction with a highly focus-
ing PTFE lens eliminate the need for costly RF interfaces. The
extensive co-design of these antennas with the integrated circuits
make wide-band radiation possible using typically narrow-band
on-chip patch antennas. The characterization of the transmit path
shows that the EIRP of the system configured for radar opera-
tion is greater than 3.2 dBm in a bandwidth of 54 GHz. Configured
as an up-converting front end, the system can place an arbitrary
external IF signal with a bandwidth of up to 6.5 GHz in a large
part of the frequencies allocated by the IEEE 802.15.3d standard
while operating linearly and maintaining an EIRP greater than
-16.9 dBm.

The capabilities of this system as a standalone radar sensor were
investigated in a single target scenario. A down chirp from 330 to
240 GHz in 5 ms and a metal plate as target placed at a distance of
0.35 m were used. Uncalibrated measurements show a spatial reso-
lution of 4.1 mm. The proposed calibration method improves this
spatial resolution greatly to 1.97 mm.

The feasibility of this system in an industrial application was
shown in a thickness measurement scenario. Both sides of a 3.4 mm
thick plastic disk could be separated clearly utilizing the radar
calibration method.

Additionally a communication link over a distance of 0.3 m was
set up with two sensors configured as RF front-ends. Laboratory
equipment was used to handle the IF-Signals. A 100 MBd OOK
signal was received and demodulated with a BER of 0.55%.

Its compact size, cost-effective integration and reconfigureabil-
ity make the presented system a viable and practical candidate for
many future industrial and scientific terahertz applications.
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